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Abstract 
As the cost of single-cell RNA-seq experiments has decreased, an increasing number            
of datasets are now available. Combining newly generated and publicly accessible           
datasets is challenging due to non-biological signals, commonly known as batch           
effects​. ​Although there are several computational methods available that can remove           
batch effects, evaluating which method performs best is not straightforward. Here we            
present BatchBench (​https://github.com/cellgeni/batchbench ​), a modular and flexible       
pipeline for comparing batch correction methods for single-cell RNA-seq data. We           
apply BatchBench to eight methods, highlighting their methodological differences         
and assess their performance and computational requirements through a         
compendium of well-studied datasets. This systematic comparison guides users in          
the choice of batch correction tool, and the pipeline makes it easy to evaluate other               
datasets.  

Introduction 
Single-cell RNA sequencing (scRNA-seq) technologies have made it possible to address           
biological questions that were not accessible using bulk RNA sequencing ​(1)​, e.g.            
identification of rare cell types ​(2,3)​, discovery of developmental trajectories ​(4–6)​,           
characterization of the variability in splicing ​(7–11)​, investigations into allele specific           
expression ​(12–15)​, and analysis of stochastic gene expression and transcriptional kinetics           
(11,16)​. There are currently a plethora of different protocols and experimental platforms            
available ​(17 ​,​18)​. Considerable differences exist among scRNA-seq protocols with regards          
to mRNA capture efficiency, transcript coverage, strand specificity, UMI inclusion, and other            
potential biases ​(17,18)​. It is well known that these and other technical differences can              
impact the observed expression values, and if not properly accounted for they could be              
confounded with biological signals ​(19)​. Such differences arising due to non-biological           
factors are commonly known as batch effects.  
 
Fortunately, with appropriate experimental design it is possible to remove a portion of the              
batch effects computationally, and recently there has been a large degree of interest in              
developing such methods for scRNA-seq. We group the methods into three categories            
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depending on what space they operate on with respect to the expression matrix (Fig 1a).               
The expression matrix represents the number of reads found for each cell and gene, and it is                 
central to computational analyses. The first set of methods, mnnCorrect, limma, ComBat,            
Seurat 3 (hereafter referred to as Seurat) and Scanorama, produce a merged, corrected             
expression matrix. The second set, Harmony and fastMNN, instead operate on a            
low-dimensional embedding of the original expression matrices. As such their output cannot            
be used for downstream analyses which require the expression matrix, limiting their use for              
some applications. Finally, the BBKNN method operates on the k-nearest neighbor graph            
constructed from the expression matrices and consequently its output is restricted to            
downstream analyses where only the cell label can be used. 

As the choice of batch correction method may impact the downstream analyses, the decision              
of which one to use can be consequential. To decide what method to use, most researchers                
rely on benchmarking studies. Traditionally such comparisons are carried out using a            
compendium of relevant datasets. The downside of this approach is that methods published             
after the benchmark was carried out are not included and that the comparison may not have                
featured datasets that contain all the relevant features required to evaluate the methods. To              
overcome these issues we have developed BatchBench (Fig 1b), a flexible computational            
pipeline which makes it easy to compare both new methods and datasets using a variety of                
criteria. Here we report on the comparison of eight popular batch effect removal methods              
(Table 1) using three well-studied scRNA-seq datasets​. ​BatchBench is implemented in           
Nextflow ​(20) and it is freely available at ​https://github.com/cellgeni/batchbench under the           
MIT Licence.  

By default, BatchBench evaluates batch correction methods based on two different entropy            
metrics. The normalized Shannon entropy is used to quantify how well batches are aligned              
while preserving the separation of different cell populations. However, the entropy measures            
do not provide a complete picture of how the batch correction impacts downstream analyses.              
Therefore, BatchBench has a modular design to allow users to incorporate additional            
metrics, and we provide two examples of such metrics - unsupervised clustering and             
identification of marker genes. Three different unsupervised clustering methods are applied           
to the merged cells to afford the user a better understanding of how the different methods                
affect this step which is often central to the analysis. We also compare cell-type specific               
marker genes to understand how different batch correction methods affect the expression            
levels. 
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Figure 1: Overview of workflows and batch correction methods. (a) Overview and classification             
of eight batch effect removal tools. (b) Schematic overview of the BatchBench pipeline.  
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Tool Lang. Output Correction principle Installation License Ref 

mnnCorrect  
Counts 
matrix 

Mutual nearest neighbour detection 
across batches.  Batchelor   GPL-3 (16) 

Limma   
Counts 
matrix 

Fits linear model to remove batch effect 
component. Limma   GPL (>=2) (21) 

ComBat   
Counts 
matrix 

Adjusts for known batches using an 
empirical Bayesian framework. Sva  Artistic-2.0 (22) 

Seurat   
Counts 
matrix 

Diagonalized CCA to reduce 
dimensionality and MNN detection in this 

space. 
Seurat (CRAN)  GPL-3 (23) 

Scanorama   
Counts 
matrix 

SVM to reduce dimensionality 
and mutual nearest neighbor detection 

and panoramic stitching. 
pip  MIT  (24) 

Harmony   Embedding Iterative soft k-means clustering algorithm 
in dimensionally reduced space. Github  GPL-3 (25) 

fastMNN   Embedding Mutual nearest neighbor detection after 
multi-sample PCA. Batchelor  GPL-3 (16) 

BBKNN 
  Graph Mutual nearest neighbour pair selection 

across batches in PCA space. pip3  
MIT  

 (26) 

 ​R, Bioconductor,  Conda,  Python. 

