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Abstract

The study of response to cancer treatments has benefited greatly from the contribution of different
omics data but their interpretation is sometimes difficult. Some mathematical models based on
prior biological knowledge of signalling pathways, facilitate this interpretation but often require
fitting of their parameters using perturbation data. We propose a more qualitative mechanistic
approach, based on logical formalism and on the sole mapping and interpretation of omics data,
and able to recover differences in sensitivity to gene inhibition without model training. This
approach is showcased by the study of BRAF inhibition in patients with melanomas and colorectal
cancers who experience significant differences in sensitivity despite similar omics profiles.

We first gather information from literature and build a logical model summarizing the regulatory
network of the mitogen-activated protein kinase (MAPK) pathway surrounding BRAF, with factors
involved in the BRAF inhibition resistance mechanisms. The relevance of this model is verified by
automatically assessing that it qualitatively reproduces response or resistance behaviours identified
in the literature. Data from over 100 melanoma and colorectal cancer cell lines are then used to
validate the model’s ability to explain differences in sensitivity. This generic model is transformed
into personalized cell line-specific logical models by integrating the omics information of the cell
lines as constraints of the model. The use of mutations alone allows personalized models to
correlate significantly with experimental sensitivities to BRAF inhibition, both from drug and
CRISPR targeting, and even better with the joint use of mutations and RNA, supporting
multi-omics mechanistic models. A comparison of these untrained models with learning approaches
highlights similarities in interpretation and complementarity depending on the size of the datasets.

This parsimonious pipeline, which can easily be extended to other biological questions, makes it
possible to explore the mechanistic causes of the response to treatment, on an individualized basis.

Author summary

We constructed a logical model to study, from a dynamical perspective, the differences between
melanomas and colorectal cancers that share the same BRAF mutations but exhibit different
sensitivities to anti-BRAF treatments. The model was built from the literature and completed from
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existing pathway databases. The model encompasses the key proteins of the MAPK pathway and
was made specific to each cancer cell line (100 melanoma and colorectal cell lines from public
database) using available omics data, including mutations and RNAseq data. It can simulate the
effect of drugs and show high correlation with experimental results. Moreover, the structure of the
network confirms both the importance of the reactivation of the MAPK pathway through CRAF
and the involvement of PI3K/AKT pathway in the mechanisms of resistance to BRAF inhibition.

The study shows that, because of the low number of samples, the mechanistic approach that we
propose provides different insights than powerful standard machine learning methodologies would,
showing the complementarity between the two approaches. An important aspect to mention is that
the mechanistic approach presented here does not rely on training datasets but directly interprets
and maps data on the model to simulate drug responses.

Introduction 1

In the age of high-throughput sequencing technologies, cancer is considered to be a genetic disease 2

for which driver genes are constantly being discovered [1]. The study of mutational and molecular 3

patterns in cancer patients aims to improve the understanding of oncogenesis. However, many of 4

these gene alterations seem to be specific to certain cancer types [2] or exhibit different behaviours 5

depending on the molecular context, particularly in terms of response to treatment. This prompted 6

a shift from univariate biomarker-based approaches to more holistic methodologies leveraging the 7

various omics data available. 8

9

To study these observed differences in drug response in various cancers, some approaches based 10

on mathematical modelling were developed to explore the complexity of differential drug 11

sensitivities. A number of machine learning-based methods for predicting sensitivities have been 12

proposed [3], either without particular constraints or with varying degrees of prior knowledge; but 13

they do not provide a mechanistic understanding of the response. Some other approaches focused 14

on the description of the processes that might influence the response by integrating knowledge of 15

the signalling pathways and their mechanisms and translated it into a mathematical model [4–6]. 16

The first step of this approach implies the construction of a network recapitulating knowledge of 17

the interactions between selected biological entities (driver genes but also key genes of signalling 18

pathways), extracted from the literature or from public pathway databases, or directly inferred 19

from data [7]. This static representation of the mechanisms is then translated into a dynamical 20

mathematical model with the goal to not only understand the observed differences [5] but also to 21

predict means to revert unexpected behaviours. 22

23

One way to address issues related to patient response to treatments is to fit these mechanistic 24

models to the available data, and to train them on high-throughput cell-line specific perturbation 25

data [4, 5, 8]. These mechanistic models are then easier to interpret with regard to the main drivers 26

of drug response. They also enable the in silico simulations of new designs such as combinations of 27

drugs not present in the initial training data [6]. 28

29

However, these mechanistic models contain many parameters that need to be fitted or extracted 30

from the literature. Some parsimonious mathematical formalisms have been developed to make up 31

for the absence of either rich perturbation data to train the models or fully quantified kinetic or 32

molecular data to derive the parameters directly from literature. One of these approaches is the 33

logical modelling, which uses discrete variables governed by logical rules. Its explicit syntax 34

April 16, 2020 2/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.27.119016doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119016
http://creativecommons.org/licenses/by/4.0/


facilitates the interpretation of mechanisms and drug response [9, 10] and despite its simplicity, 35

semi-quantitative analyses have already been performed on complex systems [11] for both cancer 36

applications [9, 12] and drug response studies [13,14], and have proved their efficacy [15,16]. 37

38

The nature of this formalism has shown its relevance in cases where the model is not 39

automatically trained on data but simply constructed from literature or pathway databases and 40

where biological experiments focus on a particular cell line [17]. We propose here a pipeline based 41

on logical modelling and able to go from the formulation of a biological question to the validation of 42

a mathematical model on pre-clinical data, in this case a set of cell lines (Fig 1), and the 43

subsequent interpretation of potential resistance mechanisms. The application of the mechanistic 44

model to different cell lines is therefore done without any training of parameters but only on the 45

basis of the automatic integration and interpretation of their omic features. 46

47

Fig 1. BRAF modelling flowchart: from a biological question to validated
personalized logical models.

