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Abstract: 

Bone mass loss contributes to the risk of bone fracture in the elderly. Many factors 

including age, obesity, estrogen and diet, are associated with bone mass loss. Mice studies 

suggest that the intestinal microbiome might influence the bone mass by regulating the 

immune system, however there has been little evidence from human studies.  

We have recruited 361 Chinese elderly women to collect data for a metagenomic-wide 

association study (MWAS) to investigate the influence of the gut microbiome on bone 

health. Gut microbiome data were produced using BGISEQ500 sequencing, BMD was 

calculated using Hologic dual energy X-ray machine, BMI (Body Mass Index) and age 

were also provided. This therefore data allows exploration of gut microbiome diversity and 

links to bone mass loss, as well as microbial species and modules as markers for bone 

mineral density. Making these data potentially useful in studying the role the gut 

microbiota might play in bone mass loss and offering exploration into the bone mass loss 

process.
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Context： 

Bone mass loss is a process where calcium and phosphate from the bones is reabsorbed, 

and instead of retaining these minerals it makes our bones weaker [1]. It is a severe and 

common disease in elderly population, as well as being the most common reason for 

fracture, giving rise to acute pain and even death [2]. Recently a new concept, 

“osteoimmunology”, has revealed tight interaction between the immune system and bone 

metabolism [3]. Interestingly, it has been widely recognized that the gut microbiota could 

influence host health by interacting with the host immune system [4]. But most related 

research [4, 5] has been carried out using mice and 16S sequencing which is of poor 

taxonomic resolution, low sensitivity and contains no functional related information [6]. It 

is crucial to explore the relationship between the gut with bone loss by shotgun sequencing. 

Here, we carried out the MWAS on fecal samples from 361 Chinese elderly women living 

in an urban setting.  

Methods: 

Sampling strategy  

Fecal samples were collected at the People’s Hospital of Shenzhen and immediately 

frozen in an 80 °C freezer for storage. The samples were then transported to BGI-

Shenzhen and sequencing using the BGISEQ-500 platform (BGISEQ-500, 

RRID:SCR_017979), following previously published protocols [10] [11]. Quality control 

was performed, and adaptor and host contamination were filtered (sTab1), the high-

quality non-human reads were defined as clean reads following previous methods [12] 
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[13]. The BMD was calculated using a Hologic dual energy X-ray machine at Shenzhen 

people`s Hospital (sTab1). We used the T-score of BMD in the lumbar spine to represent 

the bone mass [14]. A sample`s T-score is a relative measure of the sample`s BMD 

compared to the reference population of young, healthy individuals with the same gender.  

Taxonomic and functional abundance calculation  

The cleaned data were used for the annotation and profile of taxon using MetaPhlan2 

(MetaPhlAn, RRID:SCR_004915)[15]. We removed species presented in less than 10% 

of the samples for later analysis. For functional abundance calculation, Firstly, the 

putative amino acid sequences were translated from the gene catalogues and aligned 

against the proteins/domains in the KEGG databases (release 79.0, with animal and plant 

genes removed) using BLASTP (v2.2.26, default parameter except that -e 0.01 -b 100 -K 

1 -F T -m 8). Each protein was assigned to the KO group by the highest scoring annotated 

hit(s) containing at least one HSP scoring >60 bits. The relative abundance profile of 

KOs was determined by summing the relative abundance of genes from each KO [16] 

[17]. The KO abundance was as input to calculate the profile of gut metabolic modules 

(GMM) [18]. 

Two-stage least square 

Stage 1: In the first step we regress the taxonomic abundance or metabolic module 

abundance on the Age and BMI with linear regression and save the prediction value. The 

detail of the taxonomic abundance is in ‘Taxonomic abundance calculation’ part (sTab 3). 

The detail of the metabolic module abundance is in ‘Gut metabolic modules analysis’ part 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2020. ; https://doi.org/10.1101/679985doi: bioRxiv preprint 

https://doi.org/10.1101/679985
http://creativecommons.org/licenses/by-nc-nd/4.0/


(sTab 4). This step is used to adjust the effects of Age and BMI to the contribution of BMD 

by the taxonomic abundance or metabolic module abundance. 

