Molecular connection between the TUTase URT1 and decapping activators

Hélène Scheer\(^1,3\), Caroline de Almeida\(^1,3\), Emilie Ferrier\(^1\), Laure Poirier\(^1\), David Pflieger\(^1\), François M. Sement\(^1\), Sandrine Koechler\(^1\), Christina Piermaria\(^2\), Johana Chicher\(^2\), Lauriane Kuhn\(^2\), Philippe Hammann\(^2\), Hélène Zuber\(^1,\ast\) and Dominique Gagliardi\(^1,\ast\)

\(^1\)Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France.
\(^2\)Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, 67000 Strasbourg, France.
\(^3\)These authors contributed equally.
\(\ast\)Correspondence:
dominique.gagliardi@ibmp-cnrs.unistra.fr
+33367155366
helene.zuber@ibmp-cnrs.unistra.fr
+33367155381

Abstract

Uridylation is a widespread modification destabilizing eukaryotic mRNAs. Yet, molecular mechanisms underlying TUTase-mediated mRNA degradation remain mostly unresolved. Here, we report that the Arabidopsis TUTase URT1 participates in a molecular network connecting several translational repressors/decapping activators including DECAPPING 5 (DCP5), the Arabidopsis ortholog of human LSM14 and yeast Scd6. A conserved Helical Leucine-rich Motif (HLM) within an intrinsically disordered region of URT1 binds to the LSm domain of DCP5. This interaction connects URT1 to additional decay factors like DDX6/Dhh1-like RNA helicases. The combination of in planta and in vitro analyses supports a model that explains how URT1 reduces the accumulation of oligo(A)-tailed mRNAs: first, by connecting decapping factors and second, because 3’ terminal uridines can intrinsically hinder deadenylation. Importantly, preventing the accumulation of excessively deadenylated mRNAs in Arabidopsis avoids the biogenesis of illegitimate siRNAs that silence endogenous mRNAs and perturb plant growth and development.

Keywords

Uridylation, TUTase, RNA degradation, decapping, deadenylation, Arabidopsis, DCP5, GIGYF
Introduction
Uridylation targets most classes of eukaryotic RNAs, from small and large non-coding RNAs (ncRNAs) to mRNAs\(^{1-3}\). Uridylation of ncRNAs can promote maturation, control stability or abrogate activity, depending on the type of ncRNAs and its cellular context\(^{2-4}\). For mRNAs, the prevalent role of uridylation is to trigger 5'-3' and 3'-5' degradation\(^{5-6}\).

mRNA uridylation is preceded by deadenylation\(^{5,6,9-12}\), which is mostly achieved by the multifunctional CCR4-NOT complex\(^{13}\). Two of its core subunits are the deadenylases CAF1 and CCR4\(^{13,14}\). CCR4 is proposed to shorten poly(A) tails of all mRNAs while CAF1 deadenylates mRNAs with lower rates of translation elongation and poor poly(A) binding protein (PABP) occupancy\(^{15}\). Importantly, specificity factors bridge target mRNAs to the CCR4-NOT complex, thereby leading to translational repression and decay of specific mRNAs. Those specificity factors include the RNA induced silencing complex (RISC) and several RNA binding proteins (RBPs), such as Tristetraprolin (TTP), Pumilio/fem-3 mRNA binding factor (PUF) proteins and the YTH-domain containing proteins Mmi1 and YTHDF\(^{2,13,16-19}\). In addition, the CCR4-NOT complex interacts with central regulators of translation and decapping, such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF)\(^{20,21}\) and the DEAD-box RNA helicase Dh1/DDX6/Me31B in yeast, humans and Drosophila, respectively\(^{13}\). DDX6/Dh1 also interacts with the decapping activators EDC3, PAT1 and LSM14 (Sdc6 in yeast). The binding of DDX6 to CNOT1 or to decapping activators is proposed to be mutually exclusive. A possible scenario is that a succession of interactions allows DDX6 to hand over deadenylated mRNAs to the decapping machinery\(^{22}\).

