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Abstract

Background: Taxonomic classification of microbiomes has provided tremendous

insight into the underlying genome dynamics of microbial communities but has

relied on known microbial genomes contained in curated reference databases.

Methods: We propose K-core graph decomposition as a novel approach for

tracking metagenome dynamics that is taxonomy-oblivious. K-core performs

hierarchical decomposition which partitions the graph into shells containing nodes

having degree at least K called K-shells, yielding O(E + V ) complexity.

Results: The results of the paper are two-fold: (1) KOMB can identify

homologous regions efficiently in metagenomes, (2) KOMB reveals community

profiles that capture intra- and inter-genome dynamics, as supported by our

results on simulated, synthetic, and real data.

Software Availability: KOMB is available for use on Linux systems at

https://gitlab.com/treangenlab/komb.git

Keywords: De Bruijn graph; graph-based analysis; K-core decomposition;

metagenome; microbiome; unitigs1

2

Background3

Graph-based representations and analyses paved the way for several advances in4

computational biology over the last few decades [1–3]. This is particularly evident5

in the progress made in the field of genome assembly, both for isolate genome6

assembly [4, 5] and metagenome assembly, as well as efficient detection of struc-7

tural variants [6–8] using genome graphs [9–11]. Indeed, state-of-the-art graph-8

based metagenome assemblers [12–15] have achieved remarkable improvements in9

both run-time and accuracy in recent years [16] through the use of efficient data10
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structures and clever heuristics. Recent examples include compact De Bruijn graph11

construction and traversal for assembly [17,18] as well as scaffold graphs for metage-12

nomic samples that can generate scaffolds from contiguous overlapping sequences13

(contigs), which are then stitched together by using paired-end read information to14

obtain the complete genome [19,20]. There has also been a recent emphasis towards15

constructing De Bruijn graphs that encode the underlying metagenomic population16

information such as succinct colored De Bruijn graphs [21,22,22].17

Despite recent advances, genome assembly remains challenging due to the presence18

of repetitive sequences and sequencing error, both of which confound graph traversal19

needed to generate consensus sequences [23]. This occurs in part due to the presence20

of repetitive sequences in the genome that tangle the assembly graph resulting in21

nodes with high degrees. This assembly graph tangling creates a non-trivial graph22

traversal problem [24]. This is further exacerbated when dealing with metagenomes23

as the sequences can contain intra-genomic repeats as well as inter-genomic ho-24

mology. Distinguishing paralogs from orthologs, and repeats from homologs can be25

challenging, especially if the sample is enriched for closely-related species or strains.26

Assemblers or scaffolders often deal with resolving this ambiguity in two ways; ei-27

ther by assuming that branches in the graph were a result of base calling errors28

and hence collapsing the node, or by stopping the traversal to reveal a fragmented29

stretch of unique contiguous subsequences of the genome (unitig) [25,26]. Thus, for30

optimal assembly, it becomes imperative to correctly identify sequences that are31

part of these tangled nodes.32

Another area where repetitive regions play a confounding role is in the identifica-33

tion of genomic variations in a large metagenomic sample. Inter-genomic homology34

can often link unrelated regions of different but closely related genomes. In addition35

to the repetitive regions, non-uniform coverage can result in an increase in false pos-36

itive repeats as core genome regions of highly abundant species can be labelled as37

repeats [27]. Distinguishing and separating out these genomic regions with varying38

degrees of similarities and differences becomes a crucial step for any downstream39

metagenomic analysis and allows for careful tracking of genomic diversity within40

the sample [28–30].41

A popular solution that has emerged in the literature is to identify tangled nodes42

caused by these different phenomena using the concept of node centrality on graphs.43
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More specifically, the general idea is to employ node centrality measures to separate44

high-similarity nodes from non-repeat nodes. Since tangled nodes have on average45

a larger degree than other nodes and are well-connected within the graph, it is rea-46

sonable to employ centrality measures to identify these nodes. In this context, tools47

like MetaCarvel [31] and Bambus2 [25] are examples of methods developed by the48

community grounded on the idea of centrality-based repeat detection for the spe-49

cific case of betweenness centrality [32,33]. Although methods based on betweenness50

centrality can achieve high levels of specificity, they tend to miss out on multiple51

repetitive regions leading to loss in sensitivity [24]. Another fundamental draw-52

back of betweenness centrality is its high computational complexity O(V E) [34,35],53

where V denotes the number of nodes and E the number of edges in the graph,54

making impractical its implementation on large metagenomic datasets. To allevi-55

ate these concerns, a recent method employs an approximate betweenness central-56

ity measure [36, 37] to improve the scalability of the approach. The approximate57

betweenness centrality relies on subsampling the nodes in the graph to estimate58

betweenness centralities in the complete graph. While approximate betweenness59

centrality is in practice an order of magnitude faster than the exact counterpart, it60

depends on thresholding strategies to achieve good levels of specificity. Moreover,61

it was later shown [24] that an ensemble approach using a random forest classifier62

and various features from the contig graph (including coverage, contig length, and63

centrality) resulted in a slight improvement over using just betweenness centrality64

as a measure of repeat detection.65

In parallel to repeat and homolog detection, there has been an increasing need in66

the research community for methods that visually and quantitatively identify mi-67

crobial community structures and sequence diversity among the organisms present68

in metagenomic samples, particularly in response to perturbations [38]. A tool that69

can accurately and efficiently identify and extract information from assembly, con-70

tig, or unitig graphs in an intuitive and theoretically grounded framework could71

help biologists understand and characterize microbial communities using repeats72

and homologous regions of the organisms in their samples [39–42].73

In this work we present KOMB, a tool that does not rely on reference databases74

and can capture highly-connected repetitive regions in an entire genome or a75

metagenomic community. We present a novel way of achieving this using the K-76
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core decomposition of a unitig graph that hierarchically separates out repetitive77

regions into various shells that can then be used to analyze genomic variation in78

the sample. We show that the distribution of nodes could lead to a new method-79

ology that describes metagenomic community structure based on sample specific80

signatures obtained from KOMB profiles. In Methods, found towards the end of81

the manuscript, we describe the pipeline of the tool, explain unitig graph construc-82

tion, and elaborate on the concept of K-core decomposition. In the Results section,83

we provide a rigorous validation of our novel K-core decomposition tool KOMB as84

applied to unitig graphs constructed from simulated data as well as synthetic and85

real metagenomes. We demonstrate its effectiveness in identifying repetitive regions86

across sample types and sizes and illustrate how KOMB profiles can be used to87

visualize community structure. Finally, in the Discussion and Conclusions we cover88

the salient points and main conclusions from our study and lay out future directions89

of our research.90

Results91

We present a thorough validation of KOMB as applied to various simulated, syn-92

thetic, and real datasets. We do this through three major sets of experiments.93

First, we demonstrate the efficacy of the application of the K-core decomposition94

algorithm in genomics by testing it on simulated genomes constructed as random95

sequences to which we have added known repeat families. The simulated backbone96

sequences are constructed by appending base pairs uniformly at random until the97

desired length is achieved. We then simulate two families of repeats and insert98

them into these random backbone sequences using the multinomial distribution to99

determine the spacing between the repeats. We simulate two families of repeats,100

intra-genomic repeats that are all contained within a particular random genome,101

and a second family of inter-genomic repeats contained within multiple genomes.102