Stage 2: Five-fold cross-validation is performed ten times on a random forest regression 

model (Y: the BMD T score; X: the prediction value from the stage 1). The error curves 

from ten trials of fivefold cross-validation are averaged. We chose the model which 

minimized the sum of the test error and its standard deviation in the averaged curve.  

Alpha-diversity and count 

The within-sample diversity is calculated by profile of samples with Shannon index, as 

described previously [6]. Genes were considered present with more than one read map to 

it.  

Data Validation and quality control: 

The metagenomic shotgun sequencing of 361 samples was performed obtaining an average 

of 7.7 gigabase (Gb) clean data per sample (sTab1c). To explore the utility of this data the 

life and clinical index (sTab1a-b) to the T-score in our cohort was assessed and significant 

factors such as age and body mass index (BMI) to the microbiome were excluded, and the 

alterations of the gut microbiome along with the T-score were evaluated. Finally, stable 

regression model was built at species and module level for the cohort. The T score of the 

BMD in the lumbar spine was used to represent the bone mass. 

 

Demonstration of Utility 1. A mild gut microbiome dysbiosis seen for bone mass loss. 

To explore alterations of the gut along with the change of the T-score, the change in 

different taxonomy levels can be analyzed. Diversity at each level increases with the T-

score probably caused by the increasing of pathogenic microcells in our gut. Gene (p = 
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4.53e-9, adjusted R2=0.0904, linear regression, sFig2b, sTab2), species (p = 1.17e-15, 

adjusted R2=0.162, linear regression, sFig2d, sTab2) and genus (p = 7.98e-14, adjusted 

R2=0.144, linear regression, Fig1b, sTab2) level are shown. In addition, the count data also 

shows an increase in the T-score at gene (p = 0.0114, adjusted R2=0.0152, liner regression, 

sFig2a, sTab2), species (p = 2.33e-5, adjusted R2=0.0465, liner regression, sFig2c, sTab2), 

and genus (p = 7.73e-10, adjusted R2=0.0992, liner regression, Fig1a, sTab2) level. Next, 

the top 20 abundant species are chosen (Fig1c, sTab3). The data demontrates that the 

B.stercoris, E.coli, B.uniformis, B.coprocola, B.fragilis , E.rectale and E.eligens 

significantly negatively associated with T score. While for the B.vulgatus, B.massiliensis, 

B. caccae and Megamonas unclassified display an obvious positive correlation with T score 

(Fig1c, sTab3). In addition, in the top 15 abundant genera, the Eubacterium, Escherichia, 

Subdoligranulum, Klebsiella, Clostridium and Blautia have significant negative correlation 

with the T-score (sFig3, sTab4). Among these genera Eubacterium, Escherichia are normal 

microorganism of the intestinal tract and can cause infection under opportunistic conditions. 

For positively correlated genera, the Prevotella, Parabacteroides, Megamonas and 

Akkermansia are included (sFig3, sTab4). For the top 10 enriched phyla, the Bacteroidetes, 

Verrucomicrobia, Fusobacteria, Euryarchaeota and Ascomycota are positive to BMD T-

score (sFig4, sTab5), while the Proteobaccteria, Actinobacteria, Synergistetes and 

Chlorobi are negative (sFig4, sTab5). 

 

Demonstration of Utility 2. Species linked to BMD 

To select the species which have strong connection with the T-score, we use the two-stage 

least square method [7] to regress the species to the T-score (details are showed in methods 
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part). The model shows a high R square (more than 0.99, sTab3a, Fig2a), and 18 species 

are selected. The importance of these species (Fig2b, sTab3a) are ranked in order. 

Spearman` rank correlation method is used to evaluate the relationship between the 

selected species and the clinical indexes (Fig2c). From these findings, it is easy to see that 

some T-score negatively correlated species like the Streptococcus parasanguinis, 

Clostridium perfringens, Haemophilus sputorum, Enterobacter aerogenes, Actinobacillus 

unclassified and Chlorobium phaeobacteroides are negatively connected with the 

triglyceride (TG) levels, but positively correlate with β⁃Crosslaps (CROSSL) and high-

density lipoprotein (HDL). As well as some T-score positively correlated species, for 

example the Roseburia intestinalis which is a butyrate-producing bacterium that could 

influence human` immune system [8], Enterobacter cloacae and Sutterella 

wadsworthensis. These species have positive correlation to TG, but negative to CROSSL 

and HDL. 