Table 1:​ Summary of the eight batch correction methods considered in this study. 

Results 

Entropy measures quantify integration of batches and separation of cell 
types 
 
To illustrate the use of BatchBench we first considered three scRNA-seq studies of the              
human pancreas ​(27–29)​. Even though the samples were collected, processed and           
annotated independently, several comparisons have shown that batch effects can be           
overcome ​(19 ​,​30)​. Visualization of the uncorrected data using UMAP reveals a clear            
separation of the major cell types across batches (Fig 2a). As expected, all of the methods in                 
our study were able to merge equivalent cell populations from different batches while             
ensuring their separation from other cell types. Visual inspection suggests that Seurat and             
Harmony achieve groupings mainly driven by the cell types, whereas the other methods tend              
to aggregate the different batches. It is notable that BBKNN brings cell populations closer              
but is unable to superimpose the batches. 
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Figure 2 ​. ​UMAP visualization of the different batch effect correction methods for the             
human pancreas dataset. (a-h) Each pair of panels shows the cells labeled either by              
dataset of origin (left) or cell type (right). 
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To evaluate how well the batch correction methods mix cells from different batches while              
keeping cell types separate, we computed the normalized Shannon entropy ​(16,29) based            
on the batch and cell type annotations provided by the original authors (Methods). The              
desired outcome is a high batch entropy, indicating a homogeneous mixture of the batches,              
and a low cell type entropy, suggesting that cell populations remain distinct. While all the               
methods were able to keep the distinct cell populations separate, we observed greater             
differences for the batch entropy (Fig 3). Based on this metric we consider Seurat and               
Harmony as the best methods. As intermediate performers Scanorama and fastMNN show a             
wider distribution of batch entropy values. Finally, mnnCorrect, Limma and ComBat can be             
considered the poorer performers in aligning the different batches.  
 

 
Figure 3. Batch and cell type entropies for eight methods and three datasets. ​The              
boxplots show the Shannon entropy over batch and cell type of the different batch effect               
correction methods for pancreas data (red), Mouse Cell Atlas (green), and Tabula Muris             
(blue). The black line represents the mean across the cells, the box the upper and lower                
quartiles, the whiskers 95th percentiles and the dots show outliers.  
 
We carried out similar investigations for the Mouse Cell Atlas (MCA) ​(31) and Tabula Muris               
(32) datasets. In the MCA ​the batches correspond to the eight different animal ​s ​(31)​, and as                
the mice all come from the same genetic background and were raised in the same               
environment we expect the batch effects to be smaller than for the pancreas data. The batch                
entropy for the uncorrected data is indeed higher than for the pancreas data (Fig 3), and                
most methods are able to mix the batches of the MCA better, as confirmed by visual                
inspection. The cell type entropies are higher than for the pancreas data, and we              
hypothesize that this is a consequence of the fine-grained annotation which makes it difficult              
to separate cell types. For example, the bone marrow contains six different types of              
neutrophils and the testes five types of spermatocytes. Overall across MCA data, Seurat and              
Harmony show the best batch mixing, although at the cost of slightly increasing cell type               
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mixing compared to the uncorrected counts and the other methods. Scanorama can also be              
considered a good performer followed by fastMNN. 
 
Next, we investigated another mouse cell atlas, Tabula Muris ​(32)​, and our analysis shows a               
greater sample effect as evidenced by a very low batch entropy for the uncorrected data (Fig                
3). Since the batches correspond to two different experimental platforms ​(32)​, it is not              
surprising that there are larger differences than for the MCA. Furthermore, all methods             
perform better with regards to the cell type entropy, potentially due to a more coherent               
annotation. For all three datasets, we note that for most methods there is greater variation in                
batch entropy than cell type entropy. Closer inspection reveals that the batch entropies vary              
substantially across tissues (Table S1). Interestingly, all methods, except for Seurat and            
BBKNN, are unable to achieve high batch entropy for datasets with a small number of cell                
types. Closer inspection reveals that all methods except Seurat and BBKNN show a             
significant correlation between cell type entropy and number of cell types, suggesting poorer             
performance with more fine-grained annotation (Fig S1). Taken together, Seurat consistently           
succeeds in mixing the batches, again at the cost of a slightly distinct cell population mixing.                
Scanorama performs well although with higher variation across datasets. Surprisingly,          
Harmony is unable to properly align the Tabula Muris batches. 