The results on the simple simulated dataset validate the theoretical results on the K-103

shell profiles as discussed in the Methods section and demonstrate KOMB’s ability104

to unveil repetitive unitigs (Additional File 1, Fig S1).105

Further, we also analyzed the effects of different read quality control methods106

that are traditionally used by biologists. Specifically, we show that read filtering via107

k-mer filtering techniques and read correction can significantly impact the profile108
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of shells. We show that error prone reads can lead to fragmentation of shells in109

contrast to the ideal case and can significantly impact the profile of the sample.110

We also reason that discarding reads with low abundance k-mers could be a better111

approach to prevent fragmented peaks in the KOMB profile as opposed to any112

read correction that may introduce noise (Additional File 1, Figure S2). Next, we113

repeat the simulated experiment, this time embedding repeats into real microbial114

genomes in lieu of a random backbone. In addition to the expected signal, this115

introduces some interference from the sequences that we expect to encounter in real116

datasets due to the presence of repeats in bacterial genomes. We show that the117

peaks containing unitigs bordering the inserted simulated repeats are still observed118

clearly with a small shift in shells at which these peaks occur (Additional File 1,119

Figure S3).120

KOMB uses an internal unitig filter where unitigs shorter than read length are121

not considered for downstream analysis. Though beneficial in reducing noise while122

analyzing isolate genomes, this could cause loss of information in metagenomes or123

samples containing closely related strains or species. In such cases, the resulting124

de Bruijn graph is expected to be highly fragmented yielding shorter unitigs. We125

discuss the effect of unitig filtering in the context of species diversity through sim-126

ulations on five closely related E. coli strains and reason that unitig filtering based127

on length must be turned off in order to capture the complete profile. We also show128

the difference in signatures obtained when we have multiple genomes in a sample129

that are closely related versus a sample containing more distantly related genomes.130

(Additional File 1, Figures S4, S5 and, S6)131

Lastly, we run KOMB on real metagenomic samples to show both how the shell132

profile can be an indicator of the community structure present in the samples as well133

as its scalability to handle large metagenomic datasets. We first show the results on a134

synthetic metagenomic dataset [43] which allows us to identify community structure135

in the presence of ground truth data. We also run KOMB on real metagenomic136

samples from the Human Microbiome Project (HMP) and show that samples from137

the same body site tend to be more closely matched compared to the samples138

from other body sites based on their KOMB profiles. Finally, we run KOMB on139

approximately 1TB of longitudinal gut microbiome data to show that KOMB can140

help capture and visualize perturbations in microbiome communities.141
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KOMB validation on a simulated E.coli and B.Cereus sample142

To validate KOMB on a simple simulated data model, we consider 2 genomes in a143

sample, E. coli and B. cereus. We embed one family of intra-genomic 400×400bp144

repeats in E. coli and one family of intra-genomic 200×400bp repeats in B. cereus,145

along with one shared family of inter-genomic 500×500bp repeats. Figure 1 shows146

the results on the combined sample as well as the individual genomes of E. coli and147

B. cereus separately. Based on the theoretical analysis (see KOMB profile in the148

Methods section), we expect a peak close to 1000 (for the inter-genomic repeats)149

and peaks close to shells 400 and 200 as well. Figure 1 shows that we do indeed see150

peaks close to 1000 that represent the shared simulated repeats. More interestingly151

we see peaks around shell 200 and 400 but also see some discernible peaks between152

200-400 and 400-600. These are unitigs with two different types of repeats at their153

edges causing a shift beyond the expected number of shells for the intra-genomic154

repeats.155

Figure 1 Combined KOMB profile of E. coli (intra: 400×400bp, inter 500×x500bp) and B.

cereus (intra: 200×400bp, inter 500×500bp) repeats (Left), E. coli single genome (Middle), and

B. cereus single genome (Right). For the combined profile of both bacteria (L), there is a clear

formation of peaks close to position 1000 (984 and 979), which indicate the inter-genomic

repeats, and peaks at shell numbers 277, 396 and 540. This agrees with the theoretical model in

the case of unitigs with mixed repeats at its end as discussed in Methods. We also plot the

individual profiles of E.coli and B.cereus. For E.coli (M) we see three peaks at 396, 496 and, 539

given its higher copy number of intra-genomic repeats (400). For B.cereus, we observe peaks at

276 and 492 signalling its intra and inter-genomic repeats, respectively.

In order to validate the signature we receive from the above combined plot of156

E. coli and B. cereus, we create a ground truth dataset of repetitive unitigs by157

mapping back the unitigs to the reference genomes. Given that we know the position158

of the simulated repeats in the genome, we mark any unitigs mapping to a region159

overlapping the embedded repeats into three categories, either inter-genomic repeats160

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.21.109587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109587
http://creativecommons.org/licenses/by-nd/4.0/


Balaji et al. Page 7 of 34

or one of the intra-genomic family of repeats. Figure 2 confirms that unitigs in the161

highest shell do indeed have inter-genomic repeats at their ends. Also, as expected,162

the families of intra-genomic repeats fall in peaks around 200 and 400 and the unitigs163

with mixed repeats at their ends form peaks in between those shells. Finally, we164

observe that the initial shells have no repeats hitting them. This demonstrates the165

ability of KOMB to delineate repeat families while being robust to background166

noise.167

Figure 2 Validation of repeat types in E. coli + B. cereus sample via mapping unitigs back to the

reference using nucmer [44]. Unitigs are labelled based on the repeats they overlap with. Based on

ground truth nucmer mapping, the last shell (close to 1000) contains unitigs overlapping

exclusively with inter-genomic repeats (FI) whereas the shells around 200 are overlapping B. cereus

simulated intra-genomic repeats (F1) and shells around 400 are overlapping E. coli simulated

intra-genomic repeats (F2). Finally, the first shells contain the background noise (colored black).

KOMB on Metagenomes168

To address the question of visualization and characterization of communities within169

metagenomic samples we have run KOMB on a synthetic metagenomic community170

of 64 organisms [43] and real metagenomes obtained from the Human Microbiome171

Project (HMP) [45] [46]. Finally, we also show that KOMB can reveal shifts in large172

scale longitudinal metagenomic studies [47].173

Synthetic Metagenome Dataset174

We ran KOMB on the Shakya et al [43] synthetic metagenome community and175

carried out an in-depth analysis of the KOMB profile. The Shakya metagenomic176

dataset consists of 64 organisms - 16 archea and 48 bacteria. In order to validate177

and analyze KOMB, we also downloaded the reference genomes of all the organisms178

in the sample. These 64 genomes were then concatenated into a single fasta file and179
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used as input to nucmer for repeat finding in order to determine the ground truth180

(Additional File 1, Section 1.5) .181

Figure 3 The KOMB profile of the Shakya et al [43] synthetic metagenome. We observe five

peaks with more than 250 nodes in the shells above 50 at 101, 136, 264, 283 and 345,

respectively. We mark each peak with a distinct color to use for representing respective nodes in

the graph visualization in Figure 4.

