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Abstract 
 
Deposits of abnormal tau protein inclusions in the brain are a pathological hallmark of Alzheimer's 
disease (AD), and are the best predictor of neuronal loss and clinical decline, but have been limited 
to postmortem assessment. Imaging-based biomarkers to detect tau deposits in vivo could leverage 
AD diagnosis and monitoring beginning in pre-symptomatic disease stages. Several PET tau 
tracers are available for research studies, but validation of such tracers against direct detection of 
tau deposits in brain tissue remains incomplete because of methodological limitations. Confirmation 
of the biological basis of PET binding  requires large-scale voxel-to-voxel correlation has been 
challenging because of the dimensionality of the whole human brain histology data, deformation 
caused by tissue processing that precludes registration, and the need to process terabytes of 
information to cover the whole human brain volume at microscopic resolution. In this study, we 
created a computational pipeline for segmenting tau inclusions in billion-pixel digital pathology 
images of whole human brains, aiming at generating quantitative,  tridimensional tau density maps 
that can be used to decipher the distribution of tau inclusions along AD progression and validate 
PET tau tracers. Our pipeline comprises several pre- and post-processing steps developed to 
handle the high complexity of these brain digital pathology images. SlideNet, a convolutional neural 
network designed to process our large datasets to locate and segment tau inclusions, is at the core 
of the pipeline. Using our novel method, we have successfully processed over 500 slides from two 
whole human brains, immunostained for two phospho-tau antibodies (AT100 and AT8) spanning 
several Gigabytes of images. Our artificial neural network estimated strong tau inclusion from image 
segmentation, which performs with ROC AUC of 0.89 and 0.85 for AT100 and AT8, respectively. 
Introspection studies further assessed the ability of our trained model to learn tau-related features. 
Furthermore, our pipeline successfully created 3D tau inclusion density maps that were co-
registered to the histology 3D maps. 
 
 
 
 
 
 
 
 
 
Keywords 
Machine learning, deep learning, convolutional neural networks, Alzheimer's disease, 
histopathology, digital pathology, big data, imaging 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2020. ; https://doi.org/10.1101/698902doi: bioRxiv preprint 

https://doi.org/10.1101/698902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Introduction 
 
Compared to other animals, the human brain grew to a considerable size and harbor an 
astronomical number of neurons and other cells that organized in structures, each one with their 
particularities and cytoarchitectonic profile. Humans suffer from neurodegenerative conditions that 
are unique to the species, such as Alzheimer's and Parkinson's disease. These neurodegenerative 
conditions are increasing in prevalence to epidemic numbers, especially with the aging of the 
population and already cause a high societal and economic burden.  
 
In neurodegenerative diseases (ND), abnormal protein deposits and neuronal loss progressively 
overtake an expanding landscape of brain areas in stereotypical patterns, providing the 
neuropathological basis of clinical staging systems. Postmortem examination remains the gold 
standard for diagnosing, staging and quantifying neurodegenerative disease, a poor substitute for 
aiding patients during life. However, neuroimaging could potentially facilitate differential diagnosis 
of NDs, progression monitoring, improve understanding of the underlying pathophysiological 
processes, and monitor the efficacy of therapeutic agents [1]  
 
Advances in neuroimaging have created new opportunities to detect structural, functional, and 
molecular brain changes in vivo while preserving the overview landscape. However, no 
neuroimaging modality offers the resolution obtained by microscopy. Thus the ability to merge 
different patterns of brain maps obtained at different scales in the same standard spaces would 
allow merging different information and, as a consequence, improve the analytical power of in vivo 
neuroimaging. Correlation to histology is considered the gold standard validation method for 
neuroimaging. 
 
Molecular imaging is particularly relevant to NDs, by allowing spatially-resolved detection of 
abnormal proteinaceous deposits. [2, 3]. Since abnormal protein deposits start accumulating years 
before the clinical onset, an ability to reliably image and quantify them in vivo would enable earlier 
case management and vastly improved trials of new potential therapies. Because of this potential, 
recent years have seen the rapid development of several positron emission tomography (PET) 
radioligands for in vivo labeling of tau and β-amyloid [2, 3]., neuropathological hallmarks of the most 
common ND, Alzheimer's disease [4], although as yet only a few β -amyloid tracers are approved 
for clinical use. Many potential tracers have been years in the experimental stages. Because their 
accuracy and specificity to detect ND-associated protein deposits remain unclear. While PET-based 
β-amyloid and tau studies have shown good correlations with postmortem analyses of β -amyloid 
burden in severe AD stages[5-7], these tracers' sensitivities to detect scarce protein deposits, 
remain insufficient [8, 9]. Also, questions about the nature of the off-target binding, the influence of 
aging, and comorbid pathologies in the signal are still open [10-12] highlighting the importance of 
developing validation methods that can serve as the basis for improving the interpretation of PET 
images.  However, the key barrier to widely implementing such technologies for diagnosis and 
staging methods is lack of reliable, validated means to directly assign molecular signals detected 
by external imaging to the corresponding neural microstructures from which they emanate.  High-
resolution validation methods allowing for dense and localized (e.g., voxel-to-voxel) comparison of 
PET signal to histological measures of the target protein and other elements involved in tracer 
binding (off-target signal), is the stepping stone to expedite the inclusion of more PET tracers in the 
clinical repertoire. Quantitative 3D mapping of abnormal protein inclusions of the whole human brain 
has never been achieved because they require adding multiple-step detection methods 
(immunohistochemistry) in large amounts of brain tissue which generates even more deformation, 
tissue loss and a method to detect and quantify the abnormal protein in situ that has to resolve 
differences in shading and background noise. All these also generate even more massive datasets 
of images. Finally, for assisting validation, these protein maps need to be registered to the 
neuroimaging datasets with high spatial precision.  
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Here, we present the solution for quantitative 3D mapping of abnormal protein deposits in the 
human brain using a semi-automated computational pipeline. Our pipeline leverages our previous 
solutions for histology to imaging co-registration and introduces a wide range of computer vision 
techniques together with modern deep learning (DL) algorithms and high-performance computing 
(HPC) capabilities, being able to process large-scale histological datasets, leveraging a voxel-to-
voxel correlation to neuroimaging modalities. It took us three years of full-time work to develop this 
pipeline. We chose to focus on AD-tau inclusions because most of the current efforts in PET tracer 
development on neurodegenerative diseases focus on tau 
 
We provide a detailed description of the results and quality control steps of the supporting 
computational methods of our pipeline. We will illustrate the utility of our pipeline for calculating 
robust anatomical priors to validate neuroimaging methods applied to two postmortem human 
brains, harboring moderate and severe Alzheimer's disease pathology, respectively. The proposed 
pipeline allowed us to construct quantitative 3D whole human brain maps of tau protein detected 
by different antibodies at early stages for the first time in the literature. To develop and demonstrate 
the functionality of the proposed pipeline, we immunostained and digitalized over 500 whole mount 
human brain slides at high resolution, spanning several Gigabytes of data, and created 3D maps of 
three different forms of abnormal tau protein in each case and registered each 3D histological map 
to the MRI volume. Quality control steps showed excellent agreement between DL-based 
segmentation of tau inclusions against manual segmentation results based on the area under the 
ROC curve and Dice coefficient metrics. Implementation of these pipeline represents a way forward 
to validate molecular imaging and advance diagnostics tools for neurodegenerative conditions. 
 
