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ABSTRACT

Biological records are often the data of choice for training predictive species distribution models 

(SDMs), but spatial sampling bias is pervasive in biological records data at multiple spatial scales 

and is thought to impair the performance of SDMs.  We simulated presences and absences of 

virtual species as well as the process of recording these species to evaluate the effect on species 

distribution model prediction performance of 1) spatial bias in training data, 2) sample size (the 

average number of observations per species), and 3) the choice of species distribution modelling 

method.  Our approach is novel in quantifying and applying real-world spatial sampling biases to 

simulated data.  Spatial bias in training data decreased species distribution model prediction 

performance, but only when the bias was relatively strong. Sample size and the choice of modelling 

method were more important than spatial bias in determining the prediction performance of species

distribution models.

1 INTRODUCTION

Biological records data (“what, where, when” records of species identity, location, and date of 

observation) often contain large amounts of data about species occurrences over large spatial areas 

(Isaac & Pocock, 2015). Knowing the geographic areas occupied by species is important for 

practical and fundamental research in a variety of disciplines. Epidemiologists use maps of 

predicted wildlife distributions to identify areas at high risk for wildlife-human transmission (Deka 

& Morshed, 2018; Redding et al., 2019).  Land managers can use knowledge of species 
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distributions in spatial planning to minimize impacts on wildlife of new infrastructure (Dyer et al. 

2017; Newson et al., 2017).  Because complete population censuses are not available for most 

species, species distribution models (SDMs) are often used to predict distributions of species using 

relatively sparse observations of species. Species observation data used to train SDMs must 

represent the study area, but when studies focus on scales of thousands (or tens- or hundreds of 

thousands) of square kilometers, it is difficult and often expensive to collect adequate data across 

the entire study extent. Spatially random or stratified sampling of species across large spatial areas 

is possible, and such surveys exist for some taxa including butterflies and birds (Uzarski et al., 

2017), but such data are uncommon for most taxonomic groups (Isaac, van Strien, August, de 

Zeeuw, & Roy, 2014). More commonly, data are either spatially extensive but collected 

opportunistically (Amano, Lamming, & Sutherland, 2016), or are collected according to structured 

study designs but are more spatially limited. 

Collecting biological records data is relatively cheap compared to collecting data directly as part 

of a research project (or at least the costs of collecting biological records are borne in large part by 

individual observers rather than by data analysts) (Carvell et al., 2016). However, there is an 

associated challenge because the analyst lacks control over where, when, and how data were 

collected. Many biases have been documented in biological records data, including temporal, 

spatial, and taxonomic biases (Boakes et al., 2010). Spatial sampling bias, in which some areas are 

sampled preferentially, is particularly pervasive at all scales and across taxonomic groups (Amano &

Sutherland, 2013; Oliveira et al., 2016). Despite these biases, biological records are often used in 

species distribution modelling, either because no other data exists at the spatial scale of interest, or 
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because the modeler expects biological records to be more informative than data from more 

explicitly designed but smaller sampling schemes. Given the ubiquitous presence of spatial sampling

bias in biological records data, it is important to know whether spatial bias in training data impedes 

the ability of SDMs to correctly model species distributions.  Data collection efforts  often face a 

practical trade-off between maximizing the overall quantity and the spatial evenness of new records.

It would thus be useful to know whether the value of biological records for SDMs can best be 

improved by increasing the spatial evenness of recording (perhaps at the cost of the overall amount 

of new data that is added), or by increasing the overall amount of recording (even if new records are

spatially biased).

Spatial sampling bias in biological records has similarities with sampling biases that have been 

investigated in other settings. The field of econometrics uses the term “sample selection bias” to 

refer to non-random sampling and has developed theory about when sampling bias is likely to bias 

analyses (Wooldridge, 2009). A key consideration in econometrics’ evaluations of sample selection 

bias is determining whether the inclusion of data in the sample depends on predictor variables that 

are included in the model (“exogenous” sample selection), or depends on the value of the response 

variable (“endogenous” sample selection), or both (Wooldridge, 2009). In ecology, Nakagawa 

(2015) similarly provides guidelines for assessing missing data in terms of whether data is missing 

randomly or systematically with respect to other variables (see also Gelman & Hill, 2006).  In a 

machine learning context, Fan, Davidson, Zadrozny, & Yu (2005) investigated the effect on 

predictive models of sample selection bias in which sampling is associated with predictor variables -

“exogenous sample selection” in the terms of Wooldridge (2009) and “missing at random” in the 
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terms of Nakagawa (2015) - and determined that most predictive models could be sensitive or 

insensitive to sampling bias depending on particular details of the dataset.

Biological records may have been collected with spatial sampling biases that are exogenous, 

endogenous, or both, and datasets may contain a mix of records collected with different types of 

bias. For example, when sampling intensity depends on proximity to roads (Oliveira et al., 2016), 

the sampling bias is exogenous because records arise from biased sampling that depends on an 

aspect of environmental space that can be included in models as a predictor variable. However, 

when a birder, for example, submits a record of an unusual bird from a location where they would 

not otherwise have submitted records, the bias is endogenous because the sampling location 

depends on the value of the response variable (species presence). In reality, the observer might have

seen the unusual bird while driving along a road, so the sampling location depends on both the 

response variable (the presence of the bird) and predictor variables (proximity to the road). Most 

sampling biases occur on a continuum and are not unequivocally categorizable using any existing 

scheme (Nakagawa, 2015), making it difficult to describe exactly the biases in data or predict their 

effect on model performance.