Batch correction becomes harder as the number of cells and the number 
of batches increase 
 
T​o determine how the number of cells in each sample influences batch correction             
performance and running times we considered the Tabula Muris dataset, and downsampled            
it to 1%, 5%, 10%, 20% and 50% of the original 60,828 cells (Methods). Across all subsets,                 
the input objects contain 64% of 10X cells and 36% of FACS-sorted Smart-Seq2 cells. Note               
that this batch correction task is more challenging than the one in figure 3 as we now merge                  
cells from different tissues.  
 
The number of cells has a strong impact on performance and it becomes more difficult to                
align the two batches with increasing cell numbers. All methods except Scanorama,            
Harmony and Seurat reduce the batch entropy by >50% as the number of cells increases               
from 608 to 60,828 (Fig. 4a). Unfortunately, Scanorama mixes the cell types as well as               
batches, and surprisingly none of the entropies change as the number of cells increases.              
Harmony is the only method that, after an initial drop, increases the batch entropy with the                
number of cells. For all methods except Scanorama, the cell type entropy is also reduced,               
suggesting that it becomes easier to group cells from the same origin for larger datasets.               
With the exception of Scanorama, the majority of the methods do not significantly increase              
the cell type entropy above the value of the uncorrected counts, even decreasing it for the                
smaller subsets.  
 
The main goal of the investigation involving different numbers of cells is to learn how the                
c​omputational resource requirements change as this is an important factor when choosing a             
method. Considering the time required to perform the integration, we found substantial            
differences as ComBat, Limma, Harmony and BBKNN have more or less constant run times              
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as the number of cells grow. By contrast, mnnCorrect and fastMNN grow exponentially, with              
the former being the slowest method in our study. Seurat initially has a stable runtime before                
it starts to grow exponentially (Fig 4b). For all methods we found that memory ​usage               
increases exponentially with the number of cells. The differences are smaller than for the              
run-time, with Seurat, mnnCorrect, ComBat and fastMNN consuming the most resources,           
while Harmony, Scanorama and BBKNN have the lowest requirements (Fig 4c). The            
memory requirements and runtimes observed in the scaling experiments are similar to what             
we found for the previous section (Fig S2). 
 
 

 
Figure 4: Performance of methods as a function of the number of cells and batches.               
a,d) Entropy, b,e) running time and c,f) RAM usage for the Tabula Muris subsets of different                
sizes  and different numbers of simulated batches. 
 
As sequencing costs decrease, the number of different samples that can be processed will              
increase. Thus, we also evaluated how well each method handles an increasing number of              
batches. For this study we considered subsets of the Tabula Muris 10X dataset with 4,168               
genes and 18,347 cells. As the batches created by subsampling this dataset are entirely              
artificial, we added small batch-specific random counts to each gene to ensure that there are               
differences that require correction (Methods). In our simulations, cell types are well            
separated whereas the batches are more overlapping. 
 
We fixed the batch size to 1,001 cells and we created datasets including 2, 3, 5, 10, 20, and                   
50 and batches, introducing small artificial batch effects. Cell type entropies are maintained             
low with the number of batches for all methods, highlighting the capacity of our batch               
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simulating procedure to not mix distinct cell populations as batches are included. Regarding             
batch entropy (Fig. 4d), BBKNN, Seurat and Harmony show the most stable performance as              
the number of batches increases. Although all methods have an exponential increase in both              
memory use and runtime, mnnCorrect stands out again as the slowest method. As before,              
we find that Seurat consumes the most memory, and along with mnnCorrect it fails to               
integrate 50 batches.  
 

Impact of batch correction on unsupervised clustering and identification 
of marker genes 
 
A key advantage of the entropy measures is that they can easily be calculated for any                
dataset containing discrete cell state clusters and that they are easy to interpret. However,              
they only evaluate the mixing of the cells as represented by the nearest neighbor graph, and                
they do not directly assess how the batch correction will impact downstream analyses based              
on the corrected data. To understand how specific aspects of the analysis are affected,              
tailored benchmarks are required. BatchBench allows users to add customized modules to            
evaluate the aspect they find most relevant. Here, we consider two common types of              
analyses, unsupervised clustering and identification of marker genes.  
 
To evaluate the effect on unsupervised clustering, we apply three popular methods, Leiden             
(33)​, Louvain ​(34) and SC3 ​(35)​, to the corrected data, and we then compare the merged                
cluster labels to the ones that were assigned prior to merging. To assess the proximity               
between clusterings we used a distance metric, variation of information, and a similarity             
metric, Adjusted Rand Index (ARI). The two measurements are by definition inversely            
correlated, and because they are consistent (Spearman’s rho = -.87) we will mainly refer to               
the ARI results.  
 