 
RESULTS 
 
Pipeline for creating High-Resolution 3D mapping of immunohistochemical findings in 
whole human brains 
 
We engineered a comprehensive pipeline (Figure 1) suitable for rendering quantitative 3D mapping 
of objects of interest (lesions, inclusions) in the whole postmortem human brain that can be 
deformed for co-registering with other 3D maps of the same brain. Our pipeline relies on three 
pillars:  whole-brain histological processing [13, 14], 3D and 2D registration algorithms [13], and 
novel deep-learning algorithms to segment and quantify objects of interest in terabytes-large 
imaging datasets. 
 
We previously had developed and published the protocols for the two first pillars. Here, we will focus 
on the pipeline development and quality control step for enabling scaling whole -brain section 
immunostaining and developing the deep learning algorithms for segmentation.   Because of the 
scale of the human brain,  we had to create our imaging equipment and software to enable analysis 
of such large histological sections. To demonstrate the clinical usefulness of our pipeline, we chose 
to test it for quantifying and mapping various abnormal tau proteinaceous inclusions seen in 
Alzheimer's disease. We processed two whole human brains (one with moderate and another with 
severe AD neuropathology - case #1: Braak stage 4 [15] and case #2: Braak stage 6) in 1608 
coronal whole brain sections of which 524 underwent immunohistochemistry. Then, we used our 
computational pipeline to scan the histological sections at microscopic resolution, quantify tau 
inclusions in each voxel, map the inclusions in 3D and register those maps to the corresponding 
MRI volume. 
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Figure 1: Tau inclusion mapping pipeline. 1. Imaging module; 2. Blockface pre-processing module; 3. 
Low-resolution histology pre-processing module; 4. High-resolution histology segmentation module; 
5. MRI pre-processing module; 6. 3D heatmap to MRI registration. 
 
 
We broke down our pipeline in a series of histological and computation modules (Figure 1) that can 
be executed independently to allow for scalability. Briefly, the first module includes acquiring 
structural MRI to create an MRI dataset (Neuroimaging Acquisition Module). We acquired 
postmortem MRI sequences in cranio, right before procurement [13]. Next, upon procurement, the 
brain was processed and embedded as a whole in celloidin and coronally cut into 160-micrometer 
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thickness serial sections [13, 16] (Histological Processing Module). The section thickness was 
selected to balance the risk of tissue tear and the efficiency of antibody penetration. Following the 
brain slicing process, the pipeline created two additional datasets: (a) serial histological sections 
(about 800 per case, coronal axis) followed by the Immunostaining module and, (b) blockface 
image dataset comprising digital images of each histological section generated by photographing 
the celloidin block before each microtome stroke with a camera mounted on a photo stand. The 
blockface image dataset proceeds to the Blockface Processing Module, which generates a  
blockface volume, which is an intermediate space for registering both the 2D tau maps and the MRI 
volume for enabling neuroimaging to histology voxel-to-voxel comparisons [13].  We provide details 
of the Neuroimaging Acquisition, Histological processing, and Blockface processing modules in 
Methods and in our previous publications [13, 14, 17-19]. Hereon, we will focus on the Modules of 
this pipeline developed specifically for this study.  
 
It is often unclear what is the biological basis of the signal or which form(s) of a protein a PET-tracer 
is binding in vivo. Therefore, probing different histological targets within the same image voxel is 
important for validating neuroimaging results. 
 

 
Figure 2: a) example of a stitched image; b) 100% zoom of a hippocampus area (scalebar is 0.3mm); 
c) example of tau inclusions our system is capable of detecting. Green arrow shows an NFT, red arrow 
shows a thread and blue arrow show as plaque. 
 
Alzheimer's disease courses with the accumulation of different types of abnormal tau protein. Using 
immunohistochemistry in the Immunostaining Module (Figure 2), we generated histological section 
sets to detect three different abnormal tau forms per case (6 maps in total). We labeled phospho-
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tau Ser 202 with monoclonal antibody AT8, phospho-tau Ser 404 with monoclonal antibody AT100, 
and conformationally changed tau, recognized by monoclonal antibody MC1.   Clinical 
neuroimaging offers a spatial resolution spanning from 1 to 5 mm. Conversely, the spatial resolution 
of histological sections is much higher, creating an opportunity to generate multiple histological 
maps within one image-voxel. Using our protocol, a series of 4 histological sections encompass a 
1mm thickness after registration to MRI. Thus, we divided the histological sections into 
approximately 200 sets of 4 sections to accommodate the different tau stainings at an interval in 
which each image voxel would have a corresponding histology labeling for each antibody and still 
save extra sections for additional or repeat stainings. Each whole-brain coronal section selected for 
immunostaining was immunolabeled with one antibody only, to avoid mixing signals,  and mounted 
on 6" x4" inch glass slides. We maximized the number of sections per staining batch to avoid bias 
due to inherent batch variations. A single technician could immunostain two batches of 24 sections 
per week. Thus, it takes about four weeks to immunostain sections corresponding to a 1 mm interval 
(200 coronal sections if spanning the whole brain). Details of the immunohistochemical method, 
including adaptations for enabling staining whole coronal sections, using free-floating protocols are 
in Methods. 
 
We designed a custom-built whole-slide scanner (Figure 3) because no commercially-available 
option was available to accommodate large tissue sections and required microscopic resolution we 
aimed to achieve. A total of 524 immunostained sections were scanned for quantifying tau 
inclusions (scanning and stitching module). The scanner hardware features a high-precision 
industrial XY stage, a color CCD camera, and a 5.5X machine vision objective mounted directly on 
the camera. As the objective field of view has 3.28 x 2.6 mm, scanning a whole-brain section 
required stitching hundreds of images tiles. We developed an in-house software using Macro 
Manager 2.0  to control the scanner. The software has a user-friendly interface that allows the user 
to select the region-of-interest (ROI) for automatic computing the coordinates of the image tiles 
necessary to cover the selected ROI and synchronize the XY stage movements with image capture. 
The software also allows for adjusting white balance and magnification parameters of the lens. Each 
section generated about 1500 image tiles (20GBs of data) at a resolution of 1.22µm/pixel after 90 
min of scanning. We used  TeraStitcher [20], which is capable of working with several Gigabytes of 
data while maintaining a small memory footprint stitch the tiles. Since it took approximately two days 
to stitch each section, and we used an HPC system to perform stitching in an embarrassingly 
parallel way. The stitching process generated two new imaging datasets. The high-resolution 
digital section dataset with images of approximately 80000x50000 pixels per tissue section 
(another 20GBs of data per slide) were registered to the blockface volume (Figure 2) and 
segmented for tau inclusions to generate first 2D and then 3D spatial heatmaps. As it is unfeasible 
to directly manipulate large datasets in regular workstations, we also created a  (b) low-resolution 
digital section dataset in which the original digital sections were downsampled to a 10% resolution 
to facilitate all computing steps that did not require microscopic resolution, including visual 
inspection of the final stitched images, 2D registration of the histological imaging to the blockface 
image (2D histology registration step) and masking background and any brain area of interest (Fig1-
1b).    
 