Studies testing the impact of spatially biased training data on predictive SDMs have shown mixed 

results. Multiple studies using a pseudo-absence (or “presence/background”) approach with 

presence-only biological records have found that spatial bias in the data used to train SDMs 

decreases model prediction performance (Phillips et al., 2009; Barbet-Massin, Jiguet, Albert, & 

Thuiller, 2012; Stolar & Nielsen, 2015). However, it is not clear whether the effect of the spatial 

bias in those cases is due to the bias in the original data or the relative difference in bias between the
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original data and pseudo-absences. In fact, Phillips et al. (2009) found that spatial bias in the 

presence records strongly reduced model performance when using a pseudo-absence approach but 

not when using a presence-absence approach. Some SDM methods tested by Barbet-Massin et al. 

(2012) appeared relatively unaffected by spatial sampling bias, while generalized linear models 

(GLMs) and generalized additive models (GAMs) appeared to be more strongly affected. 

Classification trees were sensitive to spatially biased training data in a study of lichen distributions 

(Edwards, Cutler, Zimmerman, Geiser, & Moisen, 2006). Thibaud, Petitpierre, Broennimann, 

Davison, & Guisan (2014) found that the effect of spatial sampling bias on SDM prediction 

performance depended on the SDM modelling method, and that the effect of spatial sampling bias 

was smaller than the effect of other factors, including sample size and choice of modelling method. 

Warton, Renner, & Ramp (2013) provided a method for correcting for spatially biased data when 

building SDMs, but found that the resulting improvement in model predictive performance was 

small. Because there is no clear guidance about when spatial bias in training data will or will not 

affect model predictions, tests of the observed effect of spatial biases common in biological records 

are important for determining whether those biases are likely to be problematic in practice.

The effect of spatial sampling bias on model predictions can be studied using either real or 

simulated data (Zurell et al., 2010). Using real data has the advantage that the biases in the data are,

well, real. The spatial pattern, intensity, and correlation of sampling bias with environmental space 

are exactly of the type that analyses of real data must cope with. However, using real data has two 

disadvantages. First, the truth about the outcome being modeled (species presence or absence) is 

not completely known in the real world, making it impossible to evaluate how well models represent
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the truth. Second, biases in real data are not limited to the biases under study – a study investigating

the effect of exogenous spatial sampling bias will be unable to exclude from a real dataset records 

generated by endogenously biased sampling that depends on the values of the outcome variable. 

Simulation studies avoid both these problems. Because the investigator specifies the underlying 

pattern that is subsequently modeled, the truth is known exactly (even when realized instances of 

the simulation are generated with some stochasticity). The investigator also has direct control over 

which biases are introduced into a simulated dataset, and therefore can be more confident that any 

observed effects on predictions are due to the biases under investigation.

Spatial sampling bias can be introduced into either simulated or real data. This can be done using 

a parametric function that describes the bias (Isaac et al., 2014; Stolar & Nielsen, 2015; Thibaud et 

al., 2014) or by following a simplified ad-hoc rule (e.g. splitting the study region into distinct areas 

that are sampled with different intensities) (Phillips et al., 2009). However, these approaches may 

not adequately test the effect of spatial bias if the biases found in real biological records do not 

follow parametric functions or are more severe than artificial parametric or ad-hoc biases. We used 

observed sampling patterns from Irish biological records to sample simulated species distributions 

using realistic spatially biased sampling. 

We used a virtual ecologist approach (Zurell et al., 2010) applied at the scale of Ireland to 

investigate the effect on the predictive performance of SDMs of 1) spatial sampling bias, 2) sample 

size (the average number of records per species), and 3) choice of SDM method. Our method for 

introducing sampling bias preserves real-world spatial patterns of sampling bias at multiple scales - 

not only are some individual locations more heavily sampled than others, but heavily sampled 
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locations are arranged in the landscape non-randomly in relation to each other and in relation to the 

landscape itself (i.e. some habitats are better sampled than others).  We quantified the spatial 

sampling biases used in our study to enable comparison with biases in other datasets. Our approach 

is novel in applying real-world spatial sampling biases to simulated data.

2 METHODS

We assessed the ability of species distribution models to predict “virtual species” distributions 

(Leroy, Meynard, Bellard, & Courchamp, 2016; Zurell et al., 2010) when the models were trained 

with datasets with a range of spatial sampling biases and sample sizes. Virtual species distributions 

were produced by defining the responses of virtual species to environmental predictor variables 

(Table 1).  Occurrence maps for virtual species were based on the actual values of the 

environmental predictor variables in 840 10 km x 10 km grid squares in Ireland (total area of study 

extent = 84,000 km2). We generated “virtual biological records” by sampling the community of 

virtual species in each grid square using sampling patterns taken from Irish biological records data.  

2.1 Environmental predictor variables

We chose environmental predictor variables with a range of spatial patterns and scales of spatial 

auto-correlation (Table 1, Fig. S1).  Because our species were simulated, predictor variables did not 

need to have biological relevance - by definition, the variables used to create the range of each 

virtual species were relevant to that species.  The variety of spatial patterns in our predictor 

variables ensured that our virtual species distributions were determined by variables with a variety 

of spatial patterns, as is the case for real biological species.  We used climate variables (which show 

8

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.24.113415doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.24.113415
http://creativecommons.org/licenses/by-nd/4.0/


relatively strong spatial clustering, Table 1) from the E-OBS European Climate Assessment and 

Dataset EU project (Haylock et al., 2008; van den Besselaar, Haylock, van der Schrier, & Klein 

Tank, 2011; http://www.ecad.eu/download/ensembles/downloadchunks.php).  We calculated the 

proportion of each grid square covered by different land cover variables (which show less spatial 

clustering than climate variables, Table 1) from the CORINE Land Cover database (CORINE, 

2012). We calculated the average elevation within each grid square by interpolation using ordinary 

kriging from the ETOPO1 Global Relief Model (Amante & Eakins, 2009; 

https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/ice_surface/grid_registered/netcdf/  

[accessed 8 May 2019]).

