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The choice of preprocessing pipeline introduces variability in
neuroimaging analyses that affects the reproducibility of the
scientific findings. The features derived from structural and
functional MR imaging data are sensitive to the algorithmic or
parametric differences of the preprocessing tasks, such as image
normalization, registration, and segmentation to name a few.
Therefore it is critical to understand and potentially mitigate the
cumulative biases of the pipeline in order to distinguish biolog-
ical effects from methodological variance. Here we use an open
structural MR imaging dataset (ABIDE) to highlight the im-
pact of pipeline selection on cortical thickness measures. Specif-
ically, we investigate the effect of 1) software tool (e.g. ANTs,
CIVET, FreeSurfer), 2) cortical parcellation (DKT, Destrieux,
Glasser), and 3) quality control procedure (manual, automatic).
We divide our statistical analyses by 1) method type, i.e. task-
free (unsupervised) versus task-driven (supervised), and 2) in-
ference objective, i.e. neurobiological effect versus individual
prediction. Results show that software, parcellation, and qual-
ity control significantly impact task-driven neurobiological in-
ference. Additionally, software selection strongly impacts neu-
robiological and individual task-free analyses, and quality con-
trol alters the performance for the individual-centric prediction
tasks. This comparative performance evaluation partially ex-
plains the source of inconsistencies in neuroimaging findings.
Furthermore, it underscores the need for more rigorous scien-
tific workflows and accessible informatics resources to replicate
and compare preprocessing pipelines to address the compound-
ing problem of reproducibility in the age of large-scale, data-
driven computational neuroscience.
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Introduction
Reproducibility, a presumed requisite of any scientific exper-
iment, has recently been under scrutiny in the field of com-
putational neuroscience [1–7]. Specifically, replicability and
generalizability of several neuroimaging pipelines and the

subsequent statistical analyses have been questioned, poten-
tially due to insufficient sample size [8], imprecise or flexible
methodological and statistical apriori assumptions [9–11],
and poor data/code sharing practices [12,13]. Broadly speak-
ing, reproducibility can be divided in two computational
goals [14]. The first goal is replicability, which implies that
a re-executed analysis on the identical data should always
yield the same results. The second goal pertains to general-
izability, which is assessed by comparing the scientific find-
ings under variations of data and analytic methods. Typically,
the findings are deemed generalizable when similar (yet in-
dependent) data and analysis consistently support the exper-
imental hypothesis. This in turn raises the issue of defin-
ing what constitutes “similar” data and analytic methodol-
ogy. Nonetheless, traditionally experimental validation on in-
dependent datasets has been utilized to assess generalizabil-
ity. However, as the use of complex computational pipelines
has become an integral part of modern neuroimaging analy-
sis [15], comparative assessment of these pipelines and their
impact on the generalizability of findings deserves more at-
tention.

Towards this goal, we present a comparative assessment of
multiple structural neuroimaging preprocessing pipelines on
the same, publicly accessible dataset. A few studies have
previously highlighted the variability in neuroimaging analy-
ses introduced by the choice of a preprocessing pipeline for
structural MR images [16,17], but have not focussed on the
relative impact of analysis tools, quality control, and parcella-
tions on the consistency of results. The inconsistencies in the
results arise from several algorithmic and parametric differ-
ences that exist in the preprocessing tasks, such as image nor-
malization, registration, segmentation, etc. within pipelines.
It is critical to understand and potentially mitigate the cumu-
lative biases of the pipelines to disambiguate biological effect
from methodological variance.

For this purpose, we propose a comprehensive investigation
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Fig. 1. Preprocessing pipeline building blocks and potential permutations for a typical structural MR image analysis. Only a subset of the possible pipelines is analyzed and
shown with arrows. Note that manual quality control and automatic outlier detection can be performed at various stages.