The construction of a mathematical model must be based first and foremost on a precise and 48

specific biological problem, at the origin of the design of the model. Here, we choose to explore the 49

different responses to treatments in diverse cancers that bear the same mutation. A well-studied 50

example of these variations is the BRAF mutation and especially its V600E substitution. BRAF is 51

mutated in 40 to 70% of melanoma tumours and in 10% of colorectal tumours, each time composed 52

almost entirely of V600E mutations [18]. In spite of these similarities, BRAF inhibition treatments 53

have experienced opposite results with improved survival in patients with melanoma [19] and 54

significant resistance in colorectal cancers [20], suggesting drastic mechanistic differences. Some 55

subsequent studies have proposed context-based molecular explanations, often highlighting 56

surrounding genes or signalling pathways, such as a feedback activation of EGFR [21] or other 57

mechanisms [22,23]. These various findings support the need for an integrative mechanistic model 58

able to formalize and explain more systematically the differences in drug sensitivities depending on 59

the molecular context. The purpose of the study we propose here is not to provide a comprehensive 60

molecular description of the response but to verify that the existence and functionality of the 61

suggested feedback loops around the signalling pathway in which BRAF is involved [21] may be a 62

first hint towards these differences. For a more thorough study of these cancers, we refer to other 63

works [4, 24,25]. 64

65
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A logical model summarizing the main molecular interactions at work in colorectal cancers and 66

melanomas is thus built from the literature and completed with databases. As previously 67

mentioned, the objective is to understand whether it is possible to model and explain differences in 68

responses to BRAF inhibition in melanoma and colorectal cancer patients using the same regulatory 69

network. The fact that the two cancers share the same network but differ from the alterations and 70

expression of their genes constitute our prior hypothesis. We then use model checking tools to 71

verify the consistency of this model with a series of qualitative assertions retrieved from literature. 72

Finally, we use available public omics data from these cancer cell lines to transform the generic 73

model into personalized cell-line models. The relevance of the latter is validated by their ability to 74

recover the differences in BRAF inhibition sensitivities, from both drug and CRISPR screenings. 75

Materials and methods 76

Logical model principles and simulations 77

A concise overview of the main properties of logic modelling is provided and additional details may 78

be found in dedicated reviews [26,27]. A logical model can be represented by a regulatory graph 79

where nodes are biological entities and edges are influences of one entity onto the others. Each node 80

is considered as a discrete variable (0, 1 or more if required) corresponding to the activity level of 81

the associated biological entity (0 is inactive or absent, 1 is active or present) (Fig 2A). Each entity 82

(proteins, genes, etc.) can thus represent distinct biological states (e.g., expressed gene, 83

phosphorylated protein, etc.) depending on the meaning that is given to each of the nodes. These 84

entities are connected by edges representing positive (resp. negative) influences, i.e., activation 85

(resp. inhibition) of the target node by the sourced node. Combinatorial outcome of influences on 86

one node is defined by the logical rules assigned to the node and expressed with logical operators 87

AND (&), OR (|) and NOT (!), as in Fig 2A. The dynamics of this mathematical model can be 88

expressed using the state transition graph (STG) where the nodes of this graph represent the states 89

of the model. In the STG, the edges show the possible transitions between the different model 90

states according to the logical rules (Fig 2B). As these rules often allow for different transitions, 91

either all of them can be performed at each time step (synchronous update) or performed 92

sequentially by choosing how the priorities are defined (asynchronous updates) [26, 27]. For the rest 93

of the article, the term ”node” will refer to those of the regulatory network. 94

95

Note that a variable of the model is considered to be active or inactive depending on the 96

biological meaning that is assigned to the node. The active state will differ according to the nature 97

of the entity: genes and proteins may be active if they are expressed. If some proteins are known to 98

be kinases, their targets will be considered to be active (i.e., their value goes from 0 to 1) in their 99

phosphorylated form, in most cases. The choice will be made for each individual node of the 100

network. That way, BRAF, CRAF, MEK, ERK, AKT, GAB1, MDM2 and p70 are considered to be 101

active in their phosphorylated form. When SOX10 is phosphorylated by ERK, it can no longer 102

mediate the synthesis of FOXD3. In this case, the active form is the unphosphorylated one. It is 103

translated in the model by a direct inhibitory influence of ERK on SOX10 target. 104

105

In the present article, all simulations are performed according to asynchronous updating with 106

MaBoSS software [11,28]. This algorithm, using continuous time Markov chain simulations on the 107

Boolean network, provides a stochastic way to choose a specific transition among several possible 108

ones. Each node is associated with transition rates, either for activation of the node k0−→1 (or kup) 109

or inactivation k1−→0 (or kdown) and the stochastic choice between the possible transitions is made 110
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Fig 2. Logical modelling: principles, simulation and personalization. (A) A simple
example of a logical model with three nodes: the regulatory graph, the corresponding logical rules
and the transition rates as used in MaBoSS [28]. (B) State transition graph of the logical model
with the two possible transitions resulting from the given initial conditions and the probabilities of
choosing stochastically one of them. (C) Schematic representation of a logic model simulation with
MaBoSS: average trajectory obtained from the mean of many individual stochastic trajectories. (D)
Personalization of a logical model with discrete data: a node forced to stay at 0, on the left (resp. 1
on the right) prevents (resp. favours) some transitions from occurring. (E) Personalization of a
logical model with continuous data: since gene A is highly expressed in the red patient, the
probability of activation of the corresponding node is increased (resp. probability of inhibition is
decreased for gene B)

based on these transition rates (Fig 2B). For our simulations, unless otherwise specified (cf. section 111

about personalization of models), all transition states were initially assigned to 1. The exploration 112

of all the state space of the model is then done by simulating a very large number of individual 113

stochastic trajectories in order to aggregate them into a mean stochastic trajectory (Fig 2C). To 114
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ensure a proper exploration of the state space, the number of computed stochastic trajectories 115

should increase with the model complexity. In the present work, all simulations are performed with 116

5000 trajectories after verifying that this number was sufficient to ensure very low variability in the 117

final results. 100 different simulations of the generic model, with 5000 trajectories each, result in an 118

average Proliferation score of 0.182 with a standard deviation of 0.005 across the 100 simulations. 119