Spatial data were prepared using the ‘sf’, ‘sp’, ‘raster’, ‘fasterize’, ‘rgdal’, ‘gstat’, and ‘tidyverse’ 

packages in R version 3.6 (Bivand, Keitt, & Rowlingson, 2018; Gräler, Pebesma, & Heuvelink, 

2016; Hijmans 2018; Pebesma, 2018; R Core Team, 2018; Ross, 2018; Wickham, 2017).

2.2 Species occurrence data

We downloaded observations of species across the island of Ireland for the years 1970 to 2014 

from the British Bryological Society for bryophytes (accessed through NBN Atlas website, 

https://nbnatlas.org [downloaded 24 August 2017]) and from the Irish National Biodiversity Data 

Centre (NBDC) for moths, dragonflies, butterflies, and birds (http://www.biodiversityireland.ie/ 

[downloaded 6 October 2017]). The data contained presence-only records of species, with the date 

and location of the observation, an anonymized observer identifier, and a taxonomic group label that

indicated species commonly sampled together. The taxonomic group label often corresponded to 

order (e.g. odonata), but sometimes represented a class (e.g. Aves) or other categorization that 
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better grouped species according to sampling techniques. Locations of records were provided as 

either 1 km2 or 100 km2 (10 km x 10 km) grid squares, but we used 10 km x 10 km grid squares in 

all analyses in order to retain the majority of the data. Within each taxonomic group, we grouped 

records into sampling events, where a sampling event was defined as all records with an identical 

combination of recording date, location, and observer.

2.3 Spatial sampling patterns in Irish species occurrence data

For each taxonomic group, we quantified sampling effort in each grid square as the proportion of 

all records coming from the grid square.  We used grid squares along the coast even though these 

cells contain less terrestrial habitat than inland grid squares.  We measured the spatial evenness of 

sampling effort among locations by using Simpson evenness (Magurran & McGill, 2011) to 

compare the number of observation records in grid squares.  

2.4 Data simulation

2.4.1 Simulating species distributions

We simulated and sampled virtual species distributions using the ‘virtualspecies’ package (Leroy 

et al., 2016) in R. The probability of occurrence of each virtual species i in each grid square j was a 

logistic function of two variables and their quadratic terms:

l o g i t ( pi j )=α i+∑
k=1

2

(β1k iV k j+ β2 k iV k j
2 )

where pij is the probability that virtual species i occurs in grid square j, Vkj indicates the value of the 

kth predictor variable in grid cell j, and the α and β terms are the species-specific coefficients 
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defining the response of the virtual species to the environment.  The predictor variables were 

derived by randomly selecting, for each virtual species, seven of the ten environmental variables to 

use as drivers of occurrence (only seven of the ten variables were used for each species so that not 

all species responded to all the same environmental variables).  Selected environmental variables 

were centered, scaled, and summarized using principal components analysis with the ‘ade4’ R 

package (Dray & Dufour, 2007).  The first two principal components were used to determine the 

distribution of the species, rather than using the seven original environmental variables, to avoid 

producing virtual species with optimal niches in conditions that do not exist (e.g. a virtual species 

with an occurrence optimum at warm temperature and high elevation) (Leroy et al., 2016).  

Coefficients specifying virtual species’ responses were chosen such that the theoretical prevalence of

each virtual species (the sum of the probabilities of presence in each grid square divided by the 

number of grid squares) was greater than 0.01, equivalent to the virtual species occurring in at least 

eight of the 840 grid squares in our study extent. 

2.4.2 Realized species communities

A single realized distribution of each virtual species i was created by randomly generating a 

“presence” (1) or “absence” (0) for each grid square j by drawing a value from a binomial 

distribution with probability pij.  We simulated two different types of virtual species communities, a 

small community containing 34 virtual species (the number of recorded odonata species in Ireland) 

and a large community containing 1268 virtual species (the number of recorded bryophyte species 

in Ireland).  Results were qualitatively similar for the large- and small-community simulations after 

fitting two of the SDM methods (GLMs and inverse distance-weighted interpolation). We therefore 
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tested the third SDM method, boosted regression trees, only on the large-community simulation.  

Below we refer to the large community simulation except where explicitly stated. For small 

community simulation results see supplementary materials (S2).

2.4.3 Simulating sampling with spatial bias

Virtual biological records data were generated by sampling the realized species communities in 

“sampling events” at different locations to produce spatially explicit species checklists (Fig. S3).  

Spatial sampling locations were chosen based on spatial sampling patterns from three Irish 

biological records datasets with different spatial sampling biases: birds (low spatial sampling bias), 

butterflies (median spatial sampling bias), and moths (severe spatial sampling bias).  This gave four 

spatial sampling “templates”, including the case of no spatial sampling bias (Fig. 1).  

To make sampling patterns comparable between datasets with different sample sizes, we 

calculated sampling weights for each grid square in each empirical dataset by counting the number 

of records in each grid square and dividing by the maximum number of records in any grid square. 

This produced a relative sampling weight for each grid square, where the most heavily sampled cell 

had a weight of one and other cells had weights below one (Fig. 1).

We tested six different sample sizes, defined as the mean number of records per species (number 

of records per species = 2, 5, 10, 50, 100, and 200).    

To generate virtual biological records from the virtual species communities, we randomly selected

a grid square, using selection probabilities from one of the four spatial-bias templates. Within each 

grid square that was selected for sampling, we 1) generated a list of virtual species that were present
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in the grid square; 2) defined the probability of observing each of the present species based on the 

species’ prevalence in the entire study extent (so that common species had a higher probability of 

being recorded when present), and 3) drew observations with replacement from the list of present 

species.  The number of records to generate during a sampling event (i.e. the checklist length) was 

drawn randomly with replacement from the sampling event checklist lengths from real bryophyte 

data (for the large community simulation) or dragonfly data (for the small community simulation).  

We continued this sampling process until we had accumulated the desired number of records.