Our analysis of the MCA suggested small differences in cell type entropy, but large              
differences in how well the batches were mixed (Fig 3). By contrast, when running              
unsupervised clustering the batch correction methods achieve similar ARI values, with only            
small differences between the Louvain, Leiden and SC3 algorithms (Fig 5a, S3-6). Closer             
inspection instead reveals large differences between tissues, something that is not evident            
from the entropy measures (Table S1). For the Tabula Muris we observe a similar pattern               
with large differences in ARI between tissues and relatively small differences across            
methods. The main difference compared to the MCA is that the clusters reported by SC3               
have a higher ARI than the ones reported by the Louvain and Leiden methods for 7 of 11                  
tissues. Closer inspection reveals that the Leiden and Louvain methods perform poorly for             
datasets with a small number of clusters (Fig. S3,S4). Surprisingly, for heart and mammary              
glands, the best clustering results are achieved with SC3 applied to the uncorrected data.              
For the pancreas datasets we find that SC3 tends to have a higher ARI, and unlike the two                  
mouse atlases there is good agreement with the entropy analysis as Seurat and Harmony              
performed the best.  
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Figure 5: Evaluation of the impact of batch correction on unsupervised clustering and             
marker gene identification. a) Clustering similarity of batch corrected output to cell labels             
as evaluated by the Adjusted Rand Index. b) Fraction of total cell types over which marker                
genes are detected. c) Similarity of marker genes as evaluated by the generalized Jaccard              
Index. 
 
The main objective of batch correction methods is to ensure that cells with similar expression               
profiles end up near each other. The most widely used metrics, e.g. mixing entropies or               
inverse Simpson index ​(16,19, 29)​, are designed to evaluate this aspect. However, if a              
researcher is interested in analyzing the expression values for other purposes then it is              
important to make sure that the corrected values are close to the original ones. To               
investigate how much expression matrices are distorted by the different methods, we            
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compared the marker genes identified before and after batch correction for the five methods              
that modify the expression matrix (Table 1). We identified marker genes for each batch              
individually as well as for the merged datasets from each method that outputs a modified               
expression matrix. Unlike the entropy and clustering analyses, we observed stark differences            
between batch correction methods. Remarkably, after merging using Scanorama or          
mnnCorrect, not a single marker gene is identified. Only ComBat and Limma are able to               
identify marker genes for most cell types, while Seurat only reports markers for a minority of                
cell types in most tissues (Fig 5b). Comparing the similarity between the marker genes              
identified in the individual batches and the merged dataset using a generalized Jaccard             
index ​(36)​, we find that Seurat provides the highest degree of consistency (Fig 5c). However,               
it is important to keep in mind that Seurat’s good performance is biased by the fact that it                  
reports marker genes for fewer cell types than the other methods. A similar problem stems               
from the fact that sometimes the individual batches do not share any or only few marker                
genes prior to merging, e.g. the neonatal calvaria from the MCA, which explains the grey               
boxes in figure 5c. 

Discussion 
We have developed BatchBench, a customizable pipeline for comparing scRNA-seq batch           
correction methods. ​We have assessed the performance of eight popular batch correction            
methods based on entropy measurements across three datasets, suffering from donor and            
platform effects. Our results highlight Seurat as the top performer as it correctly merges              
batches while maintaining the separation of distinct cell populations. Harmony also shows            
very good results in pancreas and MCA but surprisingly fails in correcting the Tabula Muris               
batch effects. Scanora ​ma and fastMNN can be considered consistent good performers.           
Regarding BBKNN, we note that the entropies are not suitable for evaluating its performance              
as the method operates by identifying nearest neighbours in each of the provided batches              
(26) and adjusting neighbors to maximize the batch entropy. Hence, a different metric should              
be established to evaluate the performance of BBKNN. We also evaluated how the methods              
perform as the number of cells and the number of batches are varied. Here, we highlight                
Harmony as a method that provides good performance while being economical in its use of               
computational resources. However, our analyses suggest that all methods, with the possible            
exceptions of BBKNN and Harmony, will struggle to integrate hundreds of batches even if              
each batch is relatively small. Thus, improving scalability is a central requirement for future              
methods. 
 
A key insight from our study is that the entropy measures do not fully reflect how the choice                  
of batch correction method will impact downstream computational analyses. We applied           
three different unsupervised clustering methods to the merged datasets, and the results are             
not as clear as for the entropy analyses. No single method emerges as the best performer,                
and in some cases the best results were obtained using the uncorrected data. This result               
highlights the importance of using benchmarks that are more closely linked to the analysis              
that will be carried out for the merged dataset.  
 
Our attempt to identify marker genes from the corrected dataset demonstrates the difficulty             
of using the merged expression matrix for downstream analyses. As none of the methods              
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considered in our study performed adequately in this benchmark, we highlight this as an              
area where improvements are required. Since marker genes are not preserved, we stress             
the importance for users to monitor how expression levels change. Any analysis based on              
the expression levels, e.g. identification of marker genes or differentially expressed genes,            
will need to be verified to ensure that the result was not distorted due to the alterations                 
introduced by the batch correction method. An important limitation of our marker gene             
analysis is that it only quantifies consistency a ​s there is not yet an established ground truth                
for what marker genes are represented for the cell types in our study. We tried to use marker                  
gene lists from the literature as represented by the CellMarker database ​(37)​, but we found               
that all pancrease datasets provided poor overlap, even before clustering (Fig S7).  
 