The scores obtained after each simulation correspond to the final asymptotic states, i.e., the 120

average stochastic state reached by the model after a defined period of time. tend = 50 was chosen 121

because at this time, it was ensured that the solutions had reached their asymptotic state by 122

comparing with values reached at later times (average Proliferation score of 0.182 also at tend = 100 123

with 100 simulations of 5000 trajectories). 124

Automatized model-checking within unit-testing framework 125

The construction of a model is a daunting task, as each improvement is susceptible to change the 126

dynamical properties of the model. To tackle this problem, we need a simple way to test these 127

properties and detect if the model is still able to reproduce them. Software development knows 128

similar challenges, where improvements can break existing functionalities. Software verification thus 129

became an important part of software development, which assess whether a software meets a list of 130

requirements. After each important modification, tests are run to verify that the software still 131

produces the expected behaviour. A similar framework can be applied for model construction to 132

check the validity of the model for each iteration of the building process. First, the modeller must 133

describe what is the expected behaviour of the model for several conditions, based either on 134

scientific literature or biological experiments. Some similar works using model checking to build 135

and verify models, were recently published [29,30]. 136

137

In order to standardize this process, we developed a tool, called MaBoSS test, to easily verify if 138

a logical model was coherent with specific biological assertions. This tool is based on MaBoSS 139

simulation software, which produces simulations describing the evolution of the probability of states 140

with time. Inspired from python’s unittest library, we developed an extension for MaBoSS 141

simulations which tests the validity of the dynamical behaviour of the model via assert methods. 142

Each assertion is used to verify if the model satisfies a given type of biological statement. 143

144

The majority of the tests consist in altering the model, by changing the initial condition or 145

introducing a set of mutations, then observing how these alterations affect the probability of 146

reaching a specific state with respect to the original simulation. An example of a biological 147

assertion may be the reactivation of the MAPK (mitogen-activated protein kinase) pathway 148

through EGFR signal after BRAF inhibition in colorectal cancer [21]. To test if our model is 149

consistent with this statement, we call the function: 150

.assertStateProbability({BRAF : OFF}, IC CRC, {EGFR : 1}, “increase”) (1)

The arguments of this method are the following: the set of mutations to perform (BRAF:OFF), 151

the predefined initial conditions of the simulation (IC CRC), the state we wish to observe (EGFR:1), 152

and a string to specify the behaviour (increase). The function can be read as: “Assert that: after 153

BRAF inhibition, using the initial condition for the colorectal cancer, IC CRC, the probability of 154

EGFR activation increases”. If the “unit testing output” is selected, in the case that the assertion 155

is not correct, the test will fail raising an exception. Otherwise, if the “detailed output” is selected, 156

the result will be “True” or “False” and the probabilities to have EGFR active before and after 157
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Fig 3. Cell lines data: mutations and sensitivities to BRAF inhibition (A) Distribution
of the assigned mutations in the four most frequently mutated genes in the colorectal/melanoma
cohort of cell lines [34]. (B) Differential sensitivities to BRAF inhibition by the drug PLX-4720
(lower panel) or by CRISPR inhibition (upper panel), depending on BRAF mutational status and
cancer type. Numbers of cell lines in eache category are indicated. Note that high sensitivities
correspond to low AUC and high scaled Bayesian factors.

BRAF inhibition will be displayed. This tool, its documentation and an example in the form of a 158

Jupyter notebook are available on GitHub (https://github.com/sysbio-curie/MaBoSS test). 159

Cell lines omics profiles 160

The omics profiles of colorectal and melanoma cell lines are downloaded from Cell Model Passports 161

portal [31]. 64 colorectal cancer (CRC) cell lines and 65 cutaneaous melanoma (CM) cell lines are 162

listed in the database, with at least mutation or RNA-seq data (59 CM and 53 CRC with both 163

mutations and RNA-seq data). 164

Personalization of logical models with cell lines omics data 165

The PROFILE (PeRsonalization OF logIcaL ModEls) methodology transforms a generic logical 166

model into as many personalized models as there are cell lines by using and integrating their omics 167

profiles [32]. The general idea is to rely on the interpretation of the omics data and translate it into 168

constraints of the mathematical model. 169

170

The method to integrate omics data are separated into two strategies: for discrete data (i.e., 171

mutations, copy number alterations) and for continuous data (i.e., transcriptomics, 172

(phospho)proteomics). The discrete strategy consists in setting the value of a node to 0 or 1 for the 173

whole duration of the simulation. In the present work, this is done based on mutation data and 174

functional effect inference. The mutations identified in the cell lines are interpreted using OncoKB 175

database [33], an evidence-based repository with mutation annotations. Mutations referenced as 176

loss-of-function (resp. gain-of function) are forced to 0 (resp. 1), thus constraining the possible 177

transitions in the model as in Fig 2D, left (resp. right). Uninterpreted mutations, which are by far 178

the majority, are not included in the models. The distribution of mutations in the four most 179

frequently mutated genes is shown in Fig 3A. 180

The second strategy, preferably used with continuous data, is to modify the initial conditions 181

and transition rates based on a continuous proxy for node activity. A cell line with a clear 182

over-expression of a gene/protein, compared to the whole cohort of interest, will have the transition 183

rate related to the activation (resp. inhibition) of the corresponding node favoured and made more 184
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(resp. less) likely (Fig 2E). The initial probability that the node will be activated (i.e., the 185

probability to start at 1 among the 5000 stochastic trajectories) will also be modified accordingly, 186

which is particularly important for input nodes that will not be regulated by the model. This 187

method requires different conditions. First, a relevant node activity proxy has to be available in the 188

data: it can be a level from transcriptomics, proteomics or even phospho-proteomics. Then, unlike 189

mutations, the interpretation is not made absolutely but only in comparison to the other members 190

of the cohort. In the present work, despite the proteic nature of most of the model nodes, only 191

RNA data is available and is therefore used, on the assumption that it can be a consistent, 192

although not ideal proxy, as it has sometimes been proposed in other studies [35]. Note that the 193

distribution of RNA levels is normalized between 0 and 1 on a gene-specific basis before being 194

included in the model. 195

Drug and CRISPR/Cas9 screening 196

In order to validate the relevance of personalized models to explain differential sensitivities to drugs, 197

some experimental screening datasets are used. Drug screening data are downloaded from the 198