2D Inclusion Segmentation And Mapping Module   
 
For simplicity, we broke down this module in sequential steps necessary to prepare the images for 
training and application of the convolutional neural network (CNN) based DL models. The validation 
steps will be described in a separate section. CNN-based segmentation is computationally intense. 
Thus, we first identified imaging regions of interest to decrease computing time. Specifically, we 
masked out pixels of background and white matter tissue to focus in the imaging regions with tau 
deposition. Masks were created using a low-resolution digital section dataset and subsequently 
upsampled and applied to the high-resolution histological images.  
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Figure 3: Left: our customized whole slide scanner. Right: User interface of the controller 
software developed using Micro Manager 2.0 
 
 
SlideNet, a convolutional neural network (CNN) for semantic segmentation (Figure 4).  
 
Architecture and rationale  
 
Based on the literature, the density of tau inclusions in each pixel could be estimated by applying 
thresholding algorithms, assuming the immunostaining would develop in brown color in the target 
tissue (DAB), and the tissue background would be almost transparent. However, despite all 
optimizing steps during immunohistochemistry to achieve a high signal to noise ratio, the failure 
rate for this thresholding strategy high for various reasons. First, a conventional 8-um thick 
histological section is rather transparent, but a section 16x thicker is opaque, especially for the white 
matter tissue. Second, factors hard to control in an experimental setup such as minimal thickness 
variations and hydration level influence the shade of the staining in large sections. Finally, because 
the drying process of such thick sections takes weeks, some degree of microscopic dust may 
deposit over the tissue. To address these challenges, we designed SlideNet, a convolutional neural 
network (CNN) for segmenting inclusions of interest in a setting of lower signal to noise ratio. 
SlideNet, part of 2D inclusion segmentation and mapping Module (Figure 1), uses a UNet based 
architecture (Figure 4), trained to compute a confidence map of the 2D distribution of an object of 
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interest (i.e, tau inclusion) instead of a single class confidence value. Furthermore, we extended 
SlideNet architecture to leverage color information and to optimally work with histological imaging 
resolution (1.22 um/pixel). SlideNet is the core innovation of our pipeline, with higher segmentation 
accuracy and robustness to histological artifacts compared to thresholding algorithms.  
 

 
 
Figure 4: SlideNet architecture. The arrows indicate skip connections that are followed by 
cropped when the right-hand side layer is smaller than the left side layer 
 
SlideNet has an input layer measuring 204x204x3 pixels that correspond to 1mm2 of tissue in our 
scanner resolution to accommodate RGB images. SlideNet features a validation hold-out scheme, 
where training and testing sets were used for model training, and a validation set was used for 
independent network performance statistics.  
 
Network training 
 
For each brain, we randomly sampled 100 imaging patches (1024 x 1024 pixels) per antibody (AT8, 
AT100, and MC1), yielding 600 patches (200 per antibody) from the masked high-resolution 
histological images. Next, the patches underwent semi-automatic labeling of tau and background 
by trained observers, followed by visual quality control and manual editing by other observers (LTG) 
with extensive experience in histological studies. Labeling took approximately 2 hours per patch 
(total 1200 h or 150 days of specialized work). We used 80% of the patches for training, 10% for 
testing, and 10% for validation. SlideNET training took up to 2 days per antibody using a workstation 
with 2 GPUs. The networks were trained until we observed a plateau in the accuracy and loss 
function graphs. The network output probability maps for each patch, which were thresholded at 
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the cut off of 0.7 to create binary tau inclusion masks. The threshold cut-off was set heuristically, 
aiming to achieve high precision. 
 
Validation of the network training 
 
Aiming to validate the SlideNet model, we computed the receiver operating characteristic (ROC) 
and precision-recall curves over the testing and validation sets for each antibody. For ROC, the 
AT8 model achieved an area under the curve (AUC) of 0.85 for both testing and validation datasets, 
while the AT100 model achieved an AUC of 0.87 on testing and 0.89 on the validation dataset. MC1 
model achieved the best ROC results with an AUC of 0.91 on the testing and 0.88 on the validation 
dataset (Figure 5). From thresholded masks, we calculated precision and recall values. We 
obtained precision values of 0.87, 0.87, 0.90 respectively for AT8, AT100, and MC1 in the testing 
datasets and 0.92, 0.92, 0.91 respectively for AT8, AT100, and MC1 in the validation datasets. As 
for the recall, the thresholded masks obtained 0.16, 0.19, 0.12 respectively for AT8, AT100, and 
MC1 in the testing datasets and 0.18, 0.13, and 0.08 respectively for AT8, AT100, and MC1 in the 
validation datasets.  
In terms of precision-recall, AT8 model achieved an AUC of 0.68 for the testing and 0.72 for 
validation; AT100 had a 0.66 for testing and 0.68 for validation, and MC1 had a 0.63 for testing and 
0.63 for validation.  
 

Figure 5: Top row: AT8-stained image patch (left), its respective probability map (middle) and binary 
segmentation after thresholding at 0.5 (right). Bottom row: graphs show ROC (left) and precision-
recall curves (right) for models trained with all full datasets from all stains. Stars on the precision-
recall graphs show where the 0.5 threshold is localized for each stain. 
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Tau Segmentation of the full resolution dataset 
 
To facilitate computation, we divided the high-resolution images into tiles. We then extracted the 
tiles corresponding to unmasked areas (i.e., gray matter tissue) and further divided them into 2550 
patches of 204 x 204 pixels (i.e., CNN training input image size) with 90 pixels of overlap between 
sections. It took about four days for SlideNet to segment the largest dataset (AT8, case 2,160 
sections). The network output probability maps were thresholded to create binary masks. The same 
cut-off values for thresholding were applied to all datasets. Figure 5 shows an example of histology 
tile (left), the probability map created by the CNN (middle), and the thresholded binary mask (right). 
 
 
Tau density maps (heatmaps) 
 
Heatmaps were computed for each tile binary mask (Figure 1f) by calculating the average surface 
area occupied by tau inside 1µm2 of tissue. Next, heatmap tiles were stitched together to form a 
whole section heatmap (Figure 6).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Examples of a heatmap from the early (left) and late (right) stage specimens. Here, warmer 
colors indicate a higher density of tau tangles. 
 