2.5 Species distribution modeling

We tested three different SDM modeling techniques: generalized linear models (GLMs) (Hosmer 

& Lemeshow, 2000), boosted regression trees (Elith, Leathwick, & Hastie, 2008; Friedman, 2001),

and inverse distance-weighted interpolation (Cressie, 1991).  These represent distinct types of 

methods used for SDMs, including linear (GLM) and machine learning (boosted regression tree) 

methods, and a spatial interpolation method (inverse distance-weighted interpolation) that does not 

include information from environmental covariates.  For all methods, the modeled quantity was the 

probability of the focal virtual species being recorded on a checklist.  We modeled each species 

individually as a function of five environmental predictor variables, chosen from the ten possible 

predictor variables listed in Table 1. Using only five of the ten possible predictor variables simulated

a real-world situation in which the factors that influence species distributions are not entirely known.

We treated the list of records from each sampling event as a complete record of that sampling 

event, and treated the absence of species from a sampling event checklist as non-detection data for 

those species (Fig. S3, Kéry et al., 2010).  Thus, we explicitly used a detection/non-detection rather 
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than a presence-only modeling framework.  Many species distribution modelling techniques 

commonly used with presence-only data require the generation of artificial “pseudo-absences” in 

order to fit models (Barbet-Massin et al. 2012).  However, the spatial bias of pseudo-absences 

should match the spatial bias of presence data, which can be difficult to achieve, especially when 

spatial biases are difficult to model.  We avoided the use of pseudo-absences by analyzing checklists

of species, on which every species is either detected or not detected (Johnston et al. 2020, Kéry et 

al. 2010).  Using non-detection data inferred from records of other similar species provides clarity 

about what is being modeled (i.e. the probability of a species being recorded on a checklist, not the 

probability of occurrence) and ensures that the sampling biases are the same for detections and non-

detections, which may reduce the effect of sampling bias (Barbet-Massin et al. 2012, Johnston et al.

2020, Phillips et al. 2009).  

We modeled 110 randomly selected virtual species from the 1268 virtual species in the large 

community simulation. The number of virtual species modeled was a compromise between high 

replication and computation limitations, but testing 110 virtual species should provide enough 

replication for robust conclusions.  We fitted each type of SDM once to each combination of virtual 

species, sample size, and spatial sampling bias.  Thus, the sample size for our study – the number of

SDM prediction performance values that we used to assess the effects of spatial sampling bias, 

sample size, and SDM method - was 110 prediction performance values for each combination of 

SDM method, sample size, and spatial sampling bias (one prediction performance value for each of 

the 110 selected virtual species).  Replication in our study came not from repeatedly fitting models 

to different randomly generated sets of presences and absences of the same virtual species, but 
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rather from fitting each model once to data for many different virtual species, all generated using 

parameters randomly drawn from the same distributions.  However, the same 110 virtual species 

were used for each combination of SDM method, spatial sampling bias, and sample size, ensuring 

that all comparisons were based on the same underlying task (i.e. modelling the same true species 

distributions).  

Models were trained and evaluated using five-fold spatial block cross-validation (Roberts et al., 

2017) that partitioned the study extent into spatial blocks of 100 km x 100 km and allocated each 

block to one of five cross-validation partitions.  Models were trained five times, each time leaving 

out data from one of the five partitions.  We only attempted to fit models if there were more than 

five positive detections in the training data (i.e. within the four training folds during cross-

validation), because we did not expect any of the SDM methods we tested to be able to produce 

meaningful models when there were fewer than six detections of the focal species.  Prediction 

performance of models was evaluated using the true simulated species presence or absence in each 

grid cell not included in the spatial extent of the training partitions (Fig. 2). Thus, evaluation data 

was spatially even and the number of evaluation points stayed constant even as the sample size and 

spatial bias of training data changed (Fig. 2).  Prediction performance was evaluated using the area 

under the receiver operating characteristic curve (AUC) (Hosmer & Lemeshow, 2000) to measure 

models’ ability to accurately distinguish presences and absences, and root mean squared error 

(RMSE) to compare predicted probabilities of species being recorded during a sampling event to 

the true probability of occurrence defined by the simulation.
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For GLMs, we used logistic regression (‘glm’ function) with a binomial error distribution and logit

link. Quadratic terms were fitted, but we did not fit interactions between variables.  We controlled 

overfitting by limiting the number of terms in GLMs such that there were at least 10 detections or 

non-detections (whichever was smaller) in the training data for each non-intercept term in the 

model.  For example, if the training data had 35 detections, we limited the GLM to using only three

terms plus an intercept.  We tested all possible models from an intercept-only model up to models 

with the maximum number of terms permitted by our “10 detections per term” rule of thumb.  If a 

quadratic term was included in a model, we also included the 1st degree term.  For generating 

predictions, we used the model that gave the lowest AIC based on the training data.  

Boosted regression trees were trained using ‘gbm.step’ in the ‘dismo’ package (Greenwell, 

Boehmke, & Cunningham, 2018; Hijmans, Phillips, Leathwick, & Elith, 2017).  Unlike GLMs, 

boosted regression trees do not require the modeler to specify interactions between variables, 

because the trees will discover and model interactions if they are present.  The tree complexity 

specified by the modeler controls the maximum interaction order that the models are permitted to 

fit, and therefore can be used to prevent overfitting.  Elith, Leathwick and Hastie (2008) found 

relatively little harm in using higher tree complexities, even with small sample sizes, presumably 

because the models did not fit complex interactions that were not present, even when the model was 

given freedom to do so.  Nevertheless, we tested tree complexities of two and five, to build models 

that allowed interactions between up to two and up to five variables, respectively.  Smaller learning 

rates are generally preferred because they result in better predictive performance but using smaller 

learning rates comes at the cost of higher computation and memory requirements (Elith, Leathwick,
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and Hastie 2008).  We therefore used learning rates small enough to grow at least 1000 trees 

(following Elith, Leathwick, and Hastie 2008), but large enough to keep models below an upper 

limit of 30,000 trees because of computation time limitations.  We used gbm.step to determine the 

optimal number of trees for each model, based on monitoring the change in 10-fold cross-validated 

error rate as trees were added to the model (Hijmans, Phillips, Leathwick, & Elith, 2017).  We 

explored whether the upper limit of 30,000 trees affected our conclusions by looking at graphs of 

the frequency distribution of number of trees used, and graphs of prediction performance as a 

function of the number of trees.  Details of the procedure used to select the tree complexity, 

learning rate, and number of trees are in the supplementary materials (S2) and in our R code, which

is available on GitHub (https://zenodo.org/badge/latestdoi/229083757).   