of the impact of pipeline selection on cortical thickness mea-
sures, a widely used (3129 hits on PubMed and 42,200 hits on
Google Scholar for “cortical thickness” AND “Magnetic res-
onance imaging” search query), fundamental phenotype, and
its statistical association with biological age. We limit the
scope of pipeline variation to three axes of parameter selec-
tion: 1) image processing tool, 2) anatomical priors, 3) qual-
ity control (see Fig 1). The impact of the variation is mea-
sured on two types of statistical analyses, namely: 1) neu-
robiological inference carried out using general linear mod-
eling (GLM) techniques; and 2) individual predictions from
machine-learning (ML) models. We note that here the focus
is on the preprocessing stages of a computational pipeline,
and the impact of dataset and statistical model selection is
thus out of the current scope. Our goal is not to explain
potential differences in results or establish criteria to rank
pipelines or tools, but to document the pipeline effect and
provide best practice recommendations to the neuroscience
community with respect to pipeline variation, also referred to
as pipeline vibration effects.
We conduct our assessments on an open magnetic resonance
(MR) neuroimaging data from the Autism Brain Imaging
Data Exchange (ABIDE) comprising healthy controls and
individuals with autism spectrum disorder (ASD) [18]. Al-
though here we do not focus on identifying biological differ-
ences between the case and control groups, we use the case-
control samples to gain an insight into the effect of diagnosis
on reproducibility analysis - which is a critical evaluation for
clinical applications. Additionally, we use another data sam-
ple from the Human Connectome Project (HCP) as a valida-
tion dataset (Van Essen DC et al. 2013). We use this dataset
to assess if our findings replicate on an independent dataset.
Note that the scope of this secondary analysis is limited to a
proof of concept dataset comparison.
We organize our comparative assessments on ABIDE dataset
as follows. We report comparisons across the three afore-
mentioned axes of variation comprising five neuroimaging
preprocessing tools: 1) FreeSurfer 5.1, 2) FreeSurfer 5.3, 3)
FreeSurfer 6.0, 4) CIVET 2.1.0, and 5) ANTs; three anatom-

ical priors (i.e. cortical parcellations): 1) Desikan-Killiany-
Tourville, 2) Destrieux, and 3) Glasser; and five quality con-
trol (QC) procedures 1) No QC 2) manual lenient 3) man-
ual stringent, 4) automatic outlier detection (low-dimensional
i.e. <500 ROIs ), and 5) automatic outlier detection (high-
dimensional i.e. > 100k vertices). The entire combinatorial
set of comparisons (5 software x 3 parcellations x 5 QC) is
not feasible due to practical limitations (described later), and
therefore we report results for five tools procedures and three
atlases across five quality control procedures (5 software +3
parcellations) x 5 QC, as shown by the connecting arrows
in Fig 1. These comparisons are made on four types of sta-
tistical analyses based on a method type (i.e. task-free vs.
task-driven) and an inference objective (neurobiological vs.
individual), which is described in detail in the methods.

Materials and Methods

Participants. We used participants from the Autism Brain
Imaging Data Exchange (ABIDE) dataset for this study [18].
The ABIDE 1 dataset comprises 573 control and 539 autism
spectrum disorder (ASD) individuals from 16 international
sites. The neuroimaging data of these individuals were
obtained from the ABIDE preprocessing project [19], NI-
TRC (http://fcon_1000.projects.nitrc.org/
indi/abide/abide_I.html), and the DataLad repos-
itory (http://datasets.datalad.org/?dir=
/abide/RawDataBIDS). Different subsets of individuals
were used for various analyses based on 1) specific image
processing failures, 2) need for a common sample set for
software tool comparison, and 3) quality control procedures.
The demographic description of these subsets is provided in
Table 1, and Fig. 2. The complete lists of subjects can be
obtained from the code repo: https://github.com/
neurodatascience/compare-surf-tools

MR Image processing and cortical thickness measure-
ments.
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Comparisons QC Diagnosis Subjects (N) Age (mean, sd) Sex (M/F)

Software tools

No QC(N=778) Controls 415 17.8, 7.7 346/69
ASD 363 18.3, 8.7 320/43

Lenient Manual(N=748) Controls 407 17.8, 7.6 338/69
ASD 341 18.4, 8.8 300/41

Stringent Manual(N=194) Control 113 15.6, 5.5 93/20
ASD 81 16.2, 5.8 71/10

Auto QC low-dim(N=683) Controls 371 16.2, 5.4 309/62
ASD 312 15.9, 5.0 276/36

Auto QC high-dim(N=662) Controls 356 15.6, 5.0 293/63
ASD 306 15.7, 4.9 269/37

Parcellations

No QC(N=1047) Controls 552 17.0, 7.5 456/96
ASD 495 17.1, 8.4 436/59

Lenient Manual(N=975) Controls 525 17.1, 7.5 430/95
ASD 450 17.4, 8.6 395/55

Stringent Manual(N=240) Controls 137 15.0, 5.6 112/25
ASD 103 16.1, 6.3 91/12

Auto QC low-dim(N=961) Controls 516 15.6, 5.6 422/94
ASD 445 15.0, 5.1 390/55

Auto QC high-dim(N=912) Controls 483 15.0, 4.9 393/90
ASD 429 14.9, 4.9 377/52

Table 1. Subject demographic for different analyses

Software Tool

Analysis type Neurobiology (N) Individual (I)

Task free (TF) Feature correlations and covariance Individual embeddings and clustering
Task driven (TD) ROI ∼Age + covars Age ← ROIs + covars