Genomics of Drug Sensitivity in Cancer (GDSC) dataset [36] which includes two BRAF inhibitors: 199

PLX-4720 and Dabrafenib. The cell lines are treated with increasing concentration of drugs and the 200

viability of the cell line relative to untreated control is measured. The dose-response relative 201

viability curve is fitted and then used to compute the half maximal inhibitory concentration (IC50) 202

and the area under the dose-response curve (AUC) [37]. Since the IC50 values are often 203

extrapolated outside the concentration range actually tested, we will focus on the AUC metric for 204

all validation with drug screening data. AUC is a value between 0 and 1: values close to 1 mean 205

that the relative viability has not been decreased, and lower values correspond to increased 206

sensitivity to inhibitions. The results obtained with the two drugs are very strongly correlated 207

(Pearson correlation of 0.91) and the analyses presented here will therefore focus on only one of 208

them, PLX-4720. 209

210

Results of CRISPR/Cas9 screening are downloaded from Cell Model Passports [31]. Two 211

different datasets from Sanger Institute [38] and Broad Institute [39] are available. We use scaled 212

Bayesian factors to assess the effect of CRISPR targeting of genes. These scores are computed 213

based on the fold change distribution of sgRNA [40]. The highest values indicate that the targeted 214

gene is essential to the cell fitness. The agreement between the two databases is good [41] but we 215

choose to focus on the Broad database, which is more balanced in terms of the relative proportions 216

of melanomas and colorectal cancers. 217

218

Fig 3B illustrates both the relative quantities of cell lines for which drug or CRISPR screening 219

data are available (depending on their BRAF status) as well as differences in sensitivity to BRAF 220

inhibition. The greater sensitivity of BRAF-mutated melanomas compared to BRAF-mutated 221

colorectal cancers is well observed for PLX-4720. However, the overlap in the distributions requires 222

a deeper look into the data and a search for more precise explanations of the differences in 223

sensitivity, including within each type of cancer. The finding appears to be similar for CRISPR 224

despite a sample size that is too small; the higher average sensitivity of melanomas even extends to 225

non-mutated BRAF. 226
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Validation of personalized models using CRISPR/Cas9 and drug screening 227

The validation of personalized logical models using these screening data is done with the following 228

rationale. First, the models are personalized using omics data from the cell lines. Then, two 229

separate simulations are performed for each personalized model: one without the inhibition, the 230

other by creating and activating a BRAF inhibitor to mimic the drug or CRISPR inhibition. The 231

ratio of the Proliferation phenotype obtained with inhibition and without inhibition is the proxy 232

used to be compared with the different screening metrics each of which is also standardized (AUC 233

calculated on relative viability for drugs and Bayes factor computed from fold-changes and then 234

scaled). 235

Random forests 236

Random forests are used as an example of a machine learning approach to compare with 237

mechanistic models [42] and are implemented with randomForestSRC R package. Random forests 238

can be seen as an aggregation of decision trees, each trained on a different training set formed by 239

uniform sampling with replacement of the original cohort. Prediction performances are computed 240

using out-of-the bag estimates for each individual (i.e., average estimate from trees that did not 241

contain the individual in their bootstrap training sample) and summarized as percentage of 242

variance explained by the random forest. It is also possible to compute the variable importance 243

that assesses the contribution of variables to the overall performance. The solution adopted in this 244

paper to measure it, and called VIMP in the package, consists in introducing random permutations 245

between individuals for the values of a variable and quantifying the variation in performance 246

resulting from this addition of noise. In the case of key variables for prediction, this perturbation 247

will decrease the performance and will result in a high variable importance [43]. 248

Results 249

A generic logical model for melanoma and colorectal cancers 250

The construction of the logical model aims at summarizing the current molecular understanding of 251

BRAF gene and its molecular partners in both colorectal cancers and melanomas. The focus of this 252

model is put on two important signalling pathways involved in the mechanisms of resistance to 253

BRAF inhibition which are the ERK1/2 MAPK and PI3K/AKT pathways [44,45]. 254

The MAPK pathway encompasses three families of protein kinases: RAF, MEK, ERK. If RAF is 255

separated into two isoforms, CRAF and BRAF, the other two families MEK and ERK are 256

represented by a single node. When BRAF is inhibited, ERK can still be activated through CRAF, 257

and BRAF binds to and phosphorylates MEK1 and MEK2 more efficiently than CRAF [46], 258

especially in his V600E/K mutated form. When PI3K/AKT pathway is activated, through the 259

presence of the HGF (Hepatocyte Growth Factors), EGF (Epidermal Growth Factors) and FGF 260

(Fibroblast Growth Factors) ligands, it leads to a proliferative phenotype. The activation of this 261

pathway results in the activation of PDPK1 and mTOR, both able to phosphorylate p70 262

(RPS6KB1) which then promotes cell proliferation and growth [47]. There has been some evidence 263

of negative regulations of these two pathways carried out by ERK itself [48]: phosphorylated ERK 264

is able to prevent the SOS-GRB2 complex formation through the activation of SPRY [49], inhibit 265

the EGF-dependent GAB1/PI3K association [50] and down-regulate EGFR signal through 266

phosphorylation [48]. The model also accounts for a negative regulation of proliferation through a 267

pathway involving p53 activation in response to DNA damage (represented by ATM); p53 hinders 268
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proliferation through the activation of both PTEN, a PI3K inhibitor, and p21 (CDKN1A) 269

responsible for cell cycle arrest. 270

The generic network presented in Fig 4 recapitulates the known interactions between the 271

biological entities of the network. The network was first built from the literature, and then was 272

verified and completed with potential missing connections using SIGNOR database [51]. More 273

details about the model can be found in the GINsim annotation file of the model [52], available in 274

Supporting Information. 275

276

Fig 4. Logical model of signalling pathways around BRAF in colorectal and
melanoma cancers. Grey nodes represent input nodes, which may correspond to the
environmental conditions. Blue nodes accounts for families. Light blue node represents the output
of the model. Square nodes represent multi-valued variable (MEK, ERK, p70 and Proliferation).
Note that Proliferation is used as the phenotypic read-out of the model.