 
2D histology registration and 3D reconstruction Module 
 
During immunostaining, alcohols and solvents cause non-linear deformation to histological 
sections. Thus we registered each low-resolution histological digital image to the corresponding 
blockface image. First, we applied the previously created background masks to the low-resolution 
digital section dataset. Then, we used a combination of open-source registration algorithms to align 
these masked images to their corresponding pre-processed blockface images to create warping 
maps for each section. The 2D registration results were visually inspected, and imperfections were 
corrected manually—most of the imperfections located around the limbic structures. Finally, we 
used the resulting warping maps to register each whole section heatmap to their corresponding 
blockface image, thus allowing for 3D reconstruction of the tau inclusion density maps in the 
blockface image space. The final 3D tau inclusion maps were stored in standard nifti medical 
imaging file format-. We rendered 3D map visualizations using Amira. Figure 7 shows examples of 
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early and late-stage heatmaps overlaid on their corresponding blockface images. Here, the hotter 
colors indicate a higher density of tau inclusions.  
 

 
Figure 7: Volumetric reconstruction of the early (left) and late-stage (right) AT100 tau 
heatmaps around the hippocampus area, overlaid on their respective blockface volumes 
 
 
Histology to MRI 3D registration 
 
The final product of our pipeline was six 3D tau inclusion datasets, showing the distribution of tau 
stained for AT8, AT100, and MCI, on two different whole human brain samples. Figure 8 shows 
example volumetric renderings of tau inclusion maps overlaid on their corresponding MRI images 
on the blockface volume space. Briefly, structural T1-weighted MRIs were warped into the 3D image 
space of the corresponding blockface reconstructions using diffeomorphic spatial normalization in 
ANTs [21, 22]. The diffeomorphic transform matrices were then applied to all the tau inclusion 
heatmaps, for mapping into the structural MR imaging space and resolution.  
 
Transfer learning and additional validation experiments  
 
Considering it is unfeasible to dedicate the same amount of effort we used to generate training data 
for each antibody and case for every new case, we run additional experiments to test how the 
network behaves with different training datasets size and composition. For these experiments, we 
used the following training datasets three full datasets as described above (each containing all 200 
semi-automatically labeled patches per antibody); 3 case #1 (restricted) datasets (each containing 
all 100 semi-automatically labeled patches per antibody from case #1); 3 case #2 (restricted) 
datasets (each containing all 100 semi-automatically labeled patches per antibody from case #2), 
totalizing nine trained models. 
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Figure 8: Top row: case #1 heatmap overlaid on blockface (left) and MRI image (right); 
Bottom row: case #2 heatmap overlaid on blockface (left) and MRI image (right). 
 
 
Next, we wanted to test how a network trained with labeled patches from a given antibody from one 
case, performs in another case. For instance, the network trained using AT8 patches from case #1  
segmented AT8 signal on case #2 with an AUC of 0.7855 in testing dataset segmentation and 
0.7847 in the validation set. Inversely, when the network trained on AT8 patches from case #2 was 
applied to segment AT8 signal on case #1, we obtained an AUC of 0.8642 in the testing set and 
0.7544 in the validation set (Figure 9). 
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Figure 9: Comparison of ROC and precision-recall curves for models trained with complete datasets 
(all images from each marker) versus models trained with a dataset comprised of images only from 
one marker and one brain. Top row: ROC and precision-recall curves for the model trained with the 
complete AT8 dataset where the solid orange and solid purple lines show the results for testing and 
validation datasets. Dashed red and blue lines show testing and validation results for the model 
trained with AT8 images from case #2 alone and dashed green and brown lines show testing and 
validation results for the model trained with AT8 images from case #1 alone. Middle row: same as top 
row but using AT100 images. Bottom row: same as top row but using MC1 images.  
 
 
Finally, we used labeled patches of a given antibody to train a network and then applied the network 
to a validation dataset of another antibody (cross-testing). When a network trained on patches with 
AT100 antibody for training was applied to segment AT8 datasets, we achieved an AUC of 0.8459 
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in AT8 the testing dataset segmentation and 0.8219 in the AT8 validation dataset segmentation. 
Inversely, a network trained on AT8 patches when applied to segment AT100 datasets resulted in 
an AUC of 0.8677 in the AT100 testing dataset and 0.8501 in the AT100 validation dataset (Figure 
10). 
 
Again, we see that the difference between models is mostly negligible, with the curves for the 
models trained with case 1 AT8-only and AT100-only images being slightly inferior to the model 
trained with the complete dataset shows the result of the cross-training experiment. While the ROC 
AUC values do not show a huge difference between models, the precision-recall curves show a 
decrease in model accuracy. These results indicate that mixing images from different Braak stages 
– as in the full model training where images from cases with different Braak are combined, not only 
does not interfere with training but is actually beneficial, suggesting that it is possible to use transfer 
learning [23] thus allowing us to perform the networking training by adding new images and 
improving on top of a previously trained full model.   
 

 
 
Figure 10: Comparison of ROC and precision-recall curves for cross-trained models, where we 
performed training using images from one marker and tested the model on a dataset of a different 
marker. Top row: dashed red and blue lines show results test, and validation results for a model 
trained using AT100 data and used for segmenting AT8 images. For comparison, the orange and 
purple lines show the test and validation results for the model trained with AT8 data. Middle row: 
same and top row, using a model trained on AT8 images to segment AT100 images. Bottom row: same 
as top row, using a model trained on AT100 images to segment MC1 images.  
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Network introspection experiments show the neural network correctly learns tau inclusions 
 