Once the CCR4-NOT complex has been recruited and the poly(A) tail has been shortened, oligo(A) tails of less than ca 25 As are frequently uridylated by TUTases such as TUT4/7 in mammals or URT1 in Arabidopsis\(^{9,11}\). URT1-mediated uridylation can restore a binding site for a PABP, but its impact on mRNA stability is yet unsolved\(^{1,4,11,12}\). In fission yeast and human cultured cells, uridylation of short oligo(A) tails is proposed to favor the binding of the LSm1-7 complex, which recruits the decapping complex through the interaction with PAT1, and ultimately results in 5'-3' degradation by XRN1 (XRN4 in plants)\(^{6,8,22}\). Alternatively, U-tails can directly attract Dis3L2 or the RNA exosome to trigger 3'-5' exonuclease decay of mRNAs\(^{6,24}\).

In this study, we show that the Arabidopsis TUTase URT1 is integrated in an interaction network comprising the deadenylation complex CCR4-NOT and other translation repressors/decapping activators, including DCP5, the plant ortholog of the translational inhibitor/decapping activator Sdc6/LSM14A. Our interactomic and functional analysis data support a model explaining how URT1-mediated uridylation prevents the accumulation of excessively deadenylated mRNAs. We also show that in absence of URT1-mediated uridylation, excessively deadenylated mRNAs can become a source of spurious siRNAs that silence endogenous mRNAs, with a negative impact on plant fitness.

Results
Conservation of an intrinsically disordered region across plant URT1 orthologs
The 764-long amino acid sequence of the Arabidopsis TUTase URT1 encoded by AT2G45620 can be divided in two regions discriminated by compositional biases and the presence of known domains (Fig. 1a). URT1’s C-terminal region contains the Catalytic Core Domain (CCD), the typical signature of terminal nucleotidyltransferase (TNTase) family members. The CCD is composed of a nucleotidyltransferase domain (amino acids 434-567, Superfamily domain SCOP 81302, E-value = 3.11x10\(^{-30}\)) followed by a PAP-associated domain or PAP/OAS1 substrate-binding domain (amino acids 571-741, Superfamily domain SCOP 81631, E-value = 6.8x10\(^{-48}\)) (Fig. 1a). By contrast, the N-terminal region of URT1 (amino acids 1-433) is devoid of known domains and is characterized by a significant enrichment for P/Q/N/G (p-value = 2.4x10\(^{-18}\)) compared to the Arabidopsis proteome (Fig. 1a). Moreover, the whole N-terminal half of URT1 is predicted as a large intrinsically disordered region (IDR) (Fig. 1b).

To test for the possible conservation of this IDR amongst plant URT1 orthologs, we analyzed 87 sequences (Supplementary Table 1) that were recently compiled to determine the evolutionary history of TUTases in Archaeplastida (i.e. all plants)\(^1\). These URT1 sequences originate from 73 species
representing major groups of Archaeplastida: glaucophytes, rhodophytes (red algae), chlorophyte and streptophyte algae, bryophytes (liverworts, hornworts and mosses), lycophytes and pteridophytes (e.g. ferns), gymnosperms (e.g. conifers and Ginkgo), and angiosperms (flowering plants). In all groups, we identified URT1 orthologs with a predicted N-terminal IDR (Fig. 1c). The preservation of this IDR throughout the plant cell lineage likely indicates a conserved key function.

Short linear motifs are conserved in plant URT1 orthologs

IDRs can tolerate mutations that do not affect their overall function. Indeed, the primary sequence of URT1's IDR is highly variable between species (Fig. 1d and Supplementary Fig. 1a). Yet, two short linear motifs (SLIMs) named hereafter M1 and M2 are conserved in land plants, i.e. from bryophytes (including mosses) to flowering plants (Fig. 1d, 1e and Supplementary Fig. 1a). A PPGF motif is also conserved in many land plant URT1s (Supplementary Fig. 1a). Its conservation is underestimated by sequence alignment partly because of its varying positions in the IDR (Fig. 1e). Yet, a systematic search revealed that URT1 orthologs of most flowering plants and several mosses contain a PPGF motif (Fig. 1e). Poales, which include key cereal crops, are among the plants whose genome encodes two URT1 paralogs, URT1A and URT1B. URT1A isoforms are ubiquitously expressed, as is URT1, whereas the expression of URT1B genes is often restricted to specific tissues. Interestingly, URT1As contain the M1, M2 and PPGF motifs whereas URT1B sequences contain only a divergent M1 and lack both the M2 and PPGF motifs (Fig. 1e and Supplementary Fig. 1b). Altogether, these observations suggest a potential specialization of URT1A and B paralogs. Conversely, the conservation in flowering plants of at least one URT1 ortholog with M1, M2 and PPGF motifs indicates key functions under selective pressure.