Analysis of KOMB Profiles182

As part of the preprocessing step in the KOMB pipeline, the paired-end reads were183

filtered using the k-mer filter tool from Stacks [48]. We then ran KOMB with no184

unitig filter to replicate a run with no prior knowledge of the community structure.185

Figure 3 shows the KOMB profile obtained. We observe that, similar to the case of186

simulated repeats with a real genome backbone, we obtain some peaks in the initial187

shells that represent the inherent background similarities in the genome which decay188

as we approach shell number 50. Post the 50th shell, we observe 5 distinct peaks in189

the profile (marked with colors) at shells 101, 136, 264, 283 and 345, respectively.190

Shell 345 is also the last shell of the profile, hence, we find consistent behaviour on191

the synthetic metagenome data with our simulated validations that produce a peak192

containing inter-genomic repeats. To further closely analyze the graph topology,193

we plot the largest connected component of an induced subgraph of the data. The194

induced subgraph is constructed such that it only contains the nodes present in195

shells above the 50th shell where we observe the initial peaks decay. Figure 4 shows196

the result of this visualization. We color each of the nodes occurring in our five197

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.21.109587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109587
http://creativecommons.org/licenses/by-nd/4.0/


Balaji et al. Page 9 of 34

peaks of interest as dark blue (101), cyan (136), orange (264), red (283) and purple198

(345), and use a spring graph layout to plot the graph. We observe that shells 283,199

345 and 136 form dense subgraphs whereas the 264 and 101 shells are more spread200

out over the connected component. This, in fact, is also a characteristic of K-core201

where shells can represent dense subgraphs as well as long-range connections that202

are important to the global structure of the graph.203

Figure 4 The unitig graph constructed from the Shakya et al synthetic metagenome data (edges

removed for clarity). To effectively visualize the unitig graph, we consider only the nodes in shells

above 50. The colored nodes represent peaks corresponding to Figure 3 indicating repeat unitigs.

Here we tag and visualize nodes from the five peaks as dark blue (101), cyan (136), orange (264),

red (283), and purple (345). The graph is constructed using sfdp tool from the Graphviz package,

which uses a variant of force directed layout for placing the nodes. In force directed layouts,

tightly connected clusters tend to stay together in the final representation.

We further analyze each of the repetitive unitigs in each of the peaks as well as the204

rest of the shells. We first plot the total number of distinct genomes hit by unitigs in205

each shell. This gives us information as to whether particular shells are inclined at206

identifying inter-genomic homologous regions and which shells capture unitigs that207

map predominantly to fewer organisms. In Figure 5, we see a distinctive last shell208

spike much like the KOMB profiles, here it indicates that the densely connected209

subgraph does in fact represent inter-genomic repeat unitigs. We see some similar210

patterns in the early shells after the 50th shell cutoff (50-161). For each of the five211

peaks observed in the KOMB profile we have the following number of genomes per212

shell, 101: 59, 136: 54, 264: 24, 286:17, 345:42. We see that the shells 264 and 286213

have significantly less number of genomes per shell, indicating that the majority214
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of the repeats captured by that shell are more intra-genomic rather than inter-215

genomic in nature. Unitigs in the last shell mapped to 42 genomes (out of the216

total of 64) displaying a larger diversity than that of the intermediate shells and217

underlying KOMB’s ability to capture high copy number repeat unitigs appearing218

across organisms in the metagenome.219

Figure 5 The number of genomes mapped by unitigs per shell. For each repeat unitig from the

ground truth occurring in each shell we sum the total number of unique genomes mapped. We

observe that the total number of unitigs mapped is high in the earlier shells as well as in the last

shell. In the intermediate shells, we get a mixture of shells containing unitigs from multiple

references and some containing unitigs from one or a small number of references. The former can

be interpreted as shells capturing a more inter-genomic homology profile whereas those shells

having unitigs mapped to fewer reference genomes indicate a species specific signature. For the

peaks observed in Figure 3, we observe that shells 101 and 136 have unitigs mapped to 59 and 54

genomes respectively, while the number of genomes hit by unitigs in peak 264 and 286 are 24 and

17, respectively. The last shell sees a recovery of more inter-genomic signature with 42 genomes

being mapped by the unitigs. The red dotted line marks shell 50. The more informative part of the

plot lies to the right of this line since there is inherent noise in signals obtained from the shells

before 50.

We also coin a new metric called repeat density to further analyze the copy number220

of repeated unitigs in each shell. We define KOMB repeat density for each shell as221

the copy number per genome per unitig. This is a two step calculation. First, for222

each repetitive unitig in the shell we sum up its copy number and divide the sum223

by the total number of distinct genomes it was mapped to, this gives us the copy224

number per genome. Second, we divide this by the total number of unitigs in the225

shell (repetitive and non-repetitive) which gives us a measure of how dense is the226

repeat information contained in a given shell. This also provides a holistic view of227
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how the copy number per shell normalized by the number of genomes and unitigs228

varies across the KOMB Profile. We observe in Figure 6 that the repeat density of229

the profile is higher in the higher shells, thus confirming our hypothesis that we are230

more likely to capture repeats accurately in the later shells where there is a stronger231

signal representing dense subgraphs.232

Figure 6 KOMB repeat density. For each shell we calculate the average copy number of each

unitig normalized by the number of genomes. The average is calculated by dividing by the total

number of unitigs (repeat + non-repeat) in the shell. This gives us a more nuanced view of how

the copy number of repeats (which influences the shell number) varies across the different

reference genomes it hits. We observe that the KOMB repeat density is higher in the last shells

compared to initial shells, indicating a high copy number to genomes ratio as well as a higher

probability to find such repeats out of all the unitigs present in the shell (low false positives)

Human Microbiome Project Samples233

We have selected 4 distinct body sites among the available samples: external nares,234

supragingival plaque, fecal, and bucal mucosa. For each distinct site, we arbitrarily235

picked 4 samples, each with between 20,000,000 and 30,000,000 paired-end Illumina236

reads. We filtered the read sets by running k-mer filter with k-mer size 21, abundance237

threshold 2, and k-mer per read abundance of 80%. Thus, we only retained the reads238

that consist of 80% or more of 21-mers that occur at least twice in the sample.239

We then ran the KOMB pipeline, with k-mer size 50 used for de Bruijn graph240

construction. Since we are likely to encounter some closely related organisms in the241

samples, we have turned off unitig filtering. Thus, we have retained the unitigs that242

fall below read length in the graph. We then plotted the obtained profiles as stacked243
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violin plots presented in Figure 7. We observe that samples from different sites give244

rise to different profiles, as evidenced by Figure 7 zoomed in on the first 40 shells.245

We note that while there are outliers present for each site, the overall intra-site246

similarity of profiles is high. Furthermore, the inter-site comparison suggests that247

the profiles determined by KOMB are distinct for different sites.248

Figure 7 HMP metagenomes taken from 4 different body sites (4 samples each). Numbers

indicate the last shell for each of the samples. We observe that the captured KOMB profiles are

distinct for samples coming from different sites, and similar for samples originating from the same

site. We also note that external naris and bucal mucosa sites have larger variances in the number

of shells across the samples. Furthermore, these two sites also tend to have a much larger last

shell than the gingiva and fecal samples.