Benchmark studies are important as they help guide researchers in their choice of methods.              
They are also helpful for developers as they can highlight limitations of existing methods and               
provide guidance as to where improvements are needed. One shortcoming of traditional            
benchmarks, however, is that they are static in nature and that they only consider the               
datasets that the authors of the benchmark study had chosen to include. A related issue is                
that the metrics used to evaluate methods may not be relevant to all datasets and research                
questions. Along with a similar study by Leucken et al (40), BatchBench will serve as a                
useful platform to the community as it enables benchmarks to be tailored to specific needs. 
 
 

Methods 

Datasets 
Pancreas dataset​. We consider three published pancreas datasets: Baron ​(​GSE84133 ​)          
(39)​, Muraro (​GSE85241 ​) ​(27)​, and Segerstolpe (​E-MTAB-5061 ​) ​(28) generated using          
inDrop, CEL-Seq2 and Smart-Seq2 technologies, respectively. Initially, quality control was          
performed on each of the datasets to remove cells with <200 counts and genes that were                
present in <3 cells along with spike-ins and anti-sense transcripts. Furthermore, we only             
retained cells that had been assigned a biologically meaningful cell type (e.g. removing cells              
from the “unclassified” category).  
 
For figure 3 we wanted to represent the pancreas results as a boxplot similar to the other                 
datasets. To ensure that we got a distribution we considered three additional versions of the               
data. One of these versions contained all of the genes expressed across the three batches               
rather than just the highly variable ones. The second contained 1,000 cells selected             
randomly from each batch using the highly variable genes. The third version contained only              
six cell types (acinar, alpha, beta, gamma, delta and ductal) from each batch downsampled              
to 50% of the original number of cells and information from the highly variable genes. 
 
Mouse Cell Atlas datasets. ​Individual MCA datasets were downloaded from          
https://figshare.com/s/865e694ad06d5857db4b and merged by tissue, generating 37       
organ datasets. From these, 18 datasets containing more than 1 batch and with a              
reasonable proportion of cells across batches were selected. Through further preprocessing           
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we removed cells expressing <250 genes, genes expressed in <50 cells, cell types             
representing <1% of total cell population in a tissue, and batches containing <5% of the total                
number of cells in a tissue (Table S2).  
 

Tabula Muris datasets. ​The data was downloaded from        
https://www.google.com/url?q=https://figshare.com/projects/Tabula_Muris_Transcriptomic_c
haracterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/
27733&sa=D&ust=1589187433512000&usg=AFQjCNFC_0CGNwum-u2nka-OvFAmxoECtA 
. ​For all analyses except figure 4, individual datasets representing the same tissue across              
the two platforms were merged into 11 organ datasets (Table S1). We set workflow quality               
control parameters to remove cells expressing <1000 genes, genes expressed in <50 cells.             
Again, cell types representing <1% of total cell population in a tissue, and batches containing               
<5% of the total number of cells in a tissue were excluded from further analyses. For the                 
scaling analysis in Figure 4, the previous tissues were merged into an atlas Tabula Muris               
dataset which was filtered to retain cells with >200 genes expressed, genes expressed in >3               
cells. Cells assigned to NA or unknown cell types were excluded. Cell types representing              
<1% of total cell population in a tissue, and batches containing <5% of the total number of                 
cells in a tissue were excluded from further analyses. This resulted in an object of 4,168                
genes and 60,828 cells (40,058 from ​10X​ and 20,770 from ​Smart-Seq2​).  
 

Batch and cell type entropy 
The output of each tool is transformed into a K Nearest Neighbour graph with each node ​i                 
representing a cell ​(​BuildKNNGraph​, scran package). Each cell is connected to its ​k​=30             
nearest neighbors as defined by the similarity of expression profiles calculated using the             
Euclidean distance. Using the graph we calculate for each cell ​i ​the probability that a               
neighbor has cell type ​c​, ​P​ic​, as well as the probability that a neighbor comes from batch ​b​,                  
P​ib​. From these joint probabilities we can calculate cell type and batch entropies. We report               
the average value across all cells divided by the theoretical maximum to ensure a value in                
the interval [0, 1]. For the datasets considered in this study, the results are robust with                
respect to the choice of ​k​ (Fig S8). 

UMAP  

Uniform Manifold Approximation and Projection (UMAP) is computed through the          
scanpy.api.tl.umap function, which uses the implementation of ​umap-learn ​(38)​. For          
the batch removal methods implemented in R, the rds objects are first converted into h5ad               
objects using the ​sce2anndata ​from the sceasy package        
(​https://github.com/cellgeni/sceasy/​). 