URT1 co-purifies with translational repressors/decapping activators

The conservation of a large IDR containing SLIMs supports the possibility that URT1 interacts with one or several partners. To identify this interaction network, proteins co-purifying with URT1 (tagged with myc or YFP) expressed in urt1 mutants were identified by LC-MS/MS analyses. To obtain a global view of URT1 RNP context, cellular extracts were cross-linked with formaldehyde before immunoprecipitation (IP) (Fig. 2a). The comparison of 8 URT1 samples (representing 4 biological replicates) to 7 control samples revealed 62 proteins significantly enriched in URT1 IPs (Fig. 2a, Supplementary Table 2). The most enriched molecular functions associated to URT1 co-purifying proteins are mRNA binding (GO:0003729) and RNA binding (GO:0003723) (Benjamini-Hochberg corrected p-values of 4.8x10^{-9} and 6.1x10^{-18}, respectively). Both categories are coherent with the known involvement of URT1 in mRNA metabolism.

The most enriched protein co-purifying with URT1 is ESSENTIAL FOR POTEXVIRUS ACCUMULATION 1 (EXA1) encoded by AT5G42950 and also named GYN4, PSIG1 and MUSE1. The two closest EXA1 paralogs (AT1G27430 and AT1G24300) are also significantly enriched in URT1 IPs (noted GYF protein in Fig. 2a, Supplementary Table 2). EXA1 is a GYF (glycine-tyrosine-phenylalanine) domain-containing protein, orthologous to human and Drosophila GRB10-interacting GYF domain proteins (GIGYF). GIGYF proteins interact with the deadenylation complex CCR4-NOT and several translational repressors or decapping activators such as the 5’ cap-binding protein 4EHP, the RNA helicase DDX6/Me31B and the decapping activator PAT1. Interestingly, orthologs of all known GIGYF interactors are also significantly enriched in URT1 IPs alongside EXA1. They include subunits of the CCR4-NOT complex like CNOT1, CNOT10 and CNOT11 (AT1G02080, AT5G35430 and AT5G18420, respectively), the 4EHP ortholog nCBP (AT5G18110), PAT1 (AT1G79090) and the DDX6-like RNA helicases RH6, RH8 and RH12 (AT2G45810, AT4G00660 and AT3G61240, respectively). These results raise the possibility that the chain of interactions described for GIGYF is conserved for EXA1 in Arabidopsis and that URT1 is connected to these factors, including the CCR4-NOT complex.

Another translational repressor/decapping activator highly enriched in URT1 IPs is DECAPPING5 (DCP5) encoded by AT1G26110 (Fig. 2a, Supplementary Table 2). The known interactants of the human DCP5 ortholog LSM14 are EDC4, the DDX6 RNA helicases and the elf4E-binding protein 4E-T. There is no 4E-T ortholog in Arabidopsis. However, both VARICOSE (VCS), encoded by AT3G13300 and ortholog to EDC4, and the aforementioned DDX6-like RNA helicases (RH6, RH8 and RH12) are enriched in URT1 IPs. Of note, two paralogs of DCP5 and VCS, DECAPPING 5-LIKE (DCP5-L,
AT5G45330) and VARICOSE-RELATED (VCR, AT3G13290) respectively, are also significantly enriched in URT1 IPs (Fig. 2a, Supplementary Table 2).

Repeating the IP experiments without formaldehyde crosslink revealed a much simpler interactome with DCP5, RH6, RH8, RH12 and the translation initiation factor eIF4G among the most enriched proteins (Fig. 2b, Supplementary Table 2). A DCP5-eIF4G interaction has not yet been reported, but the yeast DCP5 ortholog Scd6 does interact with eIF4G via its C-terminal RGG repeats30, which are also present in DCP5 and LSM14A (Fig. 2c).

Altogether, our IP results indicate that URT1 is integrated into interaction networks connecting translational repressors and decapping activators, including DCP5.