Inverse distance-weighted interpolation was implemented using ‘gstat’ (Gräler et al., 2016; 

Pebesma, 2004).  We tuned parameters of the inverse distance-weighted interpolation model based 

on prediction error (details in S2 and at https://zenodo.org/badge/latestdoi/229083757).  

After models were fitted, we looked for evidence of overfitting and assessed whether the number 

of positive detections of the focal species in the test dataset affected prediction performance 

metrics. Details of the graphs used to assess overfitting and the effect of species prevalence on 

performance metrics are in the supplementary materials (S2).  All analyses used R version 3.6.0 (R 

Core Team, 2020), and code is available on GitHub 

(https://zenodo.org/badge/latestdoi/229083757).  

17

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.24.113415doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.24.113415
http://creativecommons.org/licenses/by-nd/4.0/


2.6 Analyzing effects of sampling bias and sample size

We modeled the predictive performance (AUC and RMSE) of SDMs as a function of spatial 

sampling bias, sample size (average number of observations per species), and SDM method.  

Modelling was done using boosted regression trees (‘gbm.step’ in the ‘dismo’ package) (Greenwell et

al., 2018; Hijmans et al., 2017).  To assess whether species prevalence (the commonness or rarity of

a species in the study extent) and/or the number of detections in the test dataset affected our 

evaluations of model performance, we graphed AUC and RMSE as a function of species prevalence

for all models (Fig. S4), and graphed AUC as a function of the number of detections in the test 

dataset for each SDM modelling method separately (Fig. S5).  Because RMSE showed a strong 

trend with species prevalence (Fig. S4), we included species prevalence in the boosted regression 

tree models of RMSE. AUC showed decreasing variability as prevalence increased, but did not 

show a clear trend that was not associated with the decrease in variability (Fig. S4).  AUC did not 

show any trend with the number of detections in the test dataset (Fig. S4). Because AUC did not 

seem to be strongly affected by species prevalence or the number of detection in the test data, we 

did not include species prevalence in our models assessing AUC.  Variable importance was assessed

based on the reduction in squared error attributed to each variable in boosted regression tree models

(Friedman, 2001).  We also assessed the effect of spatial sampling bias and sample size of training 

data on the number of species for which models could be fitted within the computational time and 

memory constraints of this study (S2).  
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3 RESULTS 

Simulated species showed a variety of plausible distribution patterns (Fig. 3) and prevalences (Fig.

S6), including species with north/south distribution gradients and distributions that followed 

geographic features such as the coastline (Fig. 3).  

Sample size (the mean number of observations per species) was the most important variable for 

explaining variations in prediction performance of SDMs, followed by the choice of SDM method 

and spatial sampling bias (Table 2).   Simpson evenness values for spatial sampling evenness of the 

template datasets are in Table 3.

3.1 Number of species successfully modeled

The number of species for which models fitted successfully increased as sample size increased and

spatial bias decreased (Fig. 4). For GLMs and inverse distance-weighted interpolation, model fitting

was largely successful when datasets had more than 100 records per species, except when spatial 

bias was severe (Fig. 4).  Boosted regression trees failed to fit models for some species even with 

relatively large amounts of data (e.g. an average 200 records per species), and models fit less 

frequently when data had median or severe spatial biases (Fig. 4).  The effect of spatial bias on the 

number of species for which models fitted was small, but was slightly greater for boosted regression 

trees than for other SDM modelling methods (Fig. 4). 

3.2 Predictive performance of SDMs

The amount of spatial bias in training data was less important than sample size and choice of 

SDM method in predicting the performance of SDMs (Table 2, Table S7, Table S8).  AUC for 
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predictive SDMs increased with the average number of records per species and with decreasing 

spatial bias in the training data when using all SDM methods (Fig. 5, Fig. 6).  Root mean squared 

error (RMSE) was largely unaffected by spatial sampling bias (Fig. 7, Fig. S6, Table S8).  Species 

prevalence (the number of grid squares occupied by a species) and the number of detections in the 

test dataset both had negligible effects on the average value of AUC, though they did affect the 

variability of AUC (Fig. S4, Fig. S5).  Species prevalence strongly affected the expected value of 

RMSE, with RMSE increasing with species prevalence (Table S8, Fig. S4).

3.2.1 Effect of sample size

Sample size (average number of records per species) was the most important variable for 

predicting species distribution model prediction performance (Table 2).  AUC improved with 

increasing average number of records per species for all SDM methods, and the improvement in 

AUC decelerated as the number of records per species increased (Fig. 5, Fig. 8).  