Downsampling 
The filtered Tabula Muris dataset was sampled using uniform selection and no replacement             
to 1, 2, 5, 10, 20, and 50 percent of its cells. Resulting in objects of: 4168 genes and 608,                    
1217, 3041, 6083, 12166, and 30414 cells. The initial proportion of the batches (0.64, 0.36)               
was maintained through the different subsets.  
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Artificial batches 
We work with a reduced version of the Tabula Muris atlas object. We first removed all the                 
Smart-seq2 cells and then retained only the 10 largest cell types. From this 1,001 cells are                
randomly sampled to serve as input to the artificial batch generation. All 4,168 initial genes               
are considered. We base our simulation of batch effects on a normal distribution. For each               
batch to be simulated, we define: i) a fraction ​f ​of cells sampled with uniform probability from                 
the sequence [0.05, 0.1, 0.15, ... 1.0]; ii) a value ​d representing the dispersion of the effect to                  
be simulated sampled with uniform probability from the sequence [0.5, 1.0, 1.5, … ​n​], where               
n is the number of batches to simulate. For each of the 10 cell types in the input data we add                     
count values by drawing values from a normal distribution with a standard deviation ​d​. The               
artificial batch effect is only applied to those genes expressed in >​f ​of the cells. If a gene is                   
assigned a negative value, then it is replaced by 0. The result is a simulated data set of                  
1,001 cells and 4168 genes which is appended to the input data set. We followed this                
approach to simulate data sets with 2, 3, 5, 10, 20 and 50 equally sized batches. 
 

Clustering analysis 
 
The merged samples were clustered using SC​3 ​(35) ​from the homonim Bioconductor            
package ​, as well as the Louvain and Leiden algorithms implemented in Seurat ​(23)​. SC3              
requires a count matrix as input, whereas Seurat can operate on a low dimensional              
representation. For SC3 we set ​k to the number of cell populations of each dataset. If the                 
dataset had >5,000 cells we enable ​sc3_run_svm to speed up the processing. For the              
other methods we used the Seurat function ​FindClusters​, specifying Louvain original           
algorithm and Leiden algorithm, with other parameters set to their default values. 

Marker Gene Analysis 
 
To obtain marker genes we use the ​FindMarkers function from the Seurat package which              
restricts the comparison to methods that output a normalised count matrix. For a gene to be                
considered as a marker, we require that the absolute value of the log fold-change >2, and                
that the gene is expressed in at least half of the cells in each population. We use the default                   
Wilcoxon Rank Sum test to find genes that are significantly different (adjusted p-value<0.05)             
between the merged dataset, and in each of the individual batches.  
 
To compare the overlap of the sets of marker genes identified across batches and the               
merged data we used the multiple site ​generalized Jaccard index ​(36)​. We restricted the              
comparison to the cell populations that are common to all individual batches. We also              
investigate the proportion of cell populations of the dataset for which marker genes can be               
found.  

BatchBench pipeline 
As an input, BatchBench (​https://github.com/cellgeni/batchbench ​) requires equivalent       
SingleCellExperiment (for the R based methods) and ​AnnData objects (for the python            
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based methods). These objects must contain: log-normalized counts, and the batch and cell             
type annotation of their cells as ​Batch and ​cell_type1 respectively, in the object             
metadata. The workflow performs an initial QC step where cells, genes, batches or cell types               
can be filtered according to user-defined parameters. Cells not assigned to any batch or cell               
type are excluded in this step also. Each dataset is then sent in parallel as input to each of                   
the batch effect correction tools, after which rds and h5ad objects containing the output are               
saved and made available for the user. Each of the batch corrected outputs serves as input                
for a series of downstream analyses: (i) UMAP coordinates are computed and saved as a               
csv file for visualization of the different batch corrections, (ii) Entropy computation and saved              
as csv file, (iii) Clustering analysis, (iv) Marker gene analysis and any module optionally              
added by the user.  
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Supplementary Materials 
 

 

Figure S1 ​. Batch and cell type entropies for eight methods and three datasets as a function                
of the number of cell types. The inset text for each panel shows the Spearman’s rank                
correlation coefficient between the number of cell types and batch (ρ​b​) ​, or cell type (ρ​ct​)                
entropy values. 
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Figure S2 ​. Memory requirements and runtimes for all datasets per method. 
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Figure S3 ​. Adjusted Rand Index for the Leiden clustering algorithm as a function of the               
number of cell types. 
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Figure S4 ​. Adjusted Rand Index for the Louvain clustering algorithm as a function of the               
number of cell types. 
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Figure S5 ​. Adjusted Rand Index for the SC3 clustering algorithm as a function of the               
number of cell types. 
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Fig S6 ​. Clustering similarity of batch corrected output to cell labels as evaluated by Variation               
of Information distance. 
 

 
Figure S7. ​Jaccard similarity index computed between Pancreas and CellMarker database           
markers. 
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Figure S8. ​Batch and cell type entropy for the pancreas dataset using different values of k                
for the Pancreas dataset with cross-batch common genes. 
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N Data 
set Organ Entropy 