We hypothesize that a single network is able to discriminate between melanoma and CRC cells. 277

These differences may come from different sources. One of them is linked to the negative feedback 278

loop from ERK to EGFR. As mentioned previously, this feedback leads to one important difference 279

in response to treatment between melanoma and CRC: BRAF (V 600E) inhibition causes a rapid 280

feedback activation of EGFR, which supports continued proliferation. This feedback is observed 281

only in colorectal since melanoma cells express low levels of EGFR and are therefore not subject to 282

this reactivation [21]. Moreover, phosphorylation of SOX10 by ERK inhibits its transcription 283

activity towards multiple target genes by interfering with the sumoylation of SOX10 at K55, which 284

is essential for its transcriptional activity [53]. The absence of ERK releases the activity of SOX10, 285

which is necessary and sufficient for FOXD3 induction. FOXD3 is then able to directly activate the 286

expression of ERBB3 at the transcriptional level, enhancing the responsiveness of melanoma cells to 287

NRG1 (the ligand for ERBB3), and thus leading to the reactivation of both MAPK and 288

PI3K/AKT pathways [53]. Furthermore, it has been shown that in colorectal cells, FOXD3 inhibits 289
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EGFR signal in vitro [54]. Interestingly, SOX10 is highly expressed in melanoma cell lines when 290

compared to other cancer cells. In the model, we define SOX10 as an input because of the lack of 291

information about the regulatory mechanisms controlling its activity. The different expression levels 292

of SOX10 have been reported to play an important role in melanoma (high expression) and 293

colorectal (low expression) cell lines. 294

The features and expected behaviours for both cancers were formulated as assertions of the 295

model and verified at each step of the model construction (Table 1) through the automatized 296

model-checking framework described in Methods. The tool enables to easily extend the model with 297

new components, while ensuring that the constraints on which the model was built are maintained. 298

Table 1. List of assertions used to validate the logical model.

Assertions Refs

1: BRAF inhibition causes a feedback activation of EGFR in colorectal cancer and
not in melanoma.

[21]

2: MEK inhibition stops ERK signal but activates the PI3K/Akt pathway and
increases the activity of ERBB3.

[48, 55]

3: HGF signal leads to the reactivation of the MAPK and PI3K/AKT pathways, and
resistance to BRAF inhibition.

[56]

4: BRAF inhibition in melanoma activates the SOX10/FOXD3/ERBB3 axis, which
mediates resistance through the activation of the PI3K/AKT pathway.

[53]

5: Overexpression/mutation of CRAF results in constitutive activation of ERK and
MEK also in the presence of a BRAF inhibitor.

[57] [58]

6: Early resistance to BRAF inhibition may be observed in case of PTEN loss, or
mutations in PI3K or AKT.

[57]

7: Experiments in melanoma cell lines support combined treatment with BRAF/MEK
+ PI3K/AKT inhibitors to overcome resistance.

[57]

8: BRAF inhibition (Vemurafenib) leads to the induction of PI3K/AKT pathway
and inhibition of EGFR did not block this induction.

[59]

9: Induction of PI3K/AKT pathway signaling has been associated with decreased
sensitivity to MAPK inhibition.

[59]

The logical model formalizes the knowledge compiled from different sources. It highlights the 299

role of SOX10, FOXD3, CRAF, PI3K, PTEN and of EGFR in resistance to anti-BRAF treatments. 300

The purpose here is not to suggest new pathways that may be responsible for resistance but to 301

formally confirm what has been suggested and support hand-waving explanations with a 302

mathematical model. The model can be further used to simulate drug experiments and suggest 303

conditions for which the treatment may be efficient or not. Adapting the generic model to each 304

cancer type or cancer cell line will allow to search for the samples that do not respond to treatment, 305

suggest the possible reasons for this resistance, but still focusing on the model components 306

(Supplementary material, Fig S1). 307

Differential sensitivities to BRAF targeting explained by personalized logical 308

models 309

Once the logical model consistency has been validated, personalized models are generated for each 310

cell line by integrating their interpreted genomic features directly as model constraints or 311

parameters. Their sensitivity to BRAF inhibition is then compared to experimentally observed 312

sensitivities (Fig 5). In all the following analyses, we focus on three different personalization 313

April 16, 2020 11/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.27.119016doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119016
http://creativecommons.org/licenses/by/4.0/


strategies using: only mutations as discrete personalization (Fig 5A, upper row), only RNA as 314

continuous personalization (Fig 5A, middle row) or mutations combined with RNA (Fig 5A, lower 315

row). These choices reflect first of all the following a priori : mutations are much more drastic and 316

permanent changes than RNA, whose expression levels are more subject to fluctuation and 317

regulation. The objective is also to answer the following questions: What type of data is most likely 318

to explain the differences in responses? Is it relevant to combine them? Fig 5 shows an example of 319

the type of analyses possible with personalized models, zooming in more and more on the details 320

from Fig 5A to Fig 5C. 321

322

The first approach consists in using only mutations as discrete personalization (Fig 5A, upper 323

row): the mutations identified in the dataset and that are present in the regulatory network are set 324

to 1 for activating mutations and set to 0 for inactivating mutations. In this case, the Proliferation 325

scores from personalized models significantly correlate with both BRAF drug inhibitors (PLX-4720 326

and Dabrafenib) and both CRISPR datasets (using Pearson correlations). Note that the opposite 327

directions of the correlations for the drug and CRISPR datasets are due to the fact that cell lines 328

sensitive to BRAF inhibition result in low AUCs, and high scaled Bayesian factors, respectively, 329

and, if the models are relevant, to low standardized Proliferation scores. Looking more closely at 330

the corresponding scatter plot for PLX-4720 (Fig 5B, upper left panel), it can be seen that this 331

correlation results from the model’s ability to recover the highest sensitivity of the BRAF-mutated 332

cell lines that form an undifferentiated cluster on the left side. These cell lines are indeed relatively 333

more sensitive than non-mutated BRAF cell lines. However, the integration of mutations alone does 334

not explain the significant differences within this subgroup (AUC between 0.55 and 0.9). A very 335

similar behaviour can be observed when comparing model simulations with CRISPR data (Fig 5B, 336

upper right panel). 337

338

Using only RNA data as continuous personalization (Fig 5A and B, middle rows) is both less 339

informative and more difficult to interpret. For continuous data such as RNAseq data, we 340

normalize the expression values, following the rules described in Methods section and in [32], and 341

set both the initial conditions and the transition rates of the model variables to the corresponding 342

values. Correlations with experimental BRAF inhibitions appear weaker and more uncertain. 343