The SLiM M1 mediates a direct interaction between DCP5 and URT1
We suspected a direct DCP5-URT1 interaction because DCP5 is the most enriched protein in IPs without crosslinking (Fig. 2b, Supplementary Table 2). Moreover, the LSm domains present in LSM14, Scd6 and Edc3 are known to interact with helical leucine-rich motifs (HLMs)31, which resemble URT1’s M1 motif (Supplementary Fig.1a). Indeed, in vitro pull-down experiments in presence of RNase A confirmed a direct interaction between 6His-GST-URT1 and 6His-MBP-DCP5 (Fig. 2d). This direct interaction requires the M1 motif because a mutated version of URT1, in which leucines 21 and 25 in M1 are mutated into asparagines (6His-GST-m1URT1) (Fig. 2e) failed to pull-down DCP5 (Fig. 2d). Furthermore, 6His-GST-URT1 cannot pull down 6His-MBP-ΔLSmDCP5, indicating that the LSm domain of DCP5 is necessary for the URT1-DCP5 interaction (Fig. 2d). Therefore URT1 can directly bind to DCP5 via an interaction between URT1’s conserved M1 motif and DCP5’s LSm domain.

To test how M1 impacts the URT1 interactome in planta, URT1-myc or m1URT1-myc were expressed in urt1-1 mutant plants and used as baits in IPs following formaldehyde crosslink. Interestingly, the six proteins most significantly depleted by mutating the M1 motif are DCP5, DCP5L, RH6, RH8, VCS and RH12 (Fig. 2f and Supplementary Table 2). We conclude from these experiments that the conserved SLiM M1 connects URT1 to DCP5 (and possibly DCP5L), which recruits additional translation repressors or decapping activators such as VCS or the Dhh1/DDX6-like RNA helicases, RH6, RH8 and RH12.

Ectopic expression of URT1 remolds poly(A) tail profiles
To investigate the molecular function of URT1-mediated mRNA uridylation and test the potential role of the M1 and M2 motifs, we first determined how the ectopic expression of URT1-myc or m1m2URT1-myc affects the expression of a GFP reporter mRNA co-expressed in Nicotiana benthamiana leaves. To prevent transgene-induced silencing, the silencing suppressor P19 was co-expressed in all experiments and will not be further mentioned. The GFP reporter was co-expressed without URT1 (ctrl) or with either one of two catalytically-impaired versions of URT1, URT1D491/3A or URT1P618L (see Fig. 3a for a schematic representation of the different URT1 versions). URT1D491/3A is fully inactivated by the mutations of catalytic residues11 whereas the uridylation activity of URT1P618L mutant is strongly affected, but not abrogated32.

Both active and inactive URT1 versions were expressed as full-length proteins (Fig. 3b). Yet, the inactive versions of URT1 are systematically more expressed as compared with active ones, which is important for the interpretation of the results presented hereafter. GFP expression levels were monitored by UV illumination of infiltrated leaf patches. While leaf patches expressing catalytic inactive versions of URT1 showed GFP levels similar to controls, GFP fluorescence was systematically decreased upon expression of active versions of URT1 with either wild-type or mutated M1 and M2 motifs (Fig. 3c). Thus, GFP repression requires URT1’s activity but obviously neither the M1 nor the M2 motif. We do not know at present whether GFP repression is a direct consequence of GFP mRNA uridylation, or due to an indirect effect of URT1 ectopic expression. Of note, GFP repression is not the consequence of a lower expression of the silencing suppressor P19 because similar results were obtained with N. benthamiana plants silenced for RDR6, a key component of transgene-induced post-transcriptional silencing (PTGS) (Supplementary Fig. 2a). Remarkably, the decrease in GFP expression was not due to lower amounts of GFP mRNAs, because similar steady-state levels of GFP mRNAs were detected in patches expressing active or inactive URT1 (Fig. 3d). Yet, expression of the inactive URT1D491/3A resulted in a
slight, but systematic, shift in the migration of GFP mRNAs detected by northern blots (Fig. 3d). To investigate the reason for this small size shift and to determine the molecular impact of ectopic URT1 expression on GFP mRNA tails, those mRNAs were investigated by 3'RACE-seq. A primer was ligated to RNA 3' extremities and used to initiate cDNA synthesis. The 3' region of GFP reporter mRNAs (including the poly(A) tail and eventually non-A nucleotides) was PCR-amplified and GFP amplicons from six independent biological replicates were sequenced in two independent MiSeq runs (Supplementary Table 3). In control patches, GFP mRNAs had a mean uridylation level of 3.2 % and uridylation occurred mostly on GFP mRNAs with 10-25 As (ctrl in Fig. 3e and 3f). This mRNA population with oligo(A) tails of 10-25 As will be later referred to as oligoadenylated mRNAs. The GFP mRNA uridylation pattern resembles the ones typically observed for Arabidopsis mRNAs10-12 and we propose that this basal uridylation level is performed by the \textit{N. benthamiana} URT1 ortholog. As expected, GFP mRNA uridylation levels increased up to 15% upon ectopic expression of URT1-myc (Fig. 3e).