3.2.2 Effect of spatial bias

Higher levels of spatial sampling bias generally reduced AUC, but the size of this effect was small 

for the low level of bias (Fig. 5).  SDMs built with GLMs showed the biggest difference in 

prediction performance between models trained with unbiased data and models trained with data 

showing median spatial bias (reduction in expected AUC of 0.037 when using an average of 200 

records per species, Fig. 5).  Other SDM methods showed less difference in AUC between models 

trained with unbiased data and models trained with data containing median spatial bias (decrease in 

expected AUC of 0.033 for boosted regression trees and 0.030 for inverse distance-weighted 

interpolation when using an average of 200 records per species). 
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The AUC for inverse distance-weighted interpolation models trained with unbiased data was 

generally higher than the AUC for GLMs and boosted regression trees trained with severely biased 

data, but lower than the AUC for GLMs and boosted regression trees trained with data with median

spatial bias for any given sample size (Fig. 5, Fig. 6).  

4 DISCUSSION

Both sample size (the average number of observations per species) and choice of modelling 

method were more important than the spatial bias of training data for determining model prediction

performance. This is in line with the results of Thibaud et al. (2014).  However, Thibaud et al. 

(2014) simulated spatial sampling bias by defining sampling probability as a linear function of 

distance from the nearest road.  In contrast, our study used observed spatial sampling patterns from 

real biological records datasets.  Our results therefore provide a more direct confirmation that spatial

biases of the type and intensity found in real datasets are not as important as other factors in 

determining SDM prediction performance.  

While spatial bias was not the most important factor determining SDM prediction performance, 

spatial sampling bias did affect model prediction performance when spatial bias was relatively 

strong.  The limited effect of spatial bias on SDMs that we observed is similar to other findings that 

have shown spatial sampling bias to have a small effect on model performance (Thibaud et al., 

2014; Warton et al., 2013) or to affect only some SDM methods (Barbet-Massin et al., 2012).  

Given Fan et al.’s (2005) conclusion that most types of predictive models can be either sensitive or 

insensitive to sample selection bias in training data, depending on the specific datasets, it seems 

unlikely that a broad conclusion about the effect of spatial sampling bias on species distribution 
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models in all cases is possible.  It therefore remains important to test the effect of spatial bias on 

SDMs using data that match as closely as possible the data used for different SDM applications.  

Our study used spatial biases and the spatially explicit environmental data representative of data 

likely to be used in SDMs using biological records in Ireland.  Our conclusions therefore apply most

directly to applications of SDMs using Irish biological records, and may not be generalizable to 

other geographic locations, or for species within Ireland that do not respond to the environmental 

predictor variables used in this study.  However, our results strengthen a growing body of literature 

that suggests that spatial sampling bias is rarely the most important issue in determining SDM 

prediction performance.  In particular, the choice of modelling method may often have more impact

on SDM prediction performance than a variety of other factors (Barbet-Massin et al., 2012; 

Fernandes, Scherrer, & Guisan, 2018).  

Training data with low spatial sampling bias produced species distribution models that performed 

nearly as well as models trained with unbiased data.  Prediction performance was poor when models

were trained with small sample sizes, regardless of the spatial bias in training data.  Similarly, 

model performance increased quickly with sample size when sample size was small, even when the 

data had severe spatial bias.  This suggests that, for taxonomic groups with relatively few records per

species, the usefulness of the data for predictive SDMs can be improved by increasing sample size, 

even if additional data collection is spatially biased.  In contrast, for taxonomic groups for which 

biological records datasets already have a high average number of records per species (e.g. birds and

butterflies which both have an average of over 2000 records per species in Ireland) further 
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improvements in SDM prediction performance will likely require increasing the spatial evenness of 

data (Fig. 8).  

The objective of our SDMs was to fill in gaps in species distribution knowledge within the spatial 

and environmental conditions of the island of Ireland, an area of about 84,000 km2.  Our results 

may not generalize to larger spatial scales or to cases in which the goal of SDMs is uncovering 

species’ entire fundamental environmental niche or determining the environmental factors most 

strongly influencing distributions.  The spatial scope of our SDMs is sensible both from an 

ecological and applied standpoint, because the island of Ireland is a geographically delimited 

ecological unit, and because decision making about species conservation and management often 

happens within political units (e.g. nations, states, or counties) that cover only a portion of species’ 

spatial and environmental distributions.  Our results suggest that, when the goal of predictive SDMs 

is to fill in data gaps within a scale of tens of thousands of square kilometers (e.g. a national scale in

the case of Ireland), spatial sampling bias was less important in determining model performance 

than the total amount of data and the SDM modelling method.  

GLMs had the best prediction performance of the four SDM methods we tested, even though they

were more affected by spatial bias than were other methods.  The high performance of GLMs 

relative to other modelling methods in this study agrees with the simulation results of Thibaud et al. 

(2014) and Fernandes et al. (2018). However, as in both those studies, we generated virtual species 

distributions according to a linear model, so it is possible that the good performance of GLMs is 

due to the model having the same functional form as the “true” species responses. In real 

applications, it is unlikely that the functional form of the model will exactly match the form of the 
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true species responses. Indeed, the species distribution modelling literature has many examples of 

different modelling methods performing best in different studies, suggesting that no modelling 

method consistently outperforms others (Bahn & McGill, 2007; Breiner, Nobis, Bergamini, & 

Guisan, 2018; Cutler et al., 2007; Elith et al., 2006; Elith & Graham 2009).

Boosted regression trees’ prediction performance was slightly less affected by spatial bias than 

GLMs’, and prediction performance of both methods was similar when trained with large, spatially 

biased datasets. But boosted regression trees failed to fit models more often than did GLMs, 

especially when sample sizes were smaller, which may make them inferior to other modelling 

methods for small datasets, at least within the computational resource limits we faced.  We cannot 

rule out the possibility that the performance of boosted regression trees would improve if they were 

trained with a smaller learning rate and permitted to grow more than 30,000 trees.  However, most 

users of SDMs will face some computational resource limitations.  We permitted boosted regression

trees to grow up to 30,000 trees, which is well above the rule-of-thumb guidelines given by Elith, 

Leathwick, and Hastie (2008). 