The key point, however, is that the combination of mutations and RNA, as depicted in Fig 5A 344

and B lower rows, seems to be more relevant. This is partially true in quantitative terms, looking at 345

the correlation in Fig 5 but it is even easier to interpret in the corresponding scatter plots. 346

Comparing first the Broad CRISPR scatter plots using mutations only (Fig 5B, upper right) and 347

using both mutations and RNA (Fig 5B, lower right), we can observe that non-responsive cell lines 348

(scaled Bayesian factor below 0), grouped in the lower right corner and correctly predicted using 349

only mutations stayed in the same area: these strong mutational phenotypes have not been 350

displaced by the addition of RNA data. Other cell lines previously considered to be of intermediate 351

sensitivity by the model (e.g., COLO-678 or SK-MEL-2) were shifted to the right, consistent with 352

the lack of sensitivity observed experimentally. Finally, BRAF-mutated cell lines, previously 353

clustered in one single column on the left using only mutations (with normalized Proliferation 354

scores around 0.5), have been moved in different directions. Many of the most sensitive cell lines 355

(scaled Bayesian factor above 2) have been pushed to the left in accordance with the high 356

sensitivities observed experimentally (e.g., HT-29 or SK-MEL-24). It is even observed that the 357

model corrected the position of the two BRAF mutated cell lines, but whose sensitivity is 358

experimentally low (melanoma cell line HT-144 and colorectal cell line HT-55). Only one cell line 359

(SK-MEL-30) has seen its positioning evolve counter-intuitively as a result of the addition of RNA 360

in the personalization strategy: relatively sensitive to the inhibition of BRAF, it has, however, seen 361
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its standardised Proliferation score approach 1. All in all, this contribution of RNA data results in 362

significant correlations even when restricted to BRAF-mutated cell lines only (R=0.69, 363

p.value=0.006). 364

365

A similar analysis can be made of the impact of adding RNA data to personalization when 366

comparing with the experimental response to PLX-4720 (Fig 5B, upper and lower left panels). 367

Most of the non-sensitive cell lines (upper right corner) have not seen the behaviour of the 368

personalized models change with RNA addition. However, the numerous BRAF-mutated cell lines 369

previously grouped around standardized Proliferation scores of 0.5, are now better differentiated 370

and their sensitivity predicted by personalized models has generally been revised towards lower 371

scores (i.e., higher sensitivity). Similar to the CRISPR data analysis, three sensitive cell lines have 372

been shifted to the right and are misinterpreted by the model. As a result, the correlation restricted 373

to BRAF-mutated cell lines is no longer significant (R=0.26, p.value=0.1). 374

An investigative tool 375

These personalized models are not primarily intended to be predictive tools but rather used to 376

reason and explore the possible mechanisms and specificities of each cell line. 377

To continue on the previous examples, the two melanoma cell lines, HT-144 and SK-MEL-24, 378

share the same mutational profiles but have very different sensitivities to BRAF targeting (Fig 5C). 379

This inconsistency is partially corrected by the addition of the RNA data, which allows the model 380

to take into account the difference in CRAF expression between the two cell lines. In fact, CRAF is 381

a crucial node for the network since it is necessary for the reactivation of the MAPK pathway after 382

BRAF inhibition. Therefore, the high sensitivity of SK-MEL-24 may be explained by its low CRAF 383

expression level, which makes the reactivation of the MAPK pathway more difficult for this cell line. 384

Conversely, in HT-144, the high level of CRAF expression allows the signal to flow properly 385

through this pathway even after BRAF inhibition, thus making this cell line more resistant. The 386

importance of CRAF expression is also evident in HT-29, a CRC BRAF mutated cell line with 387

other important mutations (PI3K activation and p53 deletion). However, it remains sensitive to 388

treatment, due to its very low level of CRAF expression. 389

390

Another interesting contribution of RNA appears in the melanoma cell line UACC-62, which is 391

particularly sensitive to treatment. The model is able to correctly predict its response once RNA 392

levels are integrated. In this case, the reason for sensitivity seems to be due to the low level of 393

PDPK1, which makes it difficult to activate p70 and thus trigger the resistance linked to 394

PI3K/AKT pathway activation. Similarly, the CRC resistant cell line, HT55, which carries only the 395

BRAF mutation, expresses high levels of PDPK1, in addition to high levels of CRAF, supporting 396

the idea that the presence of both MAPK and PI3K/AKT pathways may confer resistance to 397

BRAF inhibition treatments. We can also mention a cluster of RAS mutated cell lines, usually 398

NRAS mutated for melanomas (e.g., SK-MEL-2) and KRAS for colorectal cancers (e.g., 399

COLO-678), which are classified by the model as resistant. Interestingly, in these cell lines, a low 400

level of CRAF is not enough to block the signal of the MAPK pathway, which is stronger in the 401

model because of the simulation of the RAS mutation (RAS is set to 1). 402

Only SK-MEL-30 appears to be incorrectly classified and is observed to be more sensitive than 403

the other cell lines with a similar mutation profile. This could be due to the fact that our network 404

is incomplete and not able to account for some alterations responsible for this cell line sensitivity. 405

The exploration of the mutational profile for this cell line might be a hint of The problem may also 406

come from the fact that this cell line contains a frameshift mutation of RPS6KB2 (p70 node) not 407
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referenced in OncoKB and therefore not included in the simulation. 408

409

The versatility of the logical formalism makes it possible to test other node inhibitions as in 410

Fig 6, but remains limited by the scope of the model. Since the present model has been designed 411

around BRAF, its regulators have been carefully selected and implemented, which is not necessarily 412

the case for other nodes of the model. Therefore, these personalized models can be used to study 413

how comprehensive the descriptions of the regulation of other nodes or parts of the model are. 414