Analysis on the Human Gut Microbiome249

The study of the population diversity and stability of the human gut microbiome250

has gained increasing prominence given its impact on disease conditions and various251

pathologies [49–51]. Given its importance, it becomes imperative to enable large252

scale analysis of gut metagenomes and visualize significant shifts in community253

structure, particularly in cases of external perturbation like introduction of dietary254

changes or antibiotics. Here, we show that the KOMB profile can offer novel insights255

into longitudinal microbiome studies such as that of the human gut.256

To demonstrate KOMB’s ability to derive insights from large scale metagenomic257

analysis, we considered the temporal gut metagenome study by Voigt et al [47].258

This study contains almost 1TB worth of human gut microbiome sequencing data259

collected from 7 subjects (5 male and 2 female) at different time points spread over260

two years. Figure 8 shows the KOMB profiles of each of 6 subjects from the initial261

four time points (Days 0, 2, 7 and, 60). Though we ran KOMB on the entire set of262
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reads in this study we exclude one male subject Halbarad from the figure because263

the sample at day 60 was missing. According to the study no external disruptions or264

sample variabilities were reported for any of the subjects during these time points.265

A qualitative analysis of KOMB profiles reveals two important observations. First,266

we observe that the general profiles of the gut microbiome closely resemble that of267

the fecal samples reported in Figure 7 and are very distinct from other body sites268

indicating KOMB’s ability to consistently capture body site specific community sig-269

natures. Second, we observe a high degree of intra-sample similarity over the three270

time points and also observe some fundamental difference between the initial shells271

of the profile based on gender, which is also reported by previous studies [52] [53].272

The only exception to this trend is the subject Bugkiller which showed significant273

variability in the early samples as compared to other male subjects Alien, Peace-274

maker and Scavenger which exhibited fairly consistent profiles. We reason that this275

deviation could be mostly due to errors or contamination in the sequences as none276

of the other 6 samples show such variability. To get a more quantitative understand-277

ing of the data and the effects of external disruptions on the gut microbiome we278

focus our attention on the subject Alien who was the only subject exposed to an279

antibiotic intervention and bowel cleanse procedure during the course of the study.280

Figure 8 KOMB profile limited to the first 100 shells for the first three timepoints (Days 0, 2 and,

7) for each of the 6 subjects in the study indicated the intra and inter-profile variablity of the gut

microbiome. Alien, Bugkiller, Peacemaker and Scavenger are male subjects while Daisy and

Tigress are female subjects.

Figure 9 outlines the entire longitudinal trajectory of the Alien’s gut microbiome281

over the course of 14 time points spread across two years. The KOMB profiles focus282

on the first 200 shells at each time point. We observe a significant compression283

of shells on Days 376, 377, 378, and 380 which coincides with samples taken post284

antibiotic intake and corresponding to a significant perturbation to the diversity and285
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community composition as reported in the study. This is also mirrored in the unitig286

count of the samples which is decreased by an order of magnitude. It is important287

to note here that the total number of reads in the individual time points are similar288

and, hence, the difference in the number of unitigs is more likely to be caused by289

shifts in the composition of the microbiome. We see that antibiotic intervention290

causes not only a reduction in the total number of shells but also alters the unitigs291

present in the initial shells, though this tends to recover slightly towards the end292

of the antibiotic cycle on Day 380. We also observe complete unitig distribution293

recovery in the initial shells twelve days after the last post-antibiotic sample on294

Day 392. Following this, the number of unitigs recovers close to earlier levels by295

Day 600. We observe similar but less drastic shell compression and quick recovery296

after bowel cleanse indicating that antibiotics cause a far greater disruption in297

microbiome community structure, a finding corroborated by the authors in Voigt298

et al [47] as well as an earlier study [54].299

Figure 9 KOMB profile for subject “Alien” over the course of the study. Days 376, 377, 378, and

380 represent profiles during which the subject was exposed to antibiotics that caused a

compression in the total shell count as well as a significant change in the node distribution of the

initial shells, indicating a disruption of the microbial community. Days 630 and 632 indicate time

points when the subject underwent a bowel cleanse procedure.

To further gauge if the perturbation caused was significant, we calculated the300

total variation of probability measure between the shell profiles (normalized to 1).301

Figure 10 shows the pairwise distances as calculated by the proposed measure.302

More precisely, for discrete probability distributions P and Q, the distance δ(P,Q)303

between them is computed as δ(P,Q) = 1
2 ||P − Q||1 = 1

2

∑
w∈Ω |P (w) − Q(w)|,304

where Ω is the (discrete) sample space [55]. To get a better estimate of the difference305

between each probability distribution we grouped samples from three of the subjects306
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Alien, Bugkiller and Peacemaker according to time points, namely initial comprising307

Days 0, 2, 7, and 60, post-antibiotic comprising Days 376, 377, 378, and 380, and308

only from Alien and later comprising Days 392 (3 samples) and 773. We aimed309

to reason that the distance between Alien initial and Alien post-antibiotic was310

significantly greater than a change that could be explained merely by a difference in311

time duration. Indeed, we observe that Alien post-antibiotic has significantly greater312

pairwise distance to all other samples (Avg dist = 0.622). This also happens to be far313

more than the distance between samples of subjects at initial and later time points314

(Avg dist = 0.312). Observing samples collected from Alien, the average pairwise315

distance between Alien initial and other samples (excluding Alien post-antibiotic)316

is 0.227 and that between Alien later and other samples (excluding Alien post-317

antibiotic) is 0.38. The distance confirms our hypothesis that antibiotic intervention318

does in fact cause significant perturbation in KOMB profiles. Apart from total319

probability measure, we also implemented other distances between probabilities320

distributions such as the Earth mover’s distance [56, 57] and KL Divergence [58].321

Similar findings were obtained with these alternative distances; see Additional File322

2, Figures S1, S2 and S3 for more details.323

Performance324

KOMB is written in C++ and Python. It uses the igraph C graph library [59]325

for the unitig construction and K-core decomposition implementations. KOMB also326

uses OpenMP support [60] to use multi-threading wherever available to increase the327

efficiency of the unitig graph construction step to ensure its scalability to a large328

number of metagenome samples. Table 1 shows the runtime and memory usage of329

KOMB on the datasets used in our study. The experiments were run on a server330

with 64 Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz processors having 372 GB of331