Cortical Parcellation

Analysis type Neurobiology (N) Individual (I)

Task free (TF) N/A N/A
Task driven (TD) ROI ∼Age + covars Age ← ROIs + covars

Quality Control

Analysis type Neurobiology (N) Individual (I)

Task free (TF) N/A N/A
Task driven (TD) ROI ∼Age + covars Age ← ROIs + covars

Table 2. 2x2 rubric showing types of analysis performed for each axis of variation

Fig. 2. Age distributions for sample subsets used for (A) software comparison and
(B) parcellation comparison analyses in this work. See Table 1 for sample sizes.
Failed QC overlap across manual QC and automatic outlier detection procedures is
show in (C). Distribution of total outlier count (sum) based on four possible manual
QC and automatic outlier detection procedures is shown in (D)

FreeSurfer. FreeSurfer (FS) delineates the cortical surface
from a given MR scan and quantifies thickness measurements
on this surface for each brain hemisphere [20,21]. The de-
fault pipeline consists of 1) affine registration to the MNI305
space [22]; 2) bias field correction; 3) removal of skull, cere-
bellum, and brainstem regions from the MR image; 3) esti-
mation of white matter surface based on MR image intensity
gradients between the white and grey matter; and 4) estima-
tion of pial surface based on intensity gradients between the
grey matter and cerebrospinal fluid (CSF). The distance be-
tween the white and pial surfaces provides the thickness es-
timate at a given location of cortex. For detailed description
refer to [23]. The individual cortical surfaces are then pro-
jected onto a common space (i.e. fsaverage) characterized by
163,842 vertices per hemisphere to establish inter-individual
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correspondence.
In this work, the cortical thickness for each MR image was
computed using FS 5.1, 5.3, and 6.0 versions. The FS5.1
measurements were obtained from the ABIDE preprocessing
project [19]. Standard recon-all pipeline with “-qcache” flag
was used for process and resample the images onto common
(fsaverage) space. The FS5.3 measurements were extracted
using the standard ENIGMA cortical thickness pipeline [24].
Lastly, the FS6.0 measurements were obtained using the stan-
dard recon-all pipeline with “-qcache” flag as well. Compute
Canada [25] and CBrain [26] computing infrastructures were
used for processing of FS5.3 and FS6.0 data.

CIVET. CIVET 2.1 (http://www.bic.
mni.mcgill.ca/ServicesSoftware/
CIVET-2-1-0-Introduction) preprocessing was
performed on the data obtained from NITRC. The standard
CIVET pipeline consists of 1) N3 bias correction [27]; 2)
affine registration to the MNI ICBM 152 stereotaxic space;
3) tissue classification into white matter (WM), grey matter
(GM) and cerebrospinal fluid; 4) brain splitting into left
and right hemispheres for independent surface extraction;
5) estimation of WM, pial, and GM surfaces. The cortical
thickness is then computed using the distance (i.e. Tlink
metric) between WM and GM surfaces at 40,962 vertices
per hemisphere.

ANTs. The MR imaging dataset preprocessed with ANTs
("RRID:SCR_004757, version May-2017") was obtained
from the ABIDE preprocessing project [19]. The detailed de-
scription of ANTs cortical thickness pipelines can be found
here [16]. Briefly, the ANTs pipeline consists of 1) N4
bias correction [28]; 2) brain extraction; 3) prior-based seg-
mentation and tissue-based bias correction; and 4) Diffeo-
morphic registration-based cortical thickness estimation [29].
One key differentiating aspect of ANTs is that it employs
quantification of cortical thickness in the voxel-space, unlike
FreeSurfer or CIVET, which operate with vertex-meshes.

Cortical parcellations. The regions of interest (ROI) were
derived using three commonly used cortical parcellations,
namely 1) Desikan-Killiany-Tourville (DKT) [30], 2) De-
strieux [31], and 3) Glasser [32]. DKT parcellation con-
sists of 31 ROIs per hemisphere and is a modification of
Desikan–Killiany protocol [33]) to improve cortical label-
ing consistency. DKT label definitions are included in all
three FreeSurfer (FS), CIVET, and ANTs pipelines, which al-
lows the comparison of cortical phenotypic measures across
these tools. The Destrieux parcellation is a more detailed
anatomical parcellation proposed for a precise definition of
cortical gyri and sulci. The Destrieux parcellation comprises
74 ROIs per hemisphere, and is also available in the FS
pipeline. In contrast to these structural approaches, Glasser
parcellation was created using multimodal MR acquisitions
from 210 HCP [34] subjects with 180 ROIs per hemisphere.
Glasser label definitions are available in the “fsaverage”
space (https://doi.org/10.6084/m9.figshare.3498446.v2), i.e.
the common reference space used by FreeSurfer, allowing

comparisons across multiple parcellations.