In this study, we introduced spatial bias specifically into the training data and tested model 

performance using spatially even evaluation data. However, spatial bias can also occur in evaluation 

data and may affect the reliability of model evaluations (Fink et al., 2010).  When using real 

biological records datasets, it is likely that both model training and evaluation will use spatially 

biased data, making it difficult to dis-entangle whether observed effects of spatially biased data on 

prediction performance are due to the influence of biased data in the model training step or in the 

model evaluation step.  We evaluated models on spatially even data (which is easy using simulated 
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data but would be more difficult or impossible when using real data), so the observed effects of 

spatially biased data on prediction performance in our study can be attributed to the effect of biased

data on model training. All of the SDM methods we used involve some kind of model evaluation as 

part of the model training process, either inherent in the model fitting or introduced by our 

implementation. For example, with our GLMs we introduced a model evaluation step when we 

chose the combination of predictor variables that gave the model with the lowest AIC on training 

data. The final GLM models were therefore based on variables that had been selected by evaluation 

on spatially biased data.  For both GLMs and inverse distance-weighted interpolation, it is possible 

that using unbiased data in the evaluations during model selection would have led to different final 

models. Therefore, the observed effect of the spatial bias in this study could be due to how biased 

data affects the actual fitting of each individual model, or to how the biased data affects the 

evaluation step used to select which fitted model to use for predictions. Tree-based methods, 

including boosted regression trees, select which values of predictor variables to split at and/or which

predictor variables to use at each node based on how much those splits improve some measure of 

performance on the training data (Elith et al., 2008; Hastie et al., 2009). Thus, evaluation on 

potentially spatially biased training data is inherent in fitting tree models.

Fink et al. (2010) provided a method for correcting spatial bias in evaluation data to reduce the 

effect of spatial bias on model evaluation, but they did not explicitly address spatially biased data in 

model training. Our results showed that spatially biased data can impact model training (at least 

when the spatial bias is relatively strong). Investigating the effect of spatially biased data on the 

evaluation that takes place as part of model training (e.g. during variable selection or parameter 
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tuning) may be a worthwhile path for future research. It may be possible to use a method like that 

proposed by Fink et al. (2010) to correct spatial bias during the evaluation that takes place within 

the model training process. This may reduce the effect of spatially biased training data on model 

performance that we observed.

Our use of Simpson evenness to measure spatial sampling evenness allows the spatial sampling 

biases tested in this study to be compared to spatial sampling patterns in existing datasets. Because 

we calculated spatial sampling evenness using the number of records in each grid square relative to 

the entire study extent, our measures of spatial sampling evenness confound species richness and 

sampling effort. Using the number of checklists (or sampling events) rather than the number of 

records would alleviate this problem. However, records in our datasets were aggregated over long 

time periods so that the records appear to have the same date, location, and observer, even when 

records arose from different sampling events. For example, records from vascular plant and bird 

atlases have been incorporated into the NBDC database with all the atlas records from a grid square

being assigned the same date (the publication date of the atlas), even though records were collected 

over multiple years. Many of these atlas grid square “checklists” are hundreds (or thousands!) of 

records long, with repeat observations of common species. The total number of records therefore 

better represents the many years and many unique days of sampling in heavily sampled grid squares

for NBDC datasets, despite the fact that spatially uneven species richness will cause the number of 

records to be higher in some grid squares than others, even when sampling effort is equal.
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5 CONCLUSION

We found that spatial sampling bias in training data affected species distribution model prediction 

performance when the spatial bias was relatively strong, but that sample size and the choice of 

modelling method were more important than spatial bias in determining model prediction 

performance. This study adds to a body of literature suggesting that prediction performance of 

species distribution models is less affected by spatial sampling bias in training data than by other 

factors including modelling method and sample size.
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Fig. 1.  Spatial sampling patterns from Irish biological records. Spatial sampling patterns from 

Irish biological records were used as templates to create virtual species records data with varying 

amounts of spatial bias. Darker shades indicate higher relative probability of sampling from a grid 

square compared to other grid squares within in the same template; overall sampling effort is the 

same for each panel (A) through (E).  The most heavily sampled grid square in each spatial bias 

template has a relative recording effort of one, while a grid square with half as many records as the 

most heavily sampled square has a relative recording effort of 0.5.  Spatial sampling patterns 

derived from datasets for different taxonomic groups were: (A) no bias (even probability of 

sampling from every grid square), (B) low bias (based on bird data), (C) median bias (based on 

butterflies), and (D) severe bias (based on moths).  

Fig. 2.  Species distribution model training and testing process for a single cross-validation 

fold.  The true virtual species distribution (A, presences shown in dark green, absences in light 

grey) was sampled to produce virtual biological records with a range of sample sizes and spatial 

biases, including no bias (B) and median bias (C).  Orange points in (B) and (C) show checklists on 

which the species was recorded, black points show checklists on which the species was not recorded

(i.e. non-detection points).  Species distribution models were fit using five-fold spatial block cross 

validation, in which data from about 80% of the spatial area was used to train models (light grey 

background in B and C).  Data from the remaining spatial areas (dark grey background in B and C) 

was set aside for model evaluation.  Model evaluation tested the ability of species distribution 

models to predict the true presence (orange dots) or absence (black dots) of the species in each grid

cell within the evaluation areas (D).  Model evaluation therefore used spatially even data with the 
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same number of evaluation points (D) regardless of the sample size and spatial bias of training data 

(B and C).  

Fig. 3. The true distributions of four example simulated species. Simulated species showed a 

range of plausible distributions with a range of prevalences, including (A) common widespread 

species, (B) rare species mostly limited to north-western coastal sites, (C) species with a north/south

gradient in occurrence, and (D) common species that are absent from southern sites.  