RAM. We observed that KOMBs memory usage and runtime largely depend on the332

number of reads. ABySS unitig generation is the most memory intensive step in the333

pipeline while read mapping using bowtie2 is the most computationally intensive334

step in the pipeline. We observe that in the case of Shakya and HMP there is a large335

memory difference despite having similar numbers of reads. We reason that this is336

likely due to the de Bruijn graph size and topology difference as the peak occurs337

during the ABySS stage. Nevertheless, we observe that KOMB can run on samples338
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Figure 10 Heatmap showing total variation of probability measure of KOMB profiles. Each row

and column represents a subject and days (four each) for which the samples are considered (in

parenthesis). Day 392 had 3 samples in the dataset which are all considered here. The samples

represented by Alien (Days 376, 377, 378, and, 380), also marked in red, are the ones collected

during antibiotic perturbation. Higher total variation of probability denotes greater distance

between two distributions. Days 0,2,7,60 correspond to the initial time points and Days 392(3)

and Day 773 correspond to later time points.

with a large number of reads and can process 4 samples of HMP data in under 50339

minutes and the Shakya synthetic metagenome (64 organisms) in 79 minutes. If run340

sequentially, the temporal gut microbiome data (70 samples, 1TB of data) can be341

run in approximately 2 days. As KOMB is also extremely memory efficient, one can342

process multiple metagenomic samples simultaneously on any modern workstation343

to reduce the runtime on entire datasets even further.344
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Table 1 Time and memory usage for KOMB. SSG: Simulated single genome; EBG: E. coli and B.

cereus. EBSG: E. coli, B. cereus and S. aureus genomes; 5EG: Five genomes of closely-related E. coli

strains; Shakya: Shakya et al (2013); HMP (I); individual HMP samples; HMP (A); combined HMP

samples and TGM(Av); average across Temporal Gut Microbiome samples . Read filtering is treated

as a pre-processing step, therefore the time and memory usage for it is not reported in this table.

Dataset Performance metrics

Reads Nodes Edges Wall clock CPU time RAM

SSG 625,000 1,336 159,060 79.46s 26m42s 1.54 GB

EBG 1,256,682 5,127 991,019 178.98s 71m50s 2.00 GB

EBSG 1,609,352 9,708 2,512,192 4m37s 132m31s 2.22 GB

5EG 3,453,508 40,769 162,606 4m12s 84m24s 2.60 GB

Shakya 53,997,046 160,083 1,767,445 79m36s 1814m43.80s 38.35 GB

HMP (I) 14,007,285 74,918 4,093,367 14m42s 211m7.2s 3.64GB

HMP (A) 56,029,140 409,370 7,496,925 47m41.95s 1995m24.6s 18.09 GB

TGM (Av) 26,520,076 776,058 7,286,158 44m41s 810m48s 20.22GB

Discussion345

Identifying and visualizing homologous regions in metagenomes using current tools346

based on assembly graphs and contig graphs is often challenging as these graphs347

contain tangled intra-genomic and inter-genomic repeats. K-core decomposition can348

give accurate information capturing unitigs that have repeats, which can be visu-349

alized as peaks in a histogram. A peak indicates a dense subgraph of nodes in the350

unitig graph representing nodes connected to other homologous nodes, enabling an351

easy extraction for the purposes of assembly or scaffolding.352

We outline the novelty of KOMB, both as a theoretical approach and as a usable353

tool. KOMB addresses some of the limitations of the previously used approaches354

based on contig graphs and betweenness centrality to identify both intra and inter-355

genomic repetitive structures in metagenomes. In contrast, KOMB constructs a356

unitig graph that captures edges within and between genomes, representing a more357

holistic network for homology detection. This prevents shortcomings occurring as a358

result of collapsing bubbles or branches by many modern assemblers, which leads359

to a loss of homology information among unitigs. K-core decomposition is also a360

natural choice to separate repeats based on their abundances as proved by our the-361

oretical validations and is agnostic to the length of the individual repeat families.362

Though in our results we have shown that the background genome can have some363

baseline repetitiveness (low copy number), the end user can – based on the down-364

stream applications – choose any particular shell as the cutoff to mark the unitigs365

as repeats, and can thus integrate KOMB into their pipeline. KOMB is also signifi-366
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cantly different from k-mer frequency based approaches. Though k-mer frequencies367

can provide general information on unique vs repetitive k-mers in a sample, KOMB368

more holistically captures information based off of read mapping that connects net-369

works of similar genomic regions, which in turn represent intra and inter-genomic370

homology. Often, in metagenomic applications and assembly approaches, identify-371

ing contigs with highly repetitive k-mers and high coverage is a proxy for identifying372

repetitive contigs. KOMB, however, is an exact approach that provides information373

for scaffolding and exploration of the graph-based structure of the community.374

Our results favorably support the utility of KOMB for the identification of homol-375

ogous regions in real metagenomic samples. Though KOMB represents a promising376

new approach for elucidating genome dynamics within metagenomes, there still exist377

several challenges to develop a further understanding of how to interpret metage-378

nomic community profiles and the separation of homologous regions in samples of379

varying diversity and abundance. To this end, we have classified future investiga-380

tion into three separate categories. First we discuss extending our current theoret-381

ical framework to deconstruct and interpret the K-core decomposition results in382

a more intuitive fashion. We also discuss possible challenges that need to be ad-383

dressed to interpret information on unitigs in higher shells that may not necessarily384

be peaks. Second, we focus on extending functionalities to a wider variety of input385

data, specifically long read data and other overlap graph types. Finally, we discuss386

possible approaches to further optimize the runtime and memory requirements.387

Improving theoretical validation on metagenomes388

In our validation on simulated genomes we have addressed the effects of identical389

simulated repeats on the K-shell profile of genomes and metagenomes. However,390

there exist some important limitations to our study. First, all repeats within the391

same repeat family were constructed to be identical. This is not necessarily the392

case in real genomes, since two regions can contain a few base pair differences393

yet be considered repeats from the biological standpoint. Though the results on394

synthetic and real metagenomic data containing such repeats have been promising,395

we are planning to extensively test KOMB with simulated homologous but not fully396

identical repeats in the future.397
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Second, we have been using multinomial distribution to space out the repeats398

throughout the backbone. However, in the real genomes, repeats can be less uni-399

formly distributed with an extreme case being the tandem repeats. It is important400

to analyze these cases both in terms of the resulting topology of the graph, and in401

terms of our method’s performance in these scenarios.402

Third, we have considered repeats of lengths 200, 400, 500, 700 and 1000 base403

pairs. In a real genome, the length of a repeat can be significantly smaller or larger404