Quality Control. We employed manual (i.e. visual) and au-
tomatic (statistical outlier detection) procedures to investi-
gate the effect of quality control (QC) on thickness distribu-
tions from software tools and cortical parcellation. The man-
ual quality checks were performed on the extracted cortical
surfaces by two independent expert raters [35,36]. The two
raters used different criteria for assessing the quality of sur-
face delineation. This in turn yielded two lists of QC-passed
subjects from “lenient” and “stringent” criteria. We note that
these lenient and stringent QC lists were generated indepen-
dently using FS and CIVET images, respectively; and then
applied to all pipeline variations. The automatic quality con-
trol was performed using an outlier detection algorithm based
on a random min-max multiple deletion (RMMMD) proce-
dure (Barry et al. in preparation). The RMMMD algorithm
is a high dimensional extension of Cook’s influence mea-
sure to identify influential observations. The outlier detection
was applied separately to high-dimensional vertex-wise out-
put and low-dimensional aggregate output based on cortical
parcellations for each software and parcellation choice.

Statistical Analysis . We categorize the downstream statis-
tical analyses into a 2x2 rubric based on a method type and
an inference objective (see Fig. 1). The method types con-
sist of either 1) unsupervised, task-free analyses or 2) super-
vised, task-driven analyses. Whereas the inference objectives
include 1) neurobiological tasks investigating the biological
effect across groups of individuals or 2) individual tasks pre-
dicting individual-specific states (see Table 2). The task-free,
neurobiologically oriented analyses (TF-N) aim at quantify-
ing similarity of preprocessed features (i.e. ROI-wise cortical
thickness values) without an explicit constraint of an objec-
tive function. Task-driven, neurobiologically oriented anal-
yses (TD-N) quantify feature similarity in the context of a
general linear model (GLM) framework. Individually ori-
ented analyses formulate the duals of neurobiological anal-
yses, with a focus on individual similarity in task-free (TF-I)
and task-driven (TD-I) contexts.
Nonetheless, there are significant differences in validation
paradigms depending on inference type, with specific impli-
cations on reproducibility assessment. Previous work has re-
ported varying degrees of association and predictability of
age from cortical thickness measures in neurotypical and
ASD cohorts [37–41]. We therefore selected biological age
as our objective for the task-driven analyses. Although other
clinical variables (e.g. diagnosis) could be used, availability
and unambiguity of age quantification across datasets simpli-
fies analytic comparison.
For TF-N analysis we evaluate the pairwise correlation and
covariance of features using Pearson’s r metric. For TF-I
analysis, we assess individual similarity using t-SNE and hi-
erarchical clustering with euclidean distance and Ward’s link-
age metrics. For TD-N analysis we build a GLM to associate
cortical thickness and biological age with sex and data collec-
tion site as covariates. For TD-I analysis, we train a random
forest (RF) model for age prediction using cortical thickness,
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Fig. 3. TF-N analysis: Top) Correlation between cortical thickness values for software pairs measured independently over ROIs for control and ASD groups. The vertical lines
represent the mean correlation across all ROIs. The ROIs are defined using DKT parcellation. Bottom) Distribution of cortical thickness values for exemplar ROIs with lowest,
average, and highest median correlation across software pairs.

sex, and data collection site as predictors. Of note, we also
assess the feature importance assigned to cortical features by
the RF model. ML model performance and feature impor-
tance is assessed within 100 iterations of shuffle-split cross-
validation paradigm.
We also note that not all pipeline variations can be assessed
easily within this to 2x2 statistical analyses rubric. As men-
tioned before we only analyze a subset ((5+3)x5) of possible
pipeline variations, and compare the five software tools using
common DKT parcellation. Tool comparison with Destrieux
and Glasser parcellations is not trivial due to their unavail-
ability for CIVET and ANTs. This also limits our compari-
son across three parcellations solely with FreeSurfer 6.0. We
do however compare all five QC procedures with these com-
binations. The analyses performed in this work are provided
in Table 2. The code used for the analyses is available here:
https://github.com/neurodatascience/compare-surf-tools.

Validation Study. We used the S1200 release from the Hu-
man Connectome Project (HCP) as a validation dataset [42].
The T1w images of 1108 individuals from this dataset were
successfully preprocessed using FS 6.0 and CIVET 2.1 re-
spectively, and then average cortical thickness measurements

in the DKT ROIs were obtained. Identical to ABIDE analy-
sis, we evaluated the pairwise correlation and covariance of
features between CIVET 2.1 and FS 6.0 using Pearson’s r
metric, then we compared it using the same approach as for
the ABIDE dataset.