Standard precision-recall and ROC curve evaluation are unable to show whether the network is 
effective learning image features of objects of interest (tau inclusions) or simply overfitting patterns. 
Thus, we used neural network inspection techniques to evaluate the network ability to learn. We 
first used gradient guided class activation maps (Grad-CAM) [24] on randomly selected images to 
evaluate what features were most important to drive the network to a particular decision. Then, we 
added perturbations for checking whether the network was segmenting tau inclusions solely based 
on spatial localization, or it was using relevant features.  
Standard Grad-CAM works by computing the gradient between a user-defined class neuron in the 
last network layer and an intermediary target layer and then multiplying its mean value with the 
target class activations. This technique was designed to work with networks that have a fully 
connected or a global pooling layer [25], which are responsible for mapping the information spread 
across the convolutional layers to a single neuron at the last layer. As  SlideNet rather outputs 2D 
probability maps of inclusions and lacks the property of fragmented mapping information to a single 
neuron, we adapted Grad-CAM by selecting multiple output neurons inside a tau inclusion, on 
randomly selected test images, i.e., neurons that should be activated for the class "tau," with the 
help of a binary mask, and computing the mean of the Grad-CAM maps generated for each selected 
neuron. As seen in Fig 11, a visual inspection of the output CAM maps shows a good agreement 
between the features that drove network decision and tau signal, and the network correctly 
responded to perturbations (Fig 11).  We repeated the same experiment to interrogate if the network 
could correctly discriminate the background. We used a mask to select background neurons, as 
shown in Figure 11d. The resulting Grad-CAM (Figure 11e), shows good localization of the 
background as well. Finally, we interrogated if the network was learning to detect tau based on pixel 
spatial localization only or was using other relevant information. We created a perturbed image by 
partially covering the Tau tangle with a patch of background and repeated the background Grad-
CAM experiment (fig 11f/g). The network correctly recognized the patch as background, suggesting 
that other relevant features inform the network.  
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Figure 11: Network interpretability using Grad-CAM and perturbation techniques. a. Example 
of original tau tangle with some threads. b. Mask used for selecting pixels from (a). c. Grad-
CAM result using pixels from mask in (b) as reference. d. mask used to locate background 
pixels. e. Grad-CAM results using background pixels as reference. f. Perturbed image, where 
a background image patch (indicated by the red arrow) was artificially placed to partially 
cover the tau inclusion. g. mask used for locating background pixel on the perturbed image. 
h. Grad-CAM results using the perturbed image. The red arrow indicates the perturbed 
region that was correctly considered background. The result can be seen in Figure 8, where 
Figure 8a shows the original test image, 8b the binary mask, and 8c the estimated Grad-
CAM, with brighter values indicating stronger influence in the network decision. 
 
 
Registration validation 
 
We quantitatively evaluated registration quality by computing the Dice coefficient (DC) [26] between 
stacks of masks manually labeled on MRI and histological slices. The Dice coefficient measures 
how well co-localized two sets of images are, being a popular image registration metric.  
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Histology to blockface 2d registration evaluation: we manually labeled the superior ventricles 
on histological images for all tau markers, excluding images where the ventricles were not 
completely visible. We then manually labeled the superior ventricles on the respective blockface 
images. All histology ventricle labels were registered to the blockface using the pre-computed 
registration maps. We computed the 2d DC for all registered histology/block label pairs. The same 
procedure was performed for our two cases. Mean DC values for case #1 were 0.9082±0.053 (AT8), 
0.9112±0.0405 (AT100) and 0.88±0.0531 (MC1). Mean DC values for case #2 were 0.8185±0.1070 
(AT8), 0.8385±0.1444 (AT100) and 0.8605±0.1823 (MC1). 
 
MRI to blockface 3d registration evaluation: here, we used the superior ventricle masks created 
by the Freesurfer pipeline (see Methods) and the ground truth MRI labels and were, in turn, 
registered to the blockface volume using the pre-computed 3d registration files. The DC values 
were then computed between each of the blockface ventricle label created for the 2d registration 
evaluation and its respective MRI ventricle label (after registration). The same procedure was 
performed for our two cases. We obtained a mean DC of 0.9047 (±0.032) for case #1 and mean 
DC of 0.8570 (±0.095) for case #2. 
 
Discussion 
 
Molecular imaging is the most promising technique for spatially quantifying proteins in the living 
brain and has the potential to leverage reliable pre-clinical diagnosis and monitoring progression of 
neurodegenerative diseases and other brain conditions. A growing number of neuroimaging tracers 
for ND were developed in the past years, but their bidding properties are not completely mapped in 
living human brains. Validation of such tracers has been performed mostly using autoradiography 
assays on tissue sampled from a few brain regions. This approach makes it difficult to understand 
the nature of off-target signal as well as tracer sensitivity and specificity across different brain areas 
in living conditions. PET validation using histology data of postmortem brains proved valuable both 
for beta-amyloid and tau tracers. However, such studies were limited to a few brain areas, and 
voxel-to-voxel correspondence was compromised by difficulties in registering deformed histological 
images back to the MRI/PET space. Tracer validation using histopathology data is valuable to 
PETb. Creation of whole-brain histological maps for PET tracer validation will leverage the 
validation of existing tracers by unveiling the biding properties and nature of off-target signal and 
facilitate the development of new ones.  
 
We developed a scalable, parallelizable pipeline for mapping particles of interest (here, abnormal 
tau protein) labeled with immunohistochemistry, in whole human brain histological slides by 
incorporating deep learning algorithms and HPC capabilities in previously developed framework to 
register histology to neuroimaging. We used this pipeline to create 3D tau density maps that were 
registered to their respective MRI volume to enable voxel to voxel comparisons.  Such a framework 
can be adapted to any neuroimaging modality such as PET. Previously, we generated histological 
and computational algorithm to process human brains in the whole that minimizes deformations 
and facilitate high precision 3D histology to neuroimaging registration. For completing the pipeline, 
we had to overcome main significant challenges: (1) how to label proteins of interest in supersized 
(6 x 4") histological sections, 2)  how to image supersized histological slides at high resolution that 
do not fit regular microscopes; (3) how to perform large-scale image segmentation on several 
hundreds of images comprising terabytes of data with good accuracy.  
 
We addressed the second challenge by engineering a cost-effective whole slide imaging (WSI) 
system with a large travel range capable of imaging the entire 4" x6" area of our slides. There has 
been an explosion in the development of open-hardware microscopy equipment for a wide range 
of applications [27-31]; with projects relying on a wide variety of materials, from inexpensive 3d 
printed parts to high-end optical kits.  However, those designed focused on small samples. We 
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optimized our scanner to deal with very large tissue samples. As ideal hardware would be 
economically impractical, we selected the configuration based on the cost-benefit factor for this 
project. We chose a machine vision objective because it incorporates all the optical elements 
necessary for microscopic imaging in one lens set that could be attached to the camera, meanwhile 
providing a resonable view of view side. It optimized scanning time. As it is, it took around 50 to 90 
min for our scanner to cover one whole section (depending on the section size), meaning it takes 
about 233 h to scan a set of sections stained at 1 mm interval, not counting loading slides in and 
out, focusing and transferring data. Any adjustment (resolution, extra z layers) would increase 
acquisition time. The availability of open-source software was imperative for the success of our 
design.  
 
The third challenge was the most complex to solve. Thresholding algorithms to discriminate tau 
from background failed (see results). Next, we tested available machine learning algorithms, such 
as Weka, that also failed. Signal to noise ratio in histological images, mainly when obtained from 
large and/or thick sections tend to be low. Post-processing such images may inset biases or mask 
real signal. Therefore, we took the challenge to develop a CNN to efficiently segment signal from a 
background in raw histological images. We chose to use a DL algorithm due to its ability to 
automatically discover unknown patterns that best characterize a raw data set. DL models data in 
a bottom-up approach, characterizing it by small low-level features such as edges, in lower network 
layers and increases in abstraction and complexity in the following layers, thus allowing the model 
to better capture semantic meaning [32], as opposed to traditional low-level segmentation methods, 
like thresholding, that is only capable of working at the pixel level. This makes DL more robust to 
IHC artifacts, such as staining inhomogeneity – where stain intensity changes from slice to slice, 
and present of off-target stained structures.  
 