[61] [62], which further complicates the picture. As now some of the repeats will be405

causing shifts in the graph topology and manifest as increased background signal406

in the corresponding profile. However, other repeats will still be cleanly appearing407

as peaks. Deconvolution of such mixed signal in the general setting is an extremely408

complex problem and one that may need a combination of other graph theory and409

signal processing approaches. However, we aim to understand some of the simpler410

scenarios which have enough biological motivation. KOMB may also be prone to411

accumulating noisy unitigs in the higher shells as a result of being adjacent to412

repeat unitigs. Hence, a further filtering process within the shells would enable413

greater specificity of repeat unitigs [63].414

One of the ways to tackle these questions will be to analyze the effects of real-415

world repeat patterns on the shell profiles in the simulated setting. Embedding real416

repeats into increasingly more complex simulated backbones, will gives us a different417

viewpoint on the shell profiles. It will also improve our overall understanding of the418

repeat induced profiles and provide a way to further deconvolve the signal obtained419

from metagenomic datasets.420

Extending functionality421

Currently, KOMB supports paired-end short reads as the input. However, we also422

have the capability of inputting graphs directly by using the GFA format. Graphs423

directly derived from the de Bruijn graph, such as the unitig overlap graph produced424

by SPAdes, do not have enough signal for effective KOMB processing. On the other425

hand, read overlap graphs obtained from long read datasets can potentially yield426

interesting results when processed with KOMB. Fully extending the pipeline to427

capture those cases and enable the effective analysis of long read datasets is one of428

the directions we plan to pursue in the future work.429
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Optimizing performance430

KOMB performs highly efficient parallel graph construction and K-core decom-431

position. However, the memory requirements of the pipeline still calls for usage of432

workstations for processing metagenomic datasets. While this is customary for soft-433

ware working with paired-end read data, we are looking forward to supporting long434

read data and smaller personal devices. We plan to address this in future releases435

by fine tuning initial steps of the pipeline to allow low memory footprint execution.436

Together with compact long read sequencers, this would enable usage of KOMB as437

a quick profiling tool outside of the research laboratory environments.438

439

Conclusions440

In this paper, we present KOMB - an efficient and scalable tool to identify repeti-441

tive regions in metagenomes. We present a rigorous analysis of KOMB on simulated442

and synthetic data to capture consistent and accurate peak signatures representing443

repetitive unitigs. Another feature of KOMB, as shown by our validation exper-444

iments, is that the signals obtained are robust to confounding noise occurring as445

a result of read errors and insert size variability. This noise can be corrected to446

obtain near ground truth signals. We also show, through our experiments on real447

metagenomic samples, that KOMB profiles can be used as an indicator for sam-448

ple specific signatures and diversity, with promising applications to a wide array of449

metagenomic analyses.450

Methods451

In this section, we describe the methodology behind KOMB and the various software452

tools and algorithms used in the pipeline. KOMB makes use of three popular bioin-453

formatics software tools, namely k-mer filter [48] for read correction as an optional454

pre-processing step, ABySS [64] or SPAdes [65] for efficient de Bruijn graph creation455

and unitig construction, as well as Bowtie2 [66] for fast and accurate read mapping.456

In addition to this, our tool uses the igraph C package [59] and OpenMP [60] li-457

braries for the K-core implementation and the fast parallel construction of the unitig458

graph, respectively. KOMB offers two primary operation modes. Users can either459

use the KOMB unitig builder pipeline which relies on ABySS [64] for de Bruijn460

graph construction and unitig generation or alternatively use the SPAdes unitig461
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generator which can output a unitig graph directly in the GFA format. We can use462

the GFA output directly as an input to KOMB. Using the SPAdes graph output is463

much faster since we avoid the graph construction step of the algorithm. However,464

the resulting graph only connects unitigs based on the k-mer overlap. This results in465

a highly compressed shell profile and weak signal for KOMB analysis. Thus, we will466

be using the ABySS unitig construction step in all analyses that follow. Another use467

for the GFA extension is that it provides users with a way to input an overlap graph468

or any assembly or contig graph directly into KOMB and visualize the results of the469

analysis. This can be particularly useful for overlap graphs constructed from long470

read data. For the purpose of comparing different read pre-processing methods we471

also use the short read correction tool Lighter [67]. The paired-end read simulator472

wgsim [68] is used for all simulated experiments.473

Pipeline474

In order to understand the workflow, we first describe a unitig graph. A unitig is475

a maximal consensus sequence usually obtained from traversing a de Bruijn graph.476

Unitigs by definition terminate at branches caused by repeats and variants, and477

unlike contigs, are non-overlapping. Before constructing the set of unitigs, we run478

the previously described k-mer filter as a preprocessing step. The first filtering step479

is iterating through all reads and counting occurrences of each k-mer, in our case the480

k-mer size is 15. A k-mer is marked as abundant if it occurs in the dataset more than481

twice. The next step is iterating through the reads again, and considering the k-mers482

present in each read separately. If less than 80% of k-mers in the read are abundant,483

then we discard the read. For the purposes of this work, the unitig graph refers to a484

graph having unitigs as its vertices and the edges being representative of adjacent485

or homologous unitigs. After the unitigs are obtained, in our case performed by486

running ABySS on the corrected reads, we follow three additional steps for careful487

construction of unitig graphs from short paired-end read data (Fig.11). First, all488

of the reads are mapped to unitigs by Bowtie2 using its sensitive global alignment489

module. Each read of a read pair (forward and reverse) is mapped individually490

and we allow for a maximum of 1000 alignments per read (this parameter can be491

adjusted by the user). We also trim the tail of both pairs to ensure that we get492

accurate alignments. The number of base pairs that we trim off the ends of the493
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reads is equal to the difference between the read length and the k-mer size used494

to construct the de Bruijn graph. As a secondary filtering step, we also filter out495

mapped reads without a pair as well as read pairs mapped to one unitig. This allows496

us to only consider reads with paired-end information and speeds up the process of497

unitig graph construction. Second, for each read we create a set of all unitigs that498

mapped to that read. For a given forward and reverse read pair, we also check if499

each individual read in the pair mapped to different unitigs, which would represent500

potentially adjacent unitigs in the genome. In this way, for a given read pair we have501

unitigs associated with each read, e.g., in Fig. 11 unitigs 1, 3, and 8 are associated502

with one read of the purple pair whereas unitig 4 is associated with the other read.503

We then connect all the unitigs associated with a specific read pair (nodes 1, 3, 4,504

and 8 for the purple read pair) where we distinguish between the notion of a vertical505

edge, i.e. an edge linking unitigs associated with the same read such as 1 and 3,506

and a horizontal edge, i.e. an edge linking unitigs mapped to different reads in the507

same pair such as 1 and 4.508

Figure 11 Construction of the unitig graph. (Step 1) unitigs are obtained from running ABySS on

the filtered paired-end reads. (Step 2) We map the forward and reverse reads individually to the

unitigs using Bowtie2 with the parameters -k (maximum alignments) set to 1000. Further, we

trim the 3 and 5 ends of forward and reverse reads respectively by a length equal to the read

length minus the k-mer size, using the parameter -3 and -5. (Step 3) We group the unitigs that

were mapped by the same read and also the unitigs that had two ends (F and R) of the same

paired-end read mapped to them. This results in a final set of unitigs mapped by a given read pair

(Step 4) We construct the graph with unitigs as the nodes, and connecting two nodes with an

edge whenever the corresponding unitigs are in the same group after the read mapping.