Results
Task-free neurobiological (TF-N) analysis. Feature com-
parisons across the five software tools are performed using
common DKT parcellation. The pairwise comparisons be-
tween software tools are performed based on the ROI-wise
Pearson correlations between thickness measures produced
by each tool (See Fig. 3, Table 3). The pairwise compar-
isons between FS, CIVET, and ANTs tools show very lit-
tle similarity of features with low average correlation val-
ues (rε[0.39,0.52]). The comparisons between different ver-
sions of FS show relatively better average correlation perfor-
mance (rε[0.83,0.89]). Stratifying comparisons by diagno-
sis does not improve correlation. ROI specific performance
shows the lowest median correlation for the left rostral-
anterior-cingulate (r=0.27), left and right isthmus-cingulate
(r=0.29,0.31) regions, and the highest median correlation for
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Fig. 4. TF-N analysis: Top) Graph density for different correlation cutoff thresholds used for constructing a structural network. The error bars show variation due to QC
procedure. Middle) Structural covariance of each software measured as inter-ROI correlation with cutoff value of 0.5. For simplicity, the covariance plot is generate with
original data. The covariance patterns are grouped by Yeo resting state networks membership. Bottom) Distribution of regional degree-centrality metric per Yeo network for
each software with different QC procedures. Note that frontoparietal and dorsal attention networks are excluded from some analyses due to the small number of DKT ROIs
in these networks.

the left cuneus (r=0.63), right postcentral (r=0.63), and left
caudal-middle-frontal (r=0.62) regions across all software
pairs. The pairwise thickness distributions for three randomly
selected exemplar ROIs corresponding to different levels of
median correlations across software tools are shown in Fig.
3. The exemplar ROI comparison suggests that ROIs with
high correlation levels tend to have lower overlap between
the pairwise thickness distributions.

The covariance matrix of ROIs and subsequently derived
structural network metrics reveal several software specific
differences. First, the covariance matrix shows large vari-
ation of patterns across software tools (see Fig. 4-middle).
All software tools show strong bilateral symmetry evident
by the high correlation values on the diagonal representing
hemispheric ROI pairs. Interestingly, CIVET features show
stronger intra-hemispheric correlation between ROIs com-
pared to the inter-hemispheric values. The DKT ROIs are
grouped based on their membership in the Yeo resting state
networks [43] to compute graph theoretic metrics. Fig 4
shows the variation in the two commonly used metrics. Fig 4-
top shows the impact of correlation threshold, typically used
for denoising graph-edges, on the fundamental measure of
graph density. The three FS versions show relatively simi-
lar performance for all resting state networks, with somato-
motor and default mode exhibiting highest and lowest densi-
ties, respectively. Compared to FS values, ANTs and CIVET
show different magnitudes and/or rankings of graph densities
across networks. These differences are further amplified in

the graph degree-centrality measurements across networks.
Fig. 4-bottom shows high intra-network regional variance in
degree-centrality for FS versions. This variance is relatively
smaller for ANTs and CIVET but these software show largely
different magnitudes of centrality particularly in limbic and
default mode networks.
Comparison across QC procedures did not show any substan-
tial impact on correlation values. Feature comparison for a
given software tool (e.g. FS6.0) across different parcellations
is not trivial due to lack of correspondence between various
parcellation spaces.

Task-free individual (TF-I) analysis. Individual compar-
isons using thickness measures from DKT parcellation are
performed across the five software tools with an identical
set of subjects. Commonly used 2-dimensional t-SNE em-
beddings show strong similarity between subjects for a given
software tool (see Fig. 5). The three FS versions are much
more similar to each other than any FS version is to CIVET
or ANTs, reflecting that the different versions of FS share
methodological and technical components. Individual co-
variance as measured by clustering consistency (i.e. the
fraction of pairs of individuals assigned to the same clus-
ter for a given perturbation of features) shows poor stability
(ccε[0.52,0.77]) across software tools as well as between FS
versions (see Table 4). Comparison across QC procedures did
not show any substantial impact on t-SNE representations or
clustering consistency values.
Individual comparisons across different parcellations for a
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Controls ASD

ANTs CIVET FS5.1 FS5.3 FS6.0 ANTs CIVET FS5.1 FS5.3 FS6.0

ANTs 1 0.43 0.45 0.48 0.44 1 0.39 0.39 0.46 0.41
CIVET 1 0.48 0.52 0.52 1 0.44 0.48 0.49
FS5.1 1 0.89 0.84 1 0.87 0.83
FS5.3 1 0.89 1 0.88
FS6.0 1 1

Table 3. Average ROI correlations between software pairs for control and ASD cohorts.