Thus, model simulations show that response trends to TP53 inhibition are consistently recovered by 415

the model (Fig 6B) but the simple regulation of p53 in the model results in coarse-grained patterns, 416

although slightly improved by addition of RNA data. Similar analyses regarding the targeting of 417

PIK3CA (in CRISPR data) simulated, in the model, by the inhibition of PI3K node, can be 418

performed (Fig 6C). Low correlations are an indication highlighting the insufficient regulation of 419

the node. 420

Comparison of the mechanistic approach with machine learning methods 421

In order to provide comparison elements unbiased by prior knowledge or by the construction of the 422

model, we performed some simple machine learning algorithms. Random forests have been fitted 423

with inputs (mutations and/or RNA data) and outputs (sensitivities to drug or CRISPR BRAF 424

inhibition) similar to those of logical models and the corresponding predictive accuracies are 425

reported in Fig S2. The first insight concerns data processing. The percentages of variance 426

explained by the models are similar (around 70% of explained variance for drug sensitivity 427

prediction) in the following three cases: unprocessed original data (thousands of genes), 428

unprocessed original data for model-related genes only (tens of genes), and processed profiles of cell 429

lines (tens of genes). This supports the choice of a model with a small number of relevant genes, 430

which appear to contain most of the information needed for prediction. Second, the absolute level 431

of performance appears much lower for CRISPR (between 30 and 50%) probably suffering from the 432

lower number of samples, especially in cases where the number of variables is the highest. This 433

tends to reinforce the interest of mechanistic approaches that do not use any training on the data 434

for smaller datasets, less suitable for learning. Finally, while mutations and RNA data seem to 435

provide the same predictive power (especially for drugs), using the two together does not 436

necessarily result in a better performance. 437

438

Variable importance in these different random forests are reported in Fig S3 and are consistent 439

with the analysis of mechanistic models. The mutational status of BRAF is definitely the most 440

important variable followed by mutations in RAS or TP53. Concerning RNA levels, the most 441

explanatory variables seem to be FOXD3 or PTEN, in line with model definitions. 442

Discussion 443

The emergence of high-throughput data has made it easier to generate models for prognostic or 444

diagnostic predictions in the field of cancer. The numerous lists of genes, biomarkers and predictors 445

proposed have, however, often been difficult to interpret because of their sometimes uncertain 446

clinical impact and little overlap between competing approaches [60]. Methods that can be 447

interpreted by design, which integrate a priori biological knowledge, therefore appear to be an 448

interesting complement able to reconcile the omics data generated and the knowledge accumulated 449

in the literature. 450

451
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These benefits come at the cost of having accurate expert description of the problem to provide 452

a relevant basis to the mechanistic models. This is particularly true in this work since the 453

personalized models all derive from the same structure of which they are partially constrained 454

versions. It is therefore necessary to have a generic model that is both sufficiently accurate and 455

broad enough so that the data integration allows the expression of the singularities of each cell line. 456

If this is not the case, the learning of logical rules or the use of ensemble modelling could be 457

favoured, usually including perturbation time-series data [61]. It should also be noted that, in the 458

BRAF model presented here, the translation of biological knowledge into a logical rule is not 459

necessarily deterministic and unambiguous. The choices here have been made based on the 460

interpretation of the literature only. And the presence of certain outliers, i.e., cell lines whose 461

behaviour is not explained by the models, may indeed result from the limitations of the model, 462

either in its scope (important genes not integrated), or in its definition (incorrect logical rules). 463

More global or data-driven approaches to define the model would be possible but would require 464

different training/validation steps and different sets of data. 465

466

The second key point is the omics data used. For practical reasons, we have focused on mutation 467

and RNA data. The legitimacy of the former is not in doubt, but their interpretation is, on the 468

other hand, a crucial point whose relevance must be systematically verified. The omission or 469

over-interpretation of certain mutations can severely affect the behaviour of personalized models. 470

Validation using sensitivity data provides a good indicator in this respect. However, the question is 471

broader for RNA data: are they relevant data to be used to personalize models, i.e., can they be 472

considered good proxies for node activity? The protein nature of many nodes in the model would 473

encourage the use of protein level data instead, or even phosphorylation levels if they were available 474

for these data. One perspective could even be to push personalization to the point of defining 475

different types of data or even different personalization strategies for each node according to the 476

knowledge of the mechanisms at work in the corresponding biological entity. A balance should then 477

be found to allow a certain degree of automation in the code and to avoid overfitting. 478

479

Despite these limitations, the results described above support the importance of combining the 480

integration of different types of data to better explain differences in drug sensitivities. There was 481

no doubt about this position of principle in general [62], and in particular in machine learning 482

methods [3, 63]. The technical implementation of these multi-omic integrations is nevertheless more 483

difficult in mechanistic models where the relationships between the different types of data need to 484

be more explicitly formulated [8]. The present work therefore reinforces the possibility and value of 485

integrating different types of data in a mechanistic framework to improve relevance and 486

interpretation and illustrates this by highlighting the value of RNA data in addition to mutation 487

data in predicting the response of cell lines to BRAF inhibition. In addition, one piece of data that 488

could be further exploited is that of the specific behaviour of the drugs or inhibitors studied, since 489

for instance some BRAF inhibitors have affinities that vary according to mutations in the BRAF 490

gene itself. The integration of truly precise data on the nature of the drug is nevertheless limited by 491

logical formalism and is more often found in less constrained approaches [64]. 492