type 
Log- 

counts 
mnn- 

Correct Limma Com- 
Bat Seurat Scano- 

rama 
fast- 
MNN 

Har- 
mony 

1 MCA Bone 
Marrow Batch 0.172 0.27 0.517 0.576 0.87 0.667 0.601 0.793 

2 MCA Bone 
Marrow Cell type 0.262 0.265 0.308 0.312 0.47 0.284 0.272 0.33 

3 MCA Brain Batch 0.011 0.257 0.038 0.08 0.757 0.393 0.316 0.339 

4 MCA Brain Cell type 0.046 0.061 0.055 0.049 0.269 0.076 0.076 0.075 

5 MCA Liver Batch 0.02 0.125 0.039 0.076 0.544 0.19 0.126 0.161 

6 MCA Liver Cell type 0.186 0.187 0.19 0.199 0.307 0.188 0.241 0.224 

7 MCA Lung Batch 0.427 0.598 0.748 0.771 0.797 0.788 0.827 0.892 

8 MCA Lung Cell type 0.095 0.097 0.088 0.089 0.073 0.078 0.085 0.104 

9 MCA M. Gl. 
Involution Batch 0.752 0.846 0.759 0.794 0.917 0.794 0.819 0.809 

10 MCA M. Gl. 
Involution Cell type 0.089 0.087 0.09 0.09 0.109 0.083 0.087 0.101 

11 MCA M. Gl. 
Virgin Batch 0.437 0.587 0.774 0.787 0.825 0.71 0.83 0.877 

12 MCA M. Gl. 
Virgin Cell type 0.202 0.218 0.194 0.198 0.211 0.18 0.185 0.228 

13 MCA Mesench. 
SC Batch 0 0.004 0.101 0.098 0.574 0.415 0.282 0.541 

14 MCA Mesench. 
SC Cell type 0.211 0.215 0.231 0.24 0.68 0.371 0.285 0.384 

15 MCA Neonatal 
Calvaria Batch 0.146 0.3 0.482 0.566 0.695 0.634 0.633 0.911 

16 MCA Neonatal 
Calvaria Cell type 0.225 0.224 0.227 0.227 0.278 0.217 0.21 0.228 

17 MCA Neonatal 
Muscle Batch 0.08 0.317 0.235 0.301 0.711 0.723 0.388 0.57 

18 MCA Neonatal 
Muscle Cell type 0.152 0.184 0.155 0.165 0.211 0.18 0.172 0.221 

19 MCA Neonatal 
Rib Batch 0.381 0.484 0.534 0.542 0.773 0.717 0.64 0.809 

20 MCA Neonatal 
Rib Cell type 0.187 0.21 0.211 0.214 0.322 0.197 0.207 0.31 

21 MCA Ovary Batch 0.052 0.193 0.595 0.479 0.727 0.639 0.591 0.816 

22 MCA Ovary Cell type 0.247 0.247 0.25 0.261 0.358 0.249 0.217 0.296 

23 MCA Placenta Batch 0.338 0.48 0.332 0.428 0.69 0.584 0.655 0.715 
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24 MCA Placenta Cell type 0.089 0.097 0.093 0.098 0.125 0.097 0.088 0.122 