Interestingly, the size distribution profile for uridylated tails was markedly modified by the ectopic expression of URT1-myc, which resulted in the uridylation of large poly(A) tails up to 90 As (Fig. 3f). Moreover, the number of uridylated tails longer than 90 As was also significantly higher upon ectopic expression of URT1 as compared to the control samples or leaf patches expressing inactive URT1 (pie charts on the right of Fig. 3f). Thus, URT1 can uridylate long poly(A) tails when ectopically expressed, demonstrating that deadenylation is not a pre-requisite for uridylation.

Strikingly, URT1 ectopic expression also affected the size distribution of homopolymeric poly(A) tails (called non-uridylated poly(A) tails hereafter and in all figures). Indeed, non-uridylated poly(A) tails in samples expressing wild-type URT1 showed a clear decrease of the 16-20 peak and an accumulation of larger poly(A) tails as compared to control samples (Fig. 3g). This accumulation is due to the uridylation activity of URT1, as it is not observed for URT1D491/3A, despite the higher expression levels of the inactive protein (Fig. 3b and 3g). Similar differences in poly(A) tail size distributions were observed using standard Illumina base-calling software and the Tailseeker algorithm, designed to limit poly(A) tail length overestimation (compare Fig. 3g and Supplementary Fig. 2b).

The shift towards longer poly(A) tails induced by URT1 expression could result from two processes, which are not mutually exclusive: either URT1 expression triggers the degradation of oligoadenylated mRNAs, or uridylation by URT1 impedes deadenylation, thereby preventing the production of oligoadenylated mRNAs.

Uridylation impedes deadenylation by CAF1b \textit{in vitro}

The Arabidopsis genome encodes two CCR4 and 11 CAF1 homologues. CAF1s are classified in three groups based on phylogenetic analyses33. CAF1 from group A (CAF1a and CAF1b) and group C (CAF1h, i, j, k) have been proposed to interact with NOT1, the scaffold protein of the CCR4-NOT complex33. We purified recombinant CCR4s and the CAF1 proteins from group A and C and tested their deadenylase activity \textit{in vitro}. For yet unknown reasons, only CAF1b had a robust deadenylase activity under the various biochemical conditions tested. Therefore, CAF1b was used to test the intrinsic influence of uridylation on its deadenylase activity. A catalytic mutant CAF1bD42A was used as a negative control. CAF1b and CAF1bD42A were incubated with radiolabeled RNA substrates containing either 14 3’ terminal As, 13 As and 1 U, or 12 As and 2 Us. As expected, CAF1b fastly degraded the oligo(A) tail (Fig. 4a). Interestingly, the presence of a single 3’ terminal uridine delayed the degradation of the oligo(A) tail (Fig. 4a). Two 3’ terminal uridines even further slowed down CAF1b activity (Fig. 4a).

Therefore CAF1b activity is impeded by 3’ terminal uridines. Whether this intrinsic feature is maintained upon plant CCR4-NOT complex assembly is unknown yet. However, the CAF1 activity within a fully reconstituted \textit{S. pombe} CCR4-NOT complex is also slowed down by 3’ terminal uridines, albeit to a lesser extent than by guanosines and cytidines34. Therefore, the current biochemical data support the possibility that uridylation intrinsically impedes deadenylation by CAF1.