K-core decomposition509

K-core decomposition is a popular graph-theoretical concept used in network science510

to identify influential nodes in large networks [69–71]. It has been previously shown511

to accurately calculate node influence in Susceptible-Infected-Recovered (SIR) net-512

work models in epidemiological studies [63]. K-core decomposition partitions the513
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node set of a graph into layers (or shells) from more peripheral to more central514

nodes. More precisely, the K-core of a graph is defined as the maximal induced515

subgraph where every node has (induced) degree at least K. Based on this se-516

quence of K-cores, we say that a node belongs to the K-shell if it is contained in517

the K-core but not in the (K+1)-core. For any given graph, one can iteratively and518

efficiently decompose it into shells with complexity O(V +E), which is significantly519

faster than the computation of most exact centrality measures. This makes it ef-520

fective for decomposing large and dense networks. Several implementations of the521

K-core decomposition have been proposed. In this work, we rely on the igraph C522

package [59], which implements a variation of the algorithm proposed in [72]. In523

contrast to centrality-based methods, the K-core algorithm identifies densely con-524

nected cliques and groups them into shells. Fig. 12 shows the decomposition of a525

toy graph into its K-shells. Fig. 13 shows the complete pipeline of KOMB as a526

flowchart.527

Figure 12 K-core decomposition of a graph into K-shells. The algorithm starts by considering all

the vertices of degree 1. It iteratively removes those vertices and continues the execution on the

resulting induced subgraph removing vertices having degree 1 after every iteration. Once the

induced subgraph has no vertices of degree 1, this process stops and all discarded vertices are

marked as belonging to the 1-shell (green). Then the process continues, now considering vertices

of degree 2 to obtain the 2-shell (red) and, subsequently, the 3-shell (purple). The last shell is a

dense subgraph of the original graph.

KOMB profile528

We refer to the output of KOMB either as a KOMB profile or as the shell profile

of a given sample. This is visualized as a bar plot depicting the number of nodes

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.21.109587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109587
http://creativecommons.org/licenses/by-nd/4.0/


Balaji et al. Page 24 of 34

Figure 13 Workflow showing the components of the KOMB Pipeline. KOMB takes in as input a

set of paired-end reads. The user can optionally filter these reads as the first step. We use the

k-mer filter for read filtering for both simulated and real genomes. KOMB then constructs the de

Bruijn graph and generates unitigs. This can be done with either ABySS or SPAdes, and the

choice is up to the user. Note that SPAdes also generates a GFA output, which we can feed into

KOMB directly for the K-core decomposition. Once we have the set of unitigs available, we

construct the graph via the procedure described in Fig. 11. Finally, we perform the K-core

decomposition on the unitig graph and generate text files with shell labels for unitigs.

per shell. As the read error, insert sizes, diversity, community structure, and sample

sizes vary, we expect a corresponding shift in the bar plot as each of these conditions

would alter the node distribution in shells. In Results, we have presented simulated

experiments varying the above mentioned conditions that corroborate this hypoth-

esis. Here, we present a theoretical analysis to calculate shifts in peaks occurring

as a result of having two distinct repeat families through an example. Each shell k

obtained after K-core decomposition is an induced subgraph of degree k which may

or may not be disconnected. In a unitig graph, based on our construction, these

would contain regions of shared homology or repetitive regions and k would depend

on the abundance or copies of these shared region across the genomes in the sample.

These shells containing repetitive or homologous regions tend to occur as distinct

peaks at higher shells versus the rest of the background. By definition, the back-

ground contains regions more sparsely connected. Given a simulated experiment, it

is possible to theoretically ascertain the shells at which we expect discernible peaks.

For example, if we have a repeat R1 with copy number K, then based on our read

mapping and unitig construction steps we would expect a peak in the Kth shell.

This would contain all unitigs having an overlap of k with the repetitive region,

where k is the k-mer size used to generate the de Bruijn graph. The case is a little

more complex when we have two families of repeats R1 and R2 with copy numbers

K1 and K2 respectively. Depending on the placements of the repeats we can classify
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the unitigs obtained into different classes based on the family of repeat it overlaps

at its breakpoints; see Fig. 14. We have 3 possible categories of unitigs as shown

in the figure depending on the repeats at the ends of the unitig. Category 2 in the

figure refers to unitigs with both repeats at its ends. An important observation here

is that according to our graph construction method, a node in this category will be

connected to other nodes in the same category as well as all nodes in the other cat-

egories as it carries both repeats. We can estimate the expected number of unitigs

in each of the categories as follows: Let N1 be the number of unitigs overlapping

the repeat R1, N2 be the number of unitigs overlapping the repeat R2, and NM

be the number of unitigs overlapping both repeats. Assuming uniform probability

distribution over all possible permutations of repeats in the genome, we obtain the

following expected values:

E(N1) =
|R1|(|R1| − 1)

|R1|+ |R2| − 1
≈ |R1|2

|R1|+ |R2|
,

E(N2) =
|R2|(|R2| − 1)

|R1|+ |R2| − 1
≈ |R2|2

|R1|+ |R2|
,

E(NM ) =
|R1||R2|+ |R2||R1|
|R1|+ |R2| − 1

≈ 2|R1||R2|
|R1|+ |R2|

.

Subsequently, in the case when the insert is larger than the length of the repeat529

and given enough paired-end reads, we should observe two peaks in the shell profile,530

namely, we will have a peak at E(N1)+E(NM ) and another one at E(N2)+E(NM ).531

These two shells are obtained since the unitig graph would consist of two overlapping532

cliques, one of size E(N1)+E(NM ) and another one of size E(N2)+E(NM ), with an533

overlap of size E(NM ) (represented in Figure 14 with red and black lines). However,534

notice that when the insert size is shorter than the length of the repeat, the two535

types of unitigs overlapping both repeats would not be connected between them in536

the graph (represented in Figure 14 with black lines only). This results on a shift537

in the position of the second shell.538

Comparison to other repeat identification methods539

A novel feature of our study is using unitig graphs to analyze repetitive regions540

in metagenomes using K-core decomposition in contrast to contig graph commonly541

used in previous approaches like MetaCarvel [31] and Bambus [25]. While our fo-542

cus is on metagenomic repeat detection, it is worth discussing other graph based543
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Figure 14 Types of unitigs in a genome with two repeat families and expected shell profiles in

corresponding unitig graphs. The type of profile we observe depends on the relative lengths of the

repeats and insert size. If the insert size is greater than the length of the repeat, the mixed repeats