Fig. 5. TF-I analysis: Two dimensional t-SNE representation of all individuals (No
QC). The colors indicate the software tool used and the marker style indicates the
diagnostic group.

given software tool (e.g. FS6.0) are not particularly infor-
mative due to lack of correspondence between various par-
cellation spaces.

Task-driven neurobiological (TD-N) analysis. The mass-
univariate regression models per ROI region suggestcortex-
wide association between age and thickness values for all
software tools, with the exception of the CIVET-based anal-
ysis, which excludes bilateral insular regions (see Fig. 6).
QC procedures seem to have varying impact on the signifi-
cant regions depending on the software tool. The aggregate
ranking suggests higher variation in significant regions for
ANTs and CIVET. In contrast the FreeSurfer versions offer
relatively similar performance - with consistent exclusion of
entorhinal regions. The stringent manual QC sample reduces
many of the significant regions, which may be due to reduced
statistical power.
Parcellation comparisons for FreeSurfer 6.0 reaffirm cortex-
wide association between age and thickness values across the
three parcellations with some exclusions in medial and su-
perior temporal gyri with Destrieux and STGa, PIR, TGd,
TGv, PHA1, EC, PeEc with Glasser (see Fig. 7). Lenient
QC does not seem to change the distribution of significant
regions. However, stringent and automatic QC based results
additionally exclude regions from precentral gyri for all three
atlases.

Task-driven individual (TD-I) analysis. The RF model
based predictions show consistent Root Mean Square Error
(RMSE) performance (5.7 - 7.2 years) across software tools,
with FS versions showing marginally lower error (see Fig.
8). All model performances are statistically significant when
compared against a null model. The average RMSE for the

control cohort is lower than the ASD cohort; as expected
per the null model, however the difference is statistically in-
significant. Lenient QC does not have an impact on RMSE
distributions. Stringent QC reduces the average RMSE for
all software tools (3 - 5 years) and the null model. Auto-
matic QC reduces the average RMSE as well as its variance
for all software tools (3.8 - 4.7 years). Interestingly with the
automatic QCs (low- and high-dimensional), the null mod-
els expectations are reversed as the average RMSE for ASD
subjects is now lower than that of controls.

Parcellation based comparisons show similar RMSE perfor-
mance despite the differences in granularity of regions and
the consequent number of input features to the ML models
(see Fig. 9). The RMSE trends with respect to QC are also
consistent, with both stringent and automatic QC reducing
the average RMSE and the latter yielding a much tighter dis-
tribution of error. The null model shows lower expected error
for the control cohort compared to the ASD, except for the
automatic QC based analyses, where this expectation is re-
versed.

ROI importance from RF. The cross-validated recursive
feature elimination (RFE) procedure yields drastically differ-
ent feature sets across software tools (see Fig. 10). Over-
all all software tools require a small number of features (n
ε[3,20]) for age prediction of control subjects compared to
features (nε[41,60]) used with ASD subjects. RFE seems
to be very sensitive to the QC procedures as all the proce-
dures yield different feature sets with no consistent trends for
controls or ASD cohorts. The parcellation comparisons also
show varied selection of features. Despite the larger number
of parcels for Destrieux and Glasser parcellations the number
predictive features remain relatively small. The sensitivity to
QC procedure does seem to reflect in the parcellation analysis
as evident by large spikes in feature counts for both control
and ASD cohorts.

Validation analysis . For the HCP dataset, the feature com-
parisons based on DKT parcellation yielded an average Pear-
son correlation of 0.66 (range) between CIVET2.1 and FS6.0
(ABIDE: 0.52). The regions exhibiting low correlations were
also consistent with AIBIDE analysis, and comprised cingu-
late regions, orbitofrontal regions, entorhinal, pericalcarine,
and insula.

Bhagwat et al. | Impact of preprocessing pipelines on cortical surface analyses bioRχiv | 7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.100180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.100180


Controls ASD

ANTs CIVET FS5.1 FS5.3 FS6.0 ANTs CIVET FS5.1 FS5.3 FS6.0

ANTs 0.797 0.5 0.521 0.517 0.522 0.991 0.970 0.962 0.972 0.972
CIVET 0.717 0.5 0.5 0.5 0.994 0.982 0.992 0.992
FS5.1 0.78 0.609 0.529 0.997 0.990 0.985
FS5.3 0.703 0.499 0.997 0.995
FS6.0 0.619 0.997

Table 4. Clustering consistency between software pairs. The diagonal shows expected overlap based on bootstrap sampling of features for a given software tool. Top)
Similarity metric: Euclidean distance, linkage: Ward’s method