The literature on computational methods for locating ND-related proteinopathies is scarce and 
unsuitable for large datasets generated by large tissue specimens [33-36]. We manage to work with 
a large volume of data by harnessing the power of HPC to run our segmentation pipeline in an 
embarrassingly parallel way, where hundreds of copies of the same pipeline were run at the same 
time. 
 
To test the robustness of our network, we conducted a thorough validation of our results. On ROC 
AUC, we obtained classification results (mean 0.88 on the testing set and 0.87 on the validation 
set) are just below the reported values on systems for cell culture [37]   (0.95). Noteworthy cell 
culture images have a clearer background and fewer artifacts than histological images. When 
compared to computational methods for astrocyte detection in digital pathology [38], which is a 
more challenging segmentation problem since digital pathology images usually have cluttered 
background, our pipeline also yielded mean precision (0.88 for testing and 0.92 for validation) above 
the reported value but much worse recall performance (0.16 for testing, 0.13 validation) when 
compared to the reported value of 0.78. We see a similar phenomenon when comparing our results 
to literature in automatic tauopathy segmentation [34]. Our precision results are well above the 0.72 
reported but our recall is way below the value of 0.92 reported. The low recall values could only be 
improved by increasing the resolution of the scanned images, which would require much more 
scanning time, storage needs, and computing processing (much larger dataset) as neuropil threads 
are thin and convoluted, making their imaging blur. Detecting blurry objects is a commonly known 
limitation of CNN 
 
The biggest challenge we faced while working with whole human brain IHC was batch 
inhomogeneity, where adjacent slides may have different marker concentrations due to variations 
during IHC staining. IHC inhomogeneity does not seem to greatly impact studies with small tissue 
sample size but is detrimental to studies with wide tissue areas, like ours. We tackled the problem 
using a biologically consistent protein concentration normalization procedure, where regions of high 
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and low heatmap signal were selected from high and low stain quality slides during manual 
screening. The signal was them boosted in low quality stain slides by adding an increase factor 
computed from the reference slides. Another big challenge we faced during this project 
development was the use of manual affine registration during the 2d histology to blockface 
alignment (Figure 1, 2b). Although this solution is robust to histology artifacts, it impairs the 
scalability of our pipeline.  
 
Here we proposed a computational pipeline that takes advantage of a modern deep learning 
algorithm to create whole-brain protein maps that can be used to validate neuroimaging modalities, 
overcoming the limitation of in-vitro assays. We used our pipeline to create quantitative tau protein 
maps since tau is a well-known AD hallmark and highly correlated with clinical decline. The use of 
deep learning, however, make our pipeline very flexible and easy to retrain to work with other 
makers, such as  
 
 
Our 3D mapping at microscopic resolution coupled with our previously developed 3D registration 
algorithms for combining histological and imaging volumes can potentially open avenues for 
thorough and systematic validation of new neuroimaging tracers.  
 
 
Materials and Methods 
 
Specimen Procurement, Histological Processing and brain slabbing 
 
We tested the proposed pipeline using two whole human brains. The first specimen, denominated 
Case #1, belonged to a 88 years old individual, cognitively normal, diagnosed with  Braak stage 4 
and an A2,B2, C1 score for AD neuropathologic changes [15, 39] and the second, denominated 
Case #2, belong to a 76 years old patient diagnosed with dementia and  Braak stage 6 and an A3, 
B3, C3 score for AD neuropathologic changes. Case #1 underwent postmortem MPRAGE MRI 
acquisition while Case #2 underwent postmortem SPGE  acquisition within 10 hours of the time of 
death. Both cases also underwent CT acquisition. After procurement, specimens were fixed by 
immersion in 4% buffered paraformaldehyde for three weeks. To avoid deformation, we stored the 
specimens upside down, hanging by the circle of Willis for three days and after that,  mounted them 
in plastic skulls 3d-printed from patient's CT images and continued fixation for another 18 days 
inside a bucket filled with buffered 4% paraformaldehyde. After fixation, the specimens were 
embedded in celloidin, and the blocks allowed to congeal. The blocks were sectioned using a sliding 
microtome (AO 880, American Optical, USA) equipped with a 14" long C-knife. The brains were 
sectioned in serial sets of coronal slides, each set containing five  160 μm-thick sections to obtain 
an accurately aligned stack of unstained serial section photographs, digital photographs were 
acquired directly from the blockface following each stroke During block sectioning using a high 
definition DSLR camera (EOS 5D Mark II, Canon, Tokyo, Japan) mounted on a copy stand arm 
(Kaiser Fototechnik, Germany) and linked to a computer. PET scan voxel size varies from 3 to 5 
mm. During the process, brain tissue shrinks about 30 to 40%. Thus, we chose to have five slides 
in each set, so each PET scan voxel would contain at least two full histological sets in the Z-axis, 
opening the opportunity to probe multiple markers per voxel. Histological sections were stored in 
70% alcohol for further processing. Details for tissue processing celloidin embedding and cutting 
have been debrided by us elsewhere [13, 40]theofilas 2014}. 
 
Immunohistochemical labeling of abnormal tau protein inclusions 
 
In Alzheimer's disease, tau protein becomes hyperphosphorylated and aggregated into inclusions. 
It is unclear which of these abnormal tau forms the tracers are binding to. We designed our protocol 
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to accommodate different probing forms of protein accumulations. Immunostaining remains an 
attractive validating method to probe proteinaceous inclusion while preserving tissue integrity and 
providing spatial information. For this study, we chose two widely used antibodies against phospho-
tau, AT100, and AT8. As a rule, all 1st sections from each set were immunostained to detect tau 
protein phosphorylated at epitopes pSer202+Thr205 (AT8, Thermo). All 2nd sections from even-
numbered sets were immunostained to detect tau protein phosphorylated at epitopes 
pThr212+Ser214 (AT100, Thermo). Immunohistochemistry reactions were done in batches of 50 to 
ensure homogeneity. Each batch contained positive and negative control for comparison. The 
controls were serial sections from a single subject, not belonging to the study for quality control 
purposes. 
 
For the quality verification process, LTG visually reviewed the positive control slide of each batch 
and compared the staining process to other tissue stained with the same antibody to assess the 
adequacy of the staining process. Staining was deemed unacceptable if no staining was present, 
very weak staining was observed as compared to another stained positive control slides, and/or 
very strong background, like the level of staining, was observed. Batches whose positive control 
was deemed unacceptable were excluded, and the staining process was repeated on the 2nd set of 
contiguous tissue sections, which in turn went through the same quality control process.  
 