Fig. 4. The number of virtual species successfully modeled.  The number of virtual species (out 

of 110 total species chosen for modelling from the large community simulation) for which species 

distribution models fitted within the computation time and memory constraints we imposed, 

according to the spatial sampling bias and sample size of training data and the species distribution 

modelling method.  Species distribution modelling methods were (A) generalized linear models, (B)

boosted regression trees, and (C) inverse distance-weighted interpolation.  Spatial biases were no 

bias (Simpson evenness = 1), low (e.g. birds, Simpson evenness = 0.76),  median (e.g. butterflies, 

Simpson evenness = 0.13), and severe (e.g. moths, Simpson evenness = 0.02).

Fig. 5.  Expected prediction performance of species distribution models for 110 simulated 

species under a range of sample size and spatial sampling bias scenarios.  Panels show the 

expected prediction performance of species distribution models constructed using (A) generalize 

linear models, (B)  boosted regression trees, and (C) inverse distance-weighted interpolation.  Lines 

show expected area under the receiver operating characteristic curve (AUC) given the sample size 
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and spatial sampling bias of training data, and the species distribution modelling method.  Rug plots

indicate sample sizes (mean number of records per species) of the virtual biological records datasets

used to train species distribution models. 

Fig. 6. Observed prediction performance (AUC) of species distribution models for 110 

virtual species under a range of sample size and spatial sampling bias scenarios.  Panels show

the observed area under the receiver operating characteristic curve (AUC) of species distribution 

models constructed using (A) generalized linear models, (B) boosted regression trees, and (C) 

inverse distance-weighted interpolation.  Boxes contain the middle 50% of the observed AUC 

values.  The horizontal line within each box indicates the median AUC value.  Each box plot (box, 

whiskers, and outlying points) represents 110 observations (one for each virtual species) unless 

models failed to fit for some species (see Fig. 4).  The width of boxes is proportional to the square 

root of the number of observations in that group.

Fig. 7.  Observed prediction performance (RMSE) of species distribution models for 110 

virtual species under a range of sample size and spatial sampling bias scenarios.  Panels show

the observed root mean squared error (RMSE) of species distribution models constructed using (A)

generalized linear models, (B) boosted regression trees, and (C) inverse distance-weighted 

interpolation.  Boxes contain the middle 50% of the observed RMSE values.  The horizontal line 

within each box indicates the median RMSE value.  Each box plot (box, whiskers, and outlying 

points) represents 110 observations (one for each virtual species) unless models failed to fit for 
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some species (see Fig. 4).  The width of boxes is proportional to the square root of the number of 

observations in that group.

Fig. 8. Contour plot of expected prediction performance of species distribution models as a 

function of the sample size and spatial sampling bias in virtual biological records datasets.   

Expected prediction performance (AUC, contours and shading) of generalized linear model (GLM) 

species distribution models from the (A) large- and (B) small-community simulations, according to 

the spatial sampling evenness and sample size of training data (note the different scales of the 

horizontal axes in A and B). Spatial sampling evenness was quantified using Simpson evenness.  

High values of Simpson evenness indicate minimal spatial bias.  Open circles show the values of 

sample size and spatial sampling evenness for virtual biological records datasets used to train 

species distribution models.  Filled black circles show sample size and spatial sampling evenness of 

Irish biological records datasets used as spatial sampling templates.  
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Table 1.  Environmental predictor variables used to define and model the distribution of 

virtual species in Ireland.  Moran’s I values indicate the spatial clustering of values for each 

variable, where a value of one indicates strong spatial clustering of variable values, zero indicates 

random spatial arrangement of values, and negative one indicates strongly dispersed spatial 

arrangement of values.  Details of data sources are in Section 2.1.

Variable Description Data Source Moran’s I

annual minimum 
temperature (degrees C)

2% quantile of annual temperatures in
each grid cell averaged over the years 
1995-2016 E-OBS 0.84

annual maximum 
temperature (degrees C)

98% quantile of annual temperatures 
in each grid cell averaged over the 
years 1995-2016 E-OBS 0.83

annual precipitation 
(mm)

Average total annual precipitation in 
each grid cell over the years 1995-
2016 (excluding 2010-2012) E-OBS 0.82

average daily sea level 
atmospheric pressure 
(hecto Pascals)

Average daily sea level atmospheric 
pressure over the years 1995-2016 E-OBS 0.86

agricultural areas
Proportion of each grid cell classified 
as agricultural areas

CORINE Land 
Cover Database 0.53

artificial surfaces
Proportion of each grid cell classified 
as artificial surfaces

CORINE Land 
Cover Database 0.44

forest and semi-natural 
areas

Proportion of each grid cell classified 
as forest and semi-natural areas

CORINE Land 
Cover Database 0.41

water bodies
Proportion of each grid cell classified 
as water bodies

CORINE Land 
Cover Database 0.35

wetlands
Proportion of each grid cell classified 
as wetlands

CORINE Land 
Cover Database 0.55

elevation Average elevation in each grid cell ETOPO1 0.29
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Table 2.  Importance of sample size, spatial bias, and modelling method for determining 

predictive performance of species distribution models.  Variable importance measures from a 

boosted regression tree show the relative influence of sample size (average number of records per 

species), species distribution modeling method, and spatial bias in training data on prediction 

performance (AUC) of species distribution models.  The relative influence for each variable is the 

reduction in squared error attributed to that variable in a boosted regression tree model.  

Variable Relative importance (reduction in squared error)

Average number of records per species 78.5

Species distribution modelling method 14.8

Spatial bias 6.7

Table 3.  Spatial sampling evenness of the spatial sampling template datasets measured 

using Simpson evenness.  A value of one indicates perfectly even sampling (all grid squares 

containing the same number of records).  Lower Simpson evenness values indicate more spatially 

uneven sampling.  

Spatial sampling template Simpson evenness value

no bias 1

low bias (birds) 0.762

median bias (butterflies) 0.126

severe bias (moths) 0.021
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