Demonstration of Utility 3. Modules suggesting for bone mass loss 

To find the higher correlation modules with the T-score, we also use the two-stage least 

square method mentioned as before. 13 modules with more than 0.99 R square (sTab4, 

Fig3a) are obtained by the model and plotted in rank by their importance (Fig3b, sTab4). 

In addition, for the correlation with clinical indexes, the negatively correlated modules like 

the lactate consumption, sucrose degradation, tryptophan degradation are positively 

associated with HDL and CROSSL, but negatively with TG. By comparison, the BMD 

positive modules, for example the pectin degradation, trehalose degradation, arginine 

degradation that can prevent bone mass loss and bone collagen breakdown in a rat model 

[9], mucin degradation and rhamnose degradation. These modules are positive to TG, but 
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negative to HDL and CROSSL. For further detail on these modules please see the 

supplementary figures (sFig5). 

 

Conclusions: 

We carried out the first study to explore the alteration of the gut microbiome along with 

bone mass loss in the 361 elderly Chinese urban women with MWAS. Firstly, taxonomy 

diversity is observed to increase at many levels which may be contributed by the growth 

of some opportunistic pathogens. In addition, some high correlated species and functional 

modules are also suggested which might offer us a new way for better diagnosis as well as 

mechanistic understandings of the bone mass loss. 

Our data suggests that the gut microbiome is closely related to the process of bone mass 

loss in an elderly population. Although the mechanism of how do the gut microbes affect 

and modulate bone metabolism is not fully understood, our research indicates that gut 

microbiota may be novel targets for the protection of bone mass loss and provide a new 

avenue for the future studies and treatment of this field.   

 

Re-use potential: 

This is the first dataset where 361 high-quality metagenomics datasets were collected from 

elderly Southern Chinese urban women. All the clinical index also provided in the 

supplementary table. From initial explorations of this data we can see a slightly correlation 

between the metagenomics data with bone loss, and have also selected some bone loss 

related biomarkers in species and modules level. For re-use potential, the clinical details 

collected here such as the relationships of tea-drinking with bone mass or metagenomics 
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make this a valuable dataset for further analysis. While we were unable to clearly determine 

any strong signals between the metagenomics and bone loss with our methods, using 

different statistical approaches others may find novel insight in this data. And with the still 

moderate sample size and detailed information on a number of clinical features, it may be 

a very useful dataset to combine and compare to other metagenomics datasets. 
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BMD: Bone Mineral Density;  

BMI: body mass index;  

Gb: gigabase;  

MWAS: metagenomic-wide association study;  

GMM: gut metabolic module; 

TG: triglyceride; 
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HDL：high-density lipoprotein； 

CROSSL：β⁃Crosslaps； 
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Illustrations:    

Figure 1. slightly increase gut microbial richness. 

Figure 2. Fecal microbial species markers for BMD. 

Figure 3. Fecal microbial modules markers for BMD. 
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Figure 1. slightly increase gut microbial richness. (a-b) Richness and alpha-diversity 

(Shannon index) at the genus level of the two cohorts (liner regression). (c). The top 15 

species. (The spearman`s correlation,’+’ for p < 0.05;’*’ for p < 0.01). 
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Figure 2. Fecal microbial species markers for BMD. (a) The R square during the Ten-

time cross-validation process (the blue lines show the ten different process, the red line 

for the average of the ten-time cross validation, and the pink line show the best 

variables). (b). The lncMSE of the 18 chosen species markers. (c). The correlation 

between the marker with the clinical index. (Spearman` correlation,’+’ for p < 0.05;’*’ 

for p < 0.01). 
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Figure 3. Fecal microbial modules markers for BMD. (a) The R square during the Ten-

time cross-validation process (the blue lines show the ten different process, the red line 

for the average of the ten-time cross validation, and the pink line show the best 

variables). (b). The lncMSE of the 13 chosen modules markers. (c). The correlation 
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between the marker with the clinical index. (Spearman` correlation,’+’ for p < 0.05;’*’ 

for p < 0.01). 
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