Whole Slide Imaging 
 
We built a cost-effective whole slide scanner (Figure 3) to accommodate our histological slides (5" 
x 6"), which do not fit into regular microscope stages or cannot be fully imaged due to short stage 
travel range. The hardware is comprised of a high-precision, 6" travel range, industrial XY stage 
(Griffin Motion), an Olympus manual focusing box, color CCD camera (Qimaging Micro publisher 
6) and 5.5X machine vision objective (Navitar Zoom 6000) mounted directly on the camera. 
Illumination is performed by a lightbox with diffuser, mounted on top of the XY stage. Slides are 
loaded directly to a 3d printed slide mount fixed on top of the lightbox. The scanner is controlled by 
a software developed in-house using Macro Manager 2.042, which has a user interface that allows 
the user to select the region-of-interest (ROI) to be scanned and white balance and lens 
magnification parameters. It computes the coordinates of the image tiles necessary to cover the 
selected ROI and is responsible for synchronizing the XY stage movements with image capture. 
The full resolution histological images (example in Figure 2) is created by stitching the tiles together 
using TeraStitcher19, which is capable of working with several Gigabytes of data while maintaining 
a small memory footprint. During the stitching process a 10% resolution version of the image is also 
created and is used during the histology pre-processing and registration steps and also for visual 
inspection. This setup yielded a 1.22um pixel resolution. We release our scanner software can be 
downloaded in (https://github.com/mary-alegro/LargeSlideScan). 
 
 
 
Creation of datasets for SlideNet training and validation 
 
In order to create our training, testing, and validation datasets, we drew 1024x1024 pixel patches 
from randomly selected gray matter locations throughout the entire full-resolution brain image 
dataset. A set of 100 patches was created for each marker (AT100 and AT8), from each brain, 
respectively, totaling four datasets. The patch extraction routine was written in Python and 
completely automated, running on UCSFs' Wynton cluster in an embarrassingly parallel way. 
https://wynton.ucsf.edu 
 
Each patch was manually masked for background and tau inclusion with the help of Fiji's Trainable 
Weka Segmentation plugin. Here, the user manually selected sample pixels belonging to tau and 
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background classes that were, in turn, used to compute several features such as Gaussian filters, 
Hessian, membrane projections, mean, maximum, anisotropic diffusion, Lipschitz, Gabor, 
Laplacian, entropy, Sobel, a difference of Gaussians, variance, minimum, median, bilateral filter, 
Kuwahara, derivatives, structure, and neighbor values. A linear SVM classifier (LibLinear) was then 
used to generate an initial tau segmentation. The user would retrain and refine the initial 
segmentation until they obtained satisfactory results. Masks where manually fine-tuned using an 
image editor (Gimp). All final masks went thought quality control by a highly experienced 
pathologist. 
 
Finally, patches for each marker (AT8, AT100, and MC1) were combined on bigger datasets, 
totaling two datasets of 200 patches each and were randomly split in 80% of patches for training, 
10% for testing and the remaining for validation. 
 
Histology Pipeline  
 
Pre-processing blockface images 
 Blockface images have their background segmented using a semi-automated graph-based 
algorithm. Briefly, the user selects brain and background sample pixels using a graphical user 
interface (GUI). Images are then converted to LAB color space, and the algorithm computes mean 
color difference maps (∆E). ∆E is defined as the distance in LAB space:  

∆E = !𝐿#$%%
& + 𝐴#$%%

& + 𝐵#$%%
&  

With 𝐿𝑑𝑖𝑓𝑓, 𝐴𝑑𝑖𝑓𝑓,𝐵𝑑𝑖𝑓𝑓 being the difference values computed as: 
𝐿𝑑𝑖𝑓𝑓   = 𝐿𝑖 − μ(𝐿𝑟) 
𝐴𝑑𝑖𝑓𝑓 = 𝐴$  − μ(𝐴.) 
𝐵𝑑𝑖𝑓𝑓 = 𝐵𝑖  − μ(𝐵𝑟) 

Where 𝐿𝑖, 𝐴$ and 𝐵𝑖  are image LAB channels, 𝐿𝑟, 𝐴. , 𝐵𝑟 are LAB channels of reference pixels 
selected by the user, and μ(.) is the mean. Pixels in ∆E, whose color is similar to the reference 
values, appear dark in (smaller distance) while cell pixels are brighter (larger distance). We compute 
brain and background ∆E maps using the manually selected pixels as reference values and perform 
a global? Histogram threshold using the Otsu's method to obtain binary masks. We, in turn, combine 
both masks to obtain the brain segmentation.  
It is common that several undesired objects linger after the initial segmentation. It is usually caused 
by reflections from the liquid on top of the celloidin block. The segmentation is further refined using 
a graph-based method to remove the undesired objects. In this method, image objects and their 
relationship are modeled as a weighted graph, where connected structures are considered the 
vertices. Edge weights are computed using a similarity function computed from color and distance 
values. The graph is partitioned using NCuts, leaving just the brain area.  
Commonly, the camera or brain must be repositioned several times during sectioning to adjust for 
changes in block size, causing the blockface images to be misaligned in relation to each other. We 
use semi-automatic registration to correct this artifact. Having the middle slice as the reference 
image, we use Matlab's' registration GUI to select landmarks for computing affine registrations. 
Finally, the aligned blockface images are stacked together to form the blockface 3d volume using 
ITK. This 3d volume is later used as an intermediate space for creating the 3d tau-protein maps.  
 
Low-res histology background segmentation 
The 10% resolution histological image is converted to LAB color space. In that space, background 
pixels are consistently darker than brain pixels, and segmentation is performed through histogram 
thresholding using the triangle algorithm. The resulting binary masks, here denominated brain 
masks, are used to erase all background pixels. Moreover, brain masks are combined with white 
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matter mask to create gray matter masks that guide the entire segmentation process and are also 
used during patch extraction for generating our training and validation datasets.  
 
2d registration to blockface image 
After background segmentation, the 10% resolution histological images are aligned to their 
respective blockface images using a combination of manual and automatic registration. Due to the 
presence of an excessive number of artifacts caused by histological processing, such as tearing, 
shrinking and shearing, we decided for a manual initialization of the registration using MIPAV spline-
based registration. Here, the user manually selects landmarks on both the histology and blockface 
images. MIPAV then generates a warped image and a registration warp file. After the initial 
registration, the image goes through a diffeomorphic registration using the 2d SyN algorithm, which 
is based on the large diffeomorphic deformation model metric mapping (LDDMM) method. Both the 
registered images and registration mappings are saved for use later in the pipeline. 
 
Image and Mask Tiling 
Here, each full-resolution histological image is first tiled to reduce memory footprint during image 
segmentation, with tile size corresponding to approximately to 5mm2 of tissue. Tile coordinates and 
dimensions are saved as XML metadata files. The histological images' respective 10% resolution 
gray matter masks are then rescaled to match their full-resolution dimension and tiles following the 
same procedure used for histology. Finally, histological tiles are masked using their respective gray 
matter tiles, leaving only the regions of interest on the image. Tiles that are left empty or having 
less than 5% of tissue pixels are ignored during segmentation. This way, we reduce the overall 
computational time and guarantee we are only processing relevant information. Image and mask 
tiling routines were developed in Python and ran on UCSFs' Wynton cluster in an embarrassingly 
parallel way, having one pipeline instance for each histological image.  
 