493

To conclude, we provide a comprehensive pipeline from clinical question to a validated 494

mechanistic model which uses different types of omics data and adapts to dozens of different cell 495

lines. This work, which is based only on the interpretation of data and not on the training of the 496

model, continues some previous work that has already demonstrated the value of mechanistic 497

approaches to answer questions about response to treatment, especially using dynamic data [65], 498

and sometimes about the same pathways [8]. In this context, our approach proves the interest of 499
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logical formalism to make use of scarce and static data facilitating application to a wide range of 500

issues and datasets in a way that is sometimes complementary to learning-based approaches. 501
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Fig 5. Validation of personalized models with cell lines data. (A) Pearson correlations
between normalized Proliferation scores from personalized models and experimental sensitivities to
BRAF inhibition by drug or CRISPR targeting; each row corresponds to a different personalization
strategy; only the values for the significant correlations are displayed. (B) Scatter plots with
non-overlapping points corresponding to correlations of panel A, with the three personalization
strategies, focusing one one drug (PLX-4720) and one CRISPR dataset (Broad) only. (C)
Enlargement of the scatter plot comparing model scores (personalized with mutations and RNA)
and experimental sensitivity to CRISPR targeting of BRAF (left) with the corresponding table
representing the omics profiles used for each cell line to explore the response mechanisms. This
panel can be advantageously replaced by one of the interactive plots proposed in the provided code.
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Fig 6. Application of personalized models to other CRISPR targets. (A)
Personalization strategies using either mutations only (as discrete data) or combined with RNA (as
continuous data) with their corresponding scatter plots in panels B and C. (B) Scatter plot
comparing normalized Proliferation scores of p53 inhibition in the models with experiment
sensitivity of cell lines to TP53 CRISPR inhibition, indicating p53 mutational status as interpreted
in the model. Pearson correlations and the corresponding p-values are shown. (C) Similar analysis
as in panel B with PI3K model node and PIK3CA CRISPR inhibition.
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Supporting information 502

Code Code and data required to reproduce the study and all the plots are available in the 503

following repositories: 504

• Model-checking: https://github.com/sysbio-curie/MaBoSS test 505

• Data, model personalization and analyses: 506

https://github.com/sysbio-curie/PROFILE BRAF Model 507

S1 Fig. Mapping of the data in the RNAseq data on the regulatory network. The 508

expression data from both melanoma and colorectal cell lines used in this study are mapped onto 509

the network. The scores correspond to the difference in the mean expression of the normalized data 510

(using PROFILE method [32]). Red nodes show higher gene expression in melanomas and blue 511

nodes higher expression in colorectal cancer cell lines. If most active nodes are equivalent to 512

phosphorylated data, the mapping of RNAseq data informs on the gene status and the possibilities 513

to activate the nodes. Thus, conclusions should be made with this fact in mind. At the gene level, 514

then, genes such as SOX10, FOXD3, AKT, p21 and SPRY tend to have a higher expression in 515

melanomas confirming their role in response to the treatment, whereas genes such as EGFR, 516

ERBB2, MET, PTEN and FGFR2 are more relavant to colorectal cancers. This figure reinforces 517

the idea that the mechanisms related to the response to anti-BRAF treatment may have different 518

outcomes in both cancers bascule of a different gene context. 519

S2 Fig. Performances of random forests for BRAF sensitivity prediction. Random 520

forests algorithms are trained with different omics types (mutations, RNA or both) and data 521

processing (original data or processed data) to predict sensitivity to BRAF inhibition, through drug 522

or CRISPR screening. Performances are expressed as percentage of explained variance by the fitted 523

random forests 524

S3 Fig. Variable importance for BRAF sensitivity prediction by random forests. 525

Variable importance for inhibition of BRAF by drugs (first row in Fig S2), when random forests 526

algorithms are trained with different omics types (mutations, RNA or both) and data processing 527

(original data or processed data). Higher values of variable importance correspond to higher 528

decrease in prediction performance when the variable is disturbed by permutation and therefore to 529

variables with a positive contribution to predictive performance. 530

S4 Model The model is provided here in GINSIM format, allowing to visualize the regulatory 531

graph and the logical rules. Additional model files (in MaBoSS format) can be found in the 532

dedicated GitHub: https://github.com/sysbio-curie/PROFILE BRAF Model/Model and will be 533

deposited to model repositories in the logical section of BioModels database 534

(http://biomodels.caltech.edu/) and in GINsim webpage (http://ginsim.org/models repository) 535

upon publication. 536
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17. Flobak Å, Baudot A, Remy E, Thommesen L, Thieffry D, Kuiper M, et al. Discovery of drug
synergies in gastric cancer cells predicted by logical modeling. PLoS computational biology.
2015;11(8).

18. Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis
and molecular therapy. Molecular cancer therapeutics. 2011;10(3):385–394.

19. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved
survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal
of Medicine. 2011;364(26):2507–2516.

20. Kopetz S, Desai J, Chan E, Hecht J, O’dwyer P, Lee R, et al. PLX4032 in metastatic
colorectal cancer patients with mutant BRAF tumors. Journal of Clinical Oncology.
2010;28(15 suppl):3534–3534.

21. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, et al.
Unresponsiveness of colon cancer to BRAF (V600E) inhibition through feedback activation
of EGFR. Nature. 2012;483(7387):100–103.

22. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. RAF inhibitor
resistance is mediated by dimerization of aberrantly spliced BRAF (V600E). Nature.
2011;480(7377):387.

23. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, et al. Reversible and adaptive
resistance to BRAF (V600E) inhibition in melanoma. Nature. 2014;508(7494):118–122.

24. Baur F, Nietzer SL, Kunz M, Saal F, Jeromin J, Matschos S, et al. Connecting Cancer
Pathways to Tumor Engines: A Stratification Tool for Colorectal Cancer Combining Human
In Vitro Tissue Models with Boolean In Silico Models. Cancers. 2019;12(1):28.
doi:10.3390/cancers12010028.

25. Cho SH LHLHCK Park SM. Attractor landscape analysis of colorectal tumorigenesis and its
reversion. BMC Syst Biol. 2016;1. doi:10.1186/s12918-016-0341-9.

26. Saadatpour A, Albert R. Boolean modeling of biological regulatory networks: a methodology
tutorial. Methods. 2013;62(1):3–12.

April 16, 2020 21/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.27.119016doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119016
http://creativecommons.org/licenses/by/4.0/
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Toward explainable anticancer compound sensitivity prediction via multimodal
attention-based convolutional encoders. Molecular Pharmaceutics. 2019;.

65. Saez-Rodriguez J, Blüthgen N. Personalized signaling models for personalized treatments.
Molecular Systems Biology. 2020;16(1).

April 16, 2020 24/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.27.119016doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119016
http://creativecommons.org/licenses/by/4.0/