25 MCA Small 
Intestine Batch 0.366 0.402 0.373 0.421 0.83 0.498 0.534 0.679 

26 MCA Small 
Intestine Cell type 0.128 0.14 0.132 0.147 0.277 0.141 0.151 0.217 

27 MCA Testis Batch 0.035 0.084 0.097 0.101 0.716 0.524 0.215 0.656 

28 MCA Testis Cell type 0.345 0.352 0.353 0.352 0.443 0.398 0.351 0.435 

29 MCA Uterus Batch 0.04 0.277 0.345 0.343 0.715 0.371 0.461 0.563 

30 MCA Uterus Cell type 0.171 0.2 0.242 0.23 0.351 0.214 0.225 0.288 

31 TM Bladder Batch 0.022 0.068 0.012 0.183 0.817 0.313 0.278 0.018 

32 TM Bladder Cell type 0.126 0.119 0.119 0.125 0.129 0.13 0.119 0.123 

33 TM Heart Batch 0.021 0.189 0.082 0.321 0.737 0.538 0.355 0.414 

34 TM Heart Cell type 0.035 0.053 0.049 0.058 0.062 0.05 0.055 0.083 

35 TM Kidney Batch 0.077 0.4 0.269 0.298 0.548 0.597 0.373 0.349 

36 TM Kidney Cell type 0.082 0.085 0.083 0.07 0.084 0.091 0.085 0.086 

37 TM Liver Batch 0.011 0.11 0.065 0.081 0.744 0.316 0.309 0.279 

38 TM Liver Cell type 0.081 0.071 0.073 0.073 0.157 0.097 0.088 0.145 

39 TM Lung Batch 0.008 0.165 0.06 0.171 0.745 0.576 0.406 0.133 

40 TM Lung Cell type 0.045 0.041 0.045 0.041 0.034 0.039 0.036 0.063 

41 TM Mammary Batch 0.009 0.142 0.074 0.049 0.619 0.356 0.293 0.017 

42 TM Mammary Cell type 0.043 0.038 0.043 0.043 0.146 0.07 0.055 0.101 

43 TM Marrow Batch 0.004 0.151 0.059 0.153 0.779 0.334 0.414 0.414 

44 TM Marrow Cell type 0.051 0.068 0.055 0.064 0.125 0.077 0.103 0.15 

45 TM Muscle Batch 0.009 0.29 0.131 0.219 0.767 0.568 0.389 0.044 

46 TM Muscle Cell type 0.068 0.076 0.078 0.071 0.105 0.09 0.083 0.099 

47 TM Thymus Batch 0.008 0.175 0.52 0.539 0.748 0.71 0.635 0.023 

48 TM Thymus Cell type 0.093 0.083 0.1 0.089 0.081 0.109 0.08 0.085 

49 TM Tongue Batch 0.005 0.06 0.294 0.403 0.848 0.261 0.223 0.009 

50 TM Tongue Cell type 0.164 0.167 0.164 0.164 0.153 0.165 0.154 0.176 

51 TM Trachea Batch 0.009 0.153 0.104 0.2 0.661 0.463 0.233 0.119 

52 TM Trachea Cell type 0.034 0.037 0.035 0.035 0.042 0.041 0.037 0.049 

53 Panc- 
reas 

Pancreas
_1 Batch 0.026 0.282 0.241 0.237 0.819 0.406 0.413 0.759 
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54 Panc- 
reas 

Pancreas
_1 Cell type 0.039 0.038 0.039 0.039 0.05 0.04 0.037 0.065 

55 Panc- 
reas 

Pancreas
_2 Batch 0.008 0.133 0.143 0.189 0.829 0.257 0.321 0.733 

56 Panc- 
reas 

Pancreas
_2 Cell type 0.045 0.039 0.044 0.046 0.039 0.039 0.039 0.077 

57 Panc- 
reas 

sub_Panc
reas_1 Batch 0.038 0.385 0.373 0.298 0.833 0.458 0.478 0.749 

58 Panc- 
reas 

sub_Panc
reas_1 Cell type 0.041 0.039 0.045 0.049 0.086 0.039 0.047 0.083 

59 Panc- 
reas 

sub_Panc
reas_2 Batch 0.114 0.584 0.511 0.486 0.755 0.629 0.679 0.756 

60 Panc- 
reas 

sub_Panc
reas_2 Cell type 0.09 0.057 0.083 0.075 0.054 0.069 0.046 0.076 

Table S1. ​Entropy values per dataset (MCA: Mouse Cell Atlas, TM: Tabula Muris). 

 

N 
 

Data 
set 

Organ 

Pre QC Post QC 

N cell N gene N cell 
type 

N 
batch N cell N gene 

N 
cell 
type 

N 
batch 

1 MCA Bone Marrow 26993 12855 19 4 25567 11410 15 3 

2 MCA Brain 4038 16906 15 2 3877 8519 7 2 

3 MCA Liver 4685 15491 20 2 4543 7936 14 2 

4 MCA Lung 6940 17097 32 3 6474 10117 20 3 

5 MCA M. Gl. Involution 4821 15060 24 2 4724 7519 20 2 

6 MCA M. Gl. Virgin 5380 13618 18 4 5371 7996 17 4 

7 MCA Mesench. SC 14684 15941 22 2 14062 10922 13 2 

8 MCA Neonatal 
Calvaria 7964 17779 14 2 7685 8235 8 2 

9 MCA Neonatal Muscle 4873 16685 27 2 4596 7786 23 2 

10 MCA Neonatal Rib 6262 16346 25 3 6013 8496 19 3 

11 MCA Ovary 4363 16643 14 2 4327 9012 13 2 

12 MCA Placenta 4346 17274 28 2 4017 7804 20 2 

13 MCA Small Intestine 6684 15127 28 3 6153 9569 19 3 

14 MCA Testis 14005 22762 19 2 13787 12969 17 2 

15 MCA Uterus 3739 16705 19 2 3635 8960 15 2 

16 TM Bladder 3879 11433 5 2 3879 11433 5 2 
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17 TM Heart 5192 8065 10 2 4773 8065 7 2 

18 TM Kidney 2982 5878 8 2 2670 5878 8 2 

19 TM Liver 1734 7658 6 2 1680 7658 6 2 

20 TM Lung 6486 11391 18 2 6163 11391 10 2 

21 TM Mammary 6467 11376 8 2 6345 11376 8 2 

22 TM Marrow 8296 10750 10 2 8089 10750 9 2 

23 TM Muscle 5607 10425 9 2 5533 10425 9 2 

24 TM Thymus 2761 8135 3 2 2726 8135 3 2 

25 TM Tongue 8952 11290 3 2 8893 11290 2 2 

26 TM Trachea 9981 11547 7 2 9350 11547 5 2 

27 TM_Atlas TM_Atlas_QC_1 4168  62337 51 2 4168 60828 51 2 

28 Pancreas Pancreas_1 9687 1898 18 3 9382 1898 8 3 

29 Pancreas Pancreas_2 9687  7098 18 3 9382 7098 8 3 

30 Pancreas sub_Pancreas_1 4843 1898 5 3 4843 1898 5 3 

31 Pancreas sub_Pancreas_2 3000 1898 17 3 2918 1898 9 3 

Table S2: ​Summary statistics for the datasets considered in this study (MCA: Mouse Cell 
Atlas, TM: Tabula Muris). 
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