Deep learning-based segmentation 
A convolutional neural network is the core of our segmentation pipeline. We designed SlideNet, a 
UNet based neural network capable of working with color information and outputting tau presence 
confidence maps that are later thresholded to create binary maps.  
 
Model development and training 
Our model has an 204x204x3 pixels input layer to accommodate RGB images – we chose this size 
to match 1mm2 of tissue in our WSI scanner resolution. In our model, the image is pushed through 
three contractions blocks, the bottleneck, and upsampled by three expansion blocks. Figure 3 
shows the SlideNet architecture together with each layer tensor size. 
Each contraction block is composed of two convolution layers that use 3x3 kernels, stride of 1 and 
ReLu activation, followed by a 2x2 max pooling layer and 0.1 rate dropout. The bottleneck is 
composed of two convolutional layers that use 1x1 kernels, stride of 1 and ReLu activation. 
Expansion blocks are composed of a 2x2 upsampling layer followed by a 0.1 rate dropout and two 
convolutional layers that use 3x3 kernels, stride of 1 and ReLu, except for the last expansion block 
that use 3x3 upsampling. The last layer reshapes the data to a 20000x2 tensor and softmax 
activation. 
 
Training is performed using standard backpropagation, with cross entropy as the loss function and 
Adam for optimization. The learning rate is estimated using the cyclical learning rate method [24].  
The network was developed in Keras (https://keras.io) on top of TensorFlow 
(https://www.tensorflow.org). We trained the network using minibatches of 32 images during 100 
epochs, or until the loss curve plateaued. We also used massive data augmentation, performing 
real-time random rotations, shear, horizontal and vertical flips. All training and inference were 
performed on a NVIDIA Titan V GPU with 12GB of RAM.  
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SlideNet outputs confidence maps of the existence of tau, which are thresholded to generate binary 
masks. The threshold value was set to 0.7 for both AT100 and AT8 datasets and pixel with 
confidence higher than this value was considered tau.  
 
Heatmap computation 
 
The binary tiles are transferred back to our cluster, where the heatmaps are computed. On each 
tile, we compute the mean amount of tau, indicated by the mean number of pixels belonging to 
foreground, inside a 1 μm2 of tissue, roughly an 8x8 pixels block. The heatmaps are generated as 
tiles having the same dimension of binary tiles where each 1 μm2 block is filed out with the mean 
number of pixels belonging to tau. Tiles are stitched together to create a heatmap having the same 
resolution as the original histological image and is latter resized to 10% of its resolution.  
 
Heatmap normalization 
Each of the four heatmap datasets (AT100 and AT8 for each brain) are normalized to mitigate batch 
staining inhomogeneity. For each dataset, a trained neuropathologist selects strong signal ROIs 
from slices whose staining is deemed optimal, and weak signal ROIs from slices whose staining is 
suboptimal. Outliers are removed from each ROI by thresholding the values are the first and third 
quartiles and mean strong and weak signals are calculated. We then compute an increase factor 
as the absolute difference value between both means. All heatmaps from slices that were deemed 
suboptimal during quality control are adjusted by summing their non-zero values with this increase 
factor. 
 
Heatmap to blockface alignment and stacking 
The 2d registration maps computed during the 2d registration to blockface image step are applied 
to the 10% resolution normalized heatmaps, yielding heatmap registered to their respective 
blockface images. These images are then stacked together to for a 3d volume.  
 
 
MRI acquisition and processing 
 
Postmortem structural T1-weighted MR imaging of Case 1 was performed on a 3T Siemens Skyra 
MRI system with a transmit and 32-channel receive coil using a 3D MPRAGE T1-weighted 
sequence with the following parameters: TR/TE/TI = 2300/2.98/900ms, 176 sagittal slices, within 
plane FOV = 256×240mm2, voxel size = 1×1×1mm3, flip angle = 9°, bandwidth = 240Hz/pix. 
 
Postmortem structural T1-weighted MR imaging of Case 2 was performed on a GE Discovery 3T 
MR750 system with a transmit and 32-channel receive coil using a 3D SPGR T1-weighted 
sequence with the following parameters: TI = 400ms, 200 sagittal slices, within plane FOV = 
256×256mm2, voxel size = 1×1×1mm3, flip angle = 11°, bandwidth = 31.25Hz/pix.  
 
Accuracy of medical image registration approaches relies presence and detection of homologous 
features in both target image (i.e., 3D blockface reconstruction) and the spatially warped image 
(i.e., structural T1-weighted MRI). To satisfy this prerequisite, using the Advanced Normalization 
Tools (ANTs) [41], the N4 non-parametric non-uniform intensity normalization bias correction 
function [42, 43] followed by skull-stripping was applied on the structural T1-weighted MRIs. Briefly, 
structural T1-weighted MRIs were warped into the 3D image space of the corresponding blockface 
reconstructions using ANTs [21, 22]). First, a linear rigid transformation was performed. Then a 
diffeomorphic transformation using the Symmetric Normalization (SyN) transformation model was 
performed. SyN uses a gradient-based iterative convergence using diffeomorphisms to converge 
on an optimal solution based on a similarity metric (e.g., cross- correlation) [44]. To validate the 
registration we calculated the dice of ventricles. 
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Histology to MRI 3D registration 
 
Three-dimensional histology to MRI registration is performed using the 3D SyN algorithm. SyN is 
based on the large deformation diffeomorphic deformation model metric mapping (LDDMM) method 
whose mathematical properties are especially appealing for our problem. Diffeomorphic maps are 
smooth and invertible functions guaranteeing that no folds or vanishing tissue will occur during the 
registration process. These models also enforce a 1-to-1 mapping between the movable and 
reference voxels and are suitable to handle large deformations. SyN is a mature method that has 
been reported to outperform several popular registration methods. Here, SyN is used with Mattes 
mutual information for measuring similarity, given that it is the most robust option for handling multi-
modality registration problems. All 3D registration maps computed in this step are stored for future 
use. Figure 3h is an example of 3D histology to MRI registration using the described method. The 
first row shows sagittal, axial, and coronal checkerboard representations of a histology slice, 
overlaid on its respective MRI. The right-hand side shows a 3D rendering of one registered volume 
overlaid on its MRI.  
 
3d Reconstruction and Visualization 
 
The 3d registration maps generated during the Histology to MRI 3D registration are inverted and 
used to warp the MRI to blockface space, allowing direct comparison between MRI signal and tau 
density. Freeview is used for visualization of 2d slices. Amira (ThermoFisher Scientific) is used for 
3d reconstruction and visualization.  
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