The SLIM M1 is implicated in the turnover of deadenylated mRNAs

The shift towards long poly(A) tails induced URT1 in \textit{N. benthamiana} leaves could also be explained by an enhanced degradation of oligoadenylated GFP mRNAs (Fig. 3g). We hypothesized that the M1 motif stimulates the degradation of uridylated mRNAs by recruiting decapping activators. This possibility is
supported by two observations which suggest that the ectopic overexpression of inactive URT$_1^{\text{D491/3A}}$ acts as a dominant negative mutation affecting the turnover of uridylated mRNAs. Firstly, the ectopic overexpression of URT$_1^{\text{D491/3A}}$ resulted in increased GFP mRNA uridylation as compared to control samples (Fig. 3e). Secondly, this increased uridylation is due to the specific over-accumulation of uridylated oligoadenylated GFP mRNAs as compared to control samples (Fig. 3f). Using the transient expression procedure in N. benthamiana leaves, we tested whether the accumulation of oligoadenylated GFP mRNAs upon ectopic overexpression of URT$_1^{\text{D491/3A}}$ requires the M1 motif. To do so, we co-expressed the reporter GFP mRNAs with URT1, URT$_1^{\text{D491/3A}}$, m1URT$_1^{\text{D491/3A}}$, m2URT$_1^{\text{D491/3A}}$ or m1m2URT$_1^{\text{D491/3A}}$ (see Fig. 4b for a schematic representation of the different URT1 versions). As previously noted, URT1 inactive versions were more expressed than active URT1 (Fig. 4c). We then analyzed GFP mRNA tailing profiles by 3’RACE-seq. In line with our previous results, the ectopic expression of URT1 resulted in much longer poly(A) tails for both uridylated and non-uridylated GFP mRNAs (Fig. 4d and 4e, respectively), and uridylated oligoadenylated GFP mRNAs accumulated upon URT$_1^{\text{D491/3A}}$ expression (Fig. 4d). Interestingly, the accumulation of uridylated oligoadenylated GFP mRNAs was prevented by mutating the M1, but not the M2 motif (Fig. 4d). This observation supports the idea that overexpression of URT$_1^{\text{D491/3A}}$ depletes at least one factor involved in the turnover of uridylated oligoadenylated mRNAs through an interaction involving the M1 motif. This conclusion is in line with the recruitment of DCP5 by the M1 motif described above (Fig. 2).

An additional observation further sustains the proposed involvement of the M1 motif in connecting URT1 to the degradation machinery: poly(A) tails interspersed with non-A ribonucleotides, subsequently called A-rich tails, also accumulated in URT$_1^{\text{D491/3A}}$ samples, in a manner strictly dependent on the presence of the M1 motif (Fig. 4f and Supplementary Fig. 2c). Of note, only few A-rich tails are detected in control or URT1 samples, and they could have been considered as possible experimental artefacts. However, their dramatic accumulation in URT$_1^{\text{D491/3A}}$ provides compelling evidence that these A-rich tails are produced in vivo. Either A-rich tails are constitutively produced but do not accumulate in wild-type plants, or their production is induced by overexpressing M1-containing URT$_1^{\text{D491/3A}}$. In both cases, their accumulation along with uridylated and oligoadenylated mRNAs suggests that these tails mark mRNAs undergoing degradation.

Effects of URT1 ectopic expression on tailing of endogenous PR2 mRNAs

We abstained from tethering URT1 to the GFP reporter mRNA because URT1 is a distributive TUTase11 and tethering would likely entail the synthesis of longer poly(U) tails as compared to the wild-type situation. In our experimental design, the number of uridines added to GFP mRNAs is similar between control and URT1 samples (Supplementary Fig. 2d). Because ectopically expressed URT1 is not tethered to the reporter mRNAs, it potentially uridylates also endogenous mRNAs. To test this possibility, endogenous mRNAs encoding PATHOGENESIS-RELATED PROTEIN 2 (PR2), were analyzed by 3’RACE-seq. PR2 mRNAs were chosen because the agroinfiltration procedure triggers PR2 expression (Supplementary Fig. 3a). Interestingly, URT1 ectopic expression increased PR2 uridylation levels, resulted in the uridylation of longer poly(A) tails, and led to the accumulation of PR2 mRNAs with longer poly(A) tails as compared to the control samples (Supplementary Fig. 3b-3d). Moreover, URT$_1^{\text{D491/3A}}$ overexpression led to the accumulation of oligoadenylated uridylated PR2 mRNAs, as well as to the accumulation of PR2 mRNAs with A-rich tails (Supplementary Fig. 3b, 3c, and 3e). Altogether, these data indicate that URT1 ectopic expression has similar effects on both the reporter GFP mRNAs and the endogenous PR2 mRNAs. Interestingly, overexpression of URT$_1^{\text{D491/3A}}$ also led to increased levels of PR2 mRNAs (Supplementary Fig. 3a), which further supports the idea that URT$_1^{\text{D491/3A}}$ overexpression impairs mRNA turnover.