Not significant          Significant

ANTs CIVET FS5.1 FS5.3 FS6.0

Not significant: 'L_insula', 'R_insula', 'L_entorhinal', 'R_entorhinal', 
'L_parahippocampal', 'R_parahippocampal' Not significant: 'R_entorhinal' Not significant: 'L_entorhinal', 'R_entorhinal' Not significant: 'L_entorhinal', 'R_entorhinal'

0     1     2     3     4     5

Software Aggregate

Software & QC AggregateQC Aggregates per software

0     1     2     3     4     5 0      5     10     15      20      25

Fig. 6. TD-N analysis: Significant ROI differences with various software and QC levels. Significance levels are corrected for multiple comparisons. Aggregate ranks are
assigned based on performance agreement among five software and five QC procedures. Lower rank implies fewer QC procedures yielding the same results.

Not significant          Significant

DKT Destrieux Glasser

Not significant: temporal gyri, temporal poles

QC Aggregates per software

0     1     2     3     4     5

Not significant: STGa, PIR, TGd, TGv,  PHA1, EC, PeEcNot significant: 'L_entorhinal', 'R_entorhinal'

Fig. 7. TD-N analysis: Significant ROI differences with various parcellations and QC levels. Significance levels are corrected for multiple comparisons. Aggregate ranks are
assigned based on performance agreement five QC procedures. Lower rank implies fewer QC procedures yielding the same results.
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Fig. 8. TD-I analysis: Individual age prediction with various software and QC lev-
els stratified by diagnosis. Performance is cross-validated using a Random Forest
model over 100 shuffle-split iterations.

Fig. 9. TD-I analysis: Individual age prediction with various parcellations and QC
levels stratified by diagnosis. Performance is cross-validated using a Random For-
est model over 100 shuffle-split iterations.

Fig. 10. Predictive feature set count with various (A) software and (B) parcella-
tions for different QC levels stratified by diagnosis. Optimal predictive features are
selected using cross-validated recursive feature elimination procedure.

Discussion

In this work, we aimed to assess the reproducibility of phe-
notypic features and subsequent findings subjected to prepro-
cessing pipeline variation along three axes: 1) image process-
ing tool, 2) anatomical priors, 3) quality control. We note that
the goal here is not to deliberate specific biological and indi-
vidual interpretation from the analyses, but rather to highlight
the differences among the findings themselves.
In the TF-N analysis, we see a weak ROI-wise correlation
across software pairs (see Fig. 3). Although software spe-
cific biases are expected in biological phenotypic estimates,
the level of diminished correlation is striking. One can ex-
plain this performance for the comparisons involving ANTs
as it is the only software that operates in the voxel space.
However, a similarly poor performance is seen with CIVET
and FreeSurfer, both of which operate in a vertex space for
thickness estimation. Since individual ROI-based measures
are frequently used in the downstream mass-univariate mod-
els, the lack of consensus across software tools is likely to
yield different results. Moreover, the varying ROI covariance
patterns across the software (see Fig. 4) suggest weak multi-
variate similarity, which again strongly increases the depen-
dence of findings and biological interpretations on the soft-
ware choice. For instance, the bilateral symmetry between
cortical ROIs may only be inferred with CIVET due to its al-
gorithmic specificities. Lastly, the lack of impact from QC,
suggests that these effects are systemic and not driven by out-
liers.
In the TF-I analysis, software tool specific t-SNE similarity
is encouraging and expected. The t-SNE embeddings also
highlight stronger differences between software tools com-
pared to the differences in diagnostic groups (see Fig. 5).
This partly explains the high difficulty in the training general-
izable ML models across studies employing different prepro-
cessing pipelines. Moreover, the poor clustering consistency
is alarming (see Table 4). Given that data-driven clustering is
a typical practice to identify subgroups of patients or define
biotypes [44,45], clustering membership that is highly sensi-
tive to the preprocessing pipeline may go undetected by the
stability tests performed on the final set of processed features.
In the TD-N analysis, the software and parcellation com-
parisons show relatively consistent spatial associations for
the age regression models (see Fig. 7-8). There are some
software-specific regional peculiarities (e.g. insular regions
with CIVET), which also interact differently with various QC
procedures as can be seen by more variable performance of
ANTs and CIVET. These sensitivities should be noted as they
could suggest methodological limitations or bias in the soft-
ware. The overall cortex-wide association of thickness with
age is expected as various studies have reported the same in
healthy and ASD populations [38,40,46,47]. This also sug-
gests that the lack of strong ROI (univariate) correlation be-
tween a pair of software tools is not impacting the task-driven
mass-univariate analysis. However, we note that this is highly
dependent on the task at hand, and possibly only some effects
(i.e. age related cortical thickness) might be strong enough to
be identified easily - especially when they are wide-spread
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over the entire cortex. Therefore, a novel biological finding
must be reported with high scrutiny to exclude pipeline speci-
ficities.