(Nm) will be connected to each other whereas if the insert size is smaller than the length of the

repeat then it is not possible to map across the two mixed repeat unitigs and, hence, they will not

be connected by an edge in the unitig graph. The black edges are present for both settings

whereas the red edges are only present when the repeat length is less than the insert length.

tools that been previously applied for repeat detection in isolate genomes. A graph544

based hierarchical agglomerative clustering [73] approach was suggested by Novák545

et al [74] and used the Fruchterman and Reingold algorithm [75] to help visual-546

ize reads with similarities, but its quadratic time complexity O(V 2 + E) makes it547

difficult to scale to large metagenomic datasets. Recently, two tools, namely, REPde-548

novo [76] and REPLong [77] have used underlying contig graph based structures for549

repeat identification. Both these methods have been applied to eukaryotic genomes550

to ascertain repetitive regions. REPdenovo uses abundant k-mers and assembles551

them to repeat contigs. It then further stitches repeat contigs into longer consensus552
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repeats and uses coverage based information to filter non-specific repeat contigs.553

An important point to note is that the formation of larger consensus repeats from554

raw repeat contigs is very similar to scaffolding where a directed raw contig overlap555

graph is constructed and then a topological sort is carried out on each strongly556

connected component to obtain a linear order of raw unitigs. The traversal of the557

graph to identify long consensus sequences is then carried out by using path finding558

heuristics. REPLong, on the other hand, is a more recent tool and is specific to long559

read data. It uses the concept of community detection in long read overlap graphs560

to construct repeat libraries. In addition to graph-based approaches, an alternative561

method to efficiently identify repeats on large genome scale datasets is by using562

k-mer frequency estimation, which accounts for both identical and nearly identical563

k-mers to identify repeats. Examples of these include ReAS [78], RepeatScout [79],564

WindowMasker [80], Repseek [81], Tallymer [82], RED [83], RepARK [84] at the565

genome level and more recently at short read level RF [85] identification DR
2 statis-566

tic [86] based on a variation of the D2 statistic that have been previously used567

for sequence comparison [87–89]. K-mer frequency based approaches depend on568

identifying candidate k-mers that may contain repeats based on their statistical569

significance compared to background. Most k-mer based repeat identification tools570

have shown to capture a small subset of specific repeats and size, mainly either571

transposable elements (TE) or tandem repeats (TR). RED can detect both TE572

and TR with greater sensitivity in both bacterial and eukaryotic genome including573

the Human genomes [83]. RepARK creates de-novo repeat libraries by identifying574

abundant k-mers which are then assembled by a de novo genome assembly pro-575

gram (such as Velvet) into repeat consensus sequences. While these k-mer based576

tools have been shown considerable accuracy in identifying repeats, these have only577

been applied to assembled and un-assembled isolate genomes. Thus, their use case578

in metagenomic samples where repeats may be both intra and inter-genomic with579

varying abundances is extremely limited and remains untested. The recently in-580

troduced DR
2 statistic can be applied to metagenomes directly and is a read level581

mapping tool that indicates a measure of repetitiveness in a given read. This method582

was tested on real metagenomes and could aid the identification of CRISPR sites583

with high accuracy. Though indicating the presence and absence of repeats is infor-584

mative, the DR
2 statistic on read level repeat information is more suited to identify585

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.21.109587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.109587
http://creativecommons.org/licenses/by-nd/4.0/


Balaji et al. Page 28 of 34

short regions consisting of clearly defined and distinct motifs. There still exists a586

need for a more rigorous theoretical basis that generalizes over different kinds of587

repeats and community diversity in metagenomes where there are far more varied588

and often confounding repeat structures of larger lengths that are highly sample de-589

pendent. Another potential drawback is that reads are often noisy and error prone590

and have some inter-sample variability which may affect its performance.591

In contig graph approaches, methods based on betweenness centrality have been592

the preferred choice to mark repetitive contigs. This approach, though specific, has593

not achieved high levels of sensitivity and often tends to miss out on a lot of repet-594

itive contigs. This served as the core basis for further investigations in this study.595

To the best of our knowledge, KOMB is the first tool using K-core decomposi-596

tion on unitig graphs. In order to understand the advantages of our approach, it597

is imperative to understand topological differences captured by different methods.598

Most modern assemblers tend to collapse information obtained by a single read599

mapping to multiple unitigs. This tends to affect the vertical edges in the graph600

that we discussed when describing Fig. 11. This graph simplification often leads601

to loss of information of homologous regions present in other parts of the genome602

and can affect sensitivity. Moreover, as contigs contain repeat regions, paired-end603

data tends to reveal very little information about the presence of repeats within the604

contig. These structures in the contig graph tend to resemble a single node (col-605

lapsed branches) having a high degree and centrality. But the centrality threshold to606

mark repeats is hard to ascertain and arbitrary thresholds may lead to sub-optimal607

repeat detection. This is a key difference of unitig graphs in KOMB as compared608

to contig graphs in MetaCarvel. Contig graphs are connected only on paired end609

read information. Though appropriate for scaffolding, this feature precludes the610

successful identification of homology. In contrast, KOMB takes into consideration611

all unitigs mapped by the same read, preserving homology information, while also612

preserving positional information through paired mapping where (given sufficient613

insert size) links can connect two adjacent unitigs bordering the same repeat. In614

this way, all unitigs having repeats on their edges tend to form dense subgraphs615

which can be efficiently detected using K-core decomposition, yielding clear peaks616

at shells containing repetitive unitigs. Hence, a unitig graph can be thought of as a617

richer graphical representation to identify repetitive structures in metagenomes and618
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K-core decomposition offers the most efficient and exact method to recover these619

signals irrespective of the sample diversity.620

Another related application based on a combination of k-mer and graph based ap-621

proach to uncover genomic variants is DBGWAS [90]. DBGWAS relies on a compact622

de Bruijn graph representation that helps identify the connected components of the623

graph induced by the neighbourhoods of all significant unitigs. DBGWAS tests for624

the association of each variant, indicated by the presence or absence of unitig in625

a particular genome, against a particular set of phenotypes using a linear mixed626

model. It relies on the assumption that subgraphs defined by significant unitigs are627

a reflection of the genomic environment, and ranks such subgraphs based on their628

association to the phenotype. Though this work shares similarity with our unitig629

graph based approach, it requires draft assemblies and prior phenotypic informa-630

tion to capture subgraph significant unitigs. KOMB, on the contrary, requires just631

metagenomic reads as input and uses K-core decomposition to capture unitigs that632

highlight genomic diversity in a sample.633

Since KOMB is a novel method that is fundamentally different from previous634

contig graph based or k-mer based approaches, it is difficult to perform a one to635

one comparison of KOMB with any of the previous methods. Specifically, the con-636

struction of unitig graph specific network signatures captured by KOMB are unique637

and not measured by any other previous method. In this work, through a series of638

meticulous validations on simulated, synthetic, and real metagenomes we demon-639

strate that KOMB offers a novel solution to capture underlying repetitive regions640

in metagenomic data.641
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