In the TD-I analysis, ML model performance is stable with
software and parcellation variations (see Fig. 8-9), and
comparable to the previous, similar age prediction studies
[16,37]. The stability of performance potentially could be at-
tributed to the relatively large sample sizes. It is encouraging
to see that biological noise does not induce large variations
into individual predictions. It is also important to note the
impact of QC on the model performance and the null distri-
butions for a given population (i.e. controls vs ASD). These
alterations in the expected null performance need to be re-
ported in order to fairly evaluate the improvements offered
by a novel model on a given sample. Although ML models
seem to be stable for individual predictions, the feature im-
portance assessments by the same models are highly variable
(see Fig. 10). One explanation for this behaviour could be
that in the presence of noisy biological features, ML models
assign a relatively flat distribution of importance to the fea-
tures. Variation in feature sets or sample sizes, as dictated
by the selected preprocessing pipeline, would thus yield a
drastically different feature ranking in a given iteration of the
analysis. This needs to be taken into account if ML models
are used to make biological inferences.

The validation analysis with HCP allowed us to replicate our
feature correlations findings on an independent dataset. Sim-
ilar to ABIDE analysis, HCP showed consistent low corre-
lation between the ROI thickness values produced by FS6.0
and CIVET2.1. Moreover, there is a large commonality in the
regions (i.e. cingulate regions, orbitofrontal regions, entorhi-
nal, and insula) exhibiting the low correlations. This suggests
that the low correlations are mainly driven by the algorith-
mic differences and not by the dataset. Pericalcarine was the
exception to this common regional subset, which had a low
correlation only in the HCP dataset, possibly due to dataset
specific peculiarities. Nevertheless this highlights the need
for larger meta-analyses to identify tool-specific and dataset-
specific variability in findings.

Limitations. Although in this work we aimed at assessing
the impact of pipeline variation along three different axes,
we only considered a subset of permutations in the analysis.
This was primarily due to practical reasons such as the lack
of availability of common parcellation definitions for all soft-
ware tools. Therefore we could not compare software tools
with Destrieux and Glasser parcellations. We also limited the
scope of this work to structural features, and did not consider
functional or diffusion measures. With the increasing popu-
larity of sophisticated, derived measures from highly flexible
functional preprocessing pipelines with multitude of design
parameters, it is critical to understand and quantify the inher-
ent variability and its impact on downstream findings. We
defer this endeavor to future studies and refer to [6] for some
progress in this direction.

Conclusions
This work highlights the variability introduced by the prepro-
cessing pipelines, which is only a part of the larger issue of
reproducibility in computational neuroimaging. We under-
stand that the computational burden of comparative analyses
such as this can be infeasible in many studies, which neces-
sitates undertaking of large meta analytic studies to under-
stand software specific biases for various populations strat-
ified by demographics and pathologies. At the single study
level, we encourage the community to process data with dif-
ferent tools as much as possible and report variation of re-
sults. We also propose to systematically report positive and
negative results with different parcellations to improve confi-
dence levels in the findings and to better understand the spa-
tial granularity associated with effect of interest and to gen-
eralize the use of common atlases across tools. We also rec-
ommend assessing the sensitivity of findings against varying
degrees of stringency for the QC criteria. Only with wide-
spread adoption of rigorous scientific methodology and ac-
cessible informatics resources to replicate and compare pro-
cessing pipelines can we address the compounding problem
of reproducibility in the age of large-scale, data-driven com-
putational neuroscience. The availability of containerized
and well documented pipelines together with the necessary
computing resources will mitigate the variability of results
observed and direct the community towards understanding
these differences, as well as further develop methodological
validation and benchmarking.
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Supplementary information
Below are the validation results from task-free analyses on HCP dataset. Fig. 11 shows the regional correlations between
CIVET2.1 and FS6.0 software. Fig. 12 shows the t-SNE plot that highlight the software driven differences on individual
clusters.

Fig. 11. TF-N analysis for HCP dataset: Left) Correlation between cortical thickness values for CIVET and FS6.0 measured independently over ROIs for control and ASD
groups. The vertical lines represent the mean correlation across all ROIs. The ROIs are defined using DKT parcellation.

Fig. 12. TF-N analysis for HCP dataset: Left) Correlation between cortical thickness values for CIVET and FS6.0 measured independently over ROIs for control and ASD
groups. The vertical lines represent the mean correlation across all ROIs. The ROIs are defined using DKT parcellation.
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