URT1-mediated uridylation shapes poly(A) tails in Arabidopsis

To test how URT1 affects poly(A) profiles in Arabidopsis, we took advantage of the depth of the 3’RACE-seq method to precisely compare polyadenylation and uridylation profiles for 22 mRNAs analyzed in two biological replicates of wild-type and urt1 plants. Those mRNAs were selected because they have various uridylation levels ranging from 1 to 24 % (Fig. 5), and quite distinct poly(A) tail profiles (for instance compare AT2G46820 and AT1G29920). In agreement with our previous studies11,12, mRNA
Uridylation levels drop in *urt1* mutants (Fig. 5), and uridylation tags mostly oligoadenylated mRNAs, *i.e.* mRNAs with tails of less than 25 As (Supplementary Fig. 4). Yet, longer poly(A) tails can also get uridylated, albeit to low levels (Supplementary Fig. 4). Interestingly, the profiles for poly(A) tails are modified upon loss of URT1: a slight shift towards smaller poly(A) tails is frequently observed in *urt1* (Fig. 5). The changes in poly(A) tail profiles can be split in two effects. Firstly, the *urt1* mutant accumulates oligoadenylated mRNAs with oligo(A) tails of 10 to 25 As for most of the analyzed mRNAs. This effect is particularly obvious for AT4G38770 mRNAs, whose poly(A) tail profile is strongly impacted by loss of URT1, despite its apparently low uridylation frequency in wild type (Fig. 5). The most straightforward explanation in view of our current knowledge is that absence of URT1 affects the turnover of the fraction of mRNAs with oligo(A) tails from 10-25 As. Secondly, excessively deadenylated mRNAs (with tails of less than 10 As) accumulate in *urt1* mutants. Interestingly, the accumulation of mRNAs with tails <10 is more often observed for highly uridylated mRNAs (Fig. 5). Absence of URT1 either impairs the turnover or promotes the production of these excessively deadenylated mRNAs, presumably because uridylation could impede deadenylation in wild-type. Hence, URT1 prevents the accumulation of excessively deadenylated mRNAs.

URT1-mediated uridylation prevents the production of spurious siRNAs targeting mRNAs

The accumulation of excessively deadenylated mRNAs in *urt1* mutants has no major effect on Arabidopsis growth and development, at least when plants are grown in standard conditions. Yet, introgressing the *urt1* mutation into an *xrn4* background, lacking the main cytosolic 5’-3’ exoribonuclease, had a detrimental impact on development (Fig. 6a, 6b and Supplementary Fig. 5): 6.5 week-old *urt1-1 xrn4-3* plants failed to set new leaves (Fig. 6a), and 9.5 week-old *urt1-1 xrn4-3* plants had severely impaired statures as compared to control plants or single mutants (Fig. 6a). Moreover, *urt1-1 xrn4-3* double mutants failed to develop inflorescences when grown under 12/12 (day/night) conditions (Fig. 6b).

The accumulation of RNA decay intermediates such as uncapped and excessively deadenylated mRNAs can be deleterious in plants because such aberrant mRNAs can erroneously trigger the biogenesis of siRNAs. Because some illegitimate siRNAs are produced in an *xrn4* mutant, we checked whether *urt1-1 xrn4-3* growth and developmental defects are linked to an increased biogenesis of spurious siRNAs. We first analyzed small RNA libraries from 24 day-old *in vitro* grown seedlings before the onset of visible phenotypes and indeed detected an increased accumulation of 21 nt siRNAs originating from mRNA loci in *urt1-1 xrn4-3* (Fig. 6c). Overall, siRNAs derived from 2659 mRNAs significantly accumulated in *urt1-1 xrn4-3* (Fig. 6d and Supplementary Table 4). Preventing siRNA production by mutating DCL2 and DCL4 in *urt1-1 xrn4-3* abrogated the growth and developmental defects associated to the *urt1-1 xrn4-3* mutation (Fig. 6e). This result demonstrates the causality between *urt1-1 xrn4-3* phenotype and the production of spurious siRNAs.

Finally, we investigated whether the mRNAs that are more prone to trigger the synthesis of spurious siRNAs in *urt1-1 xrn4-3* are highly uridylated in wild-type plants. To this end, we generated TAIL-seq libraries for three biological replicates of Col-0 plants and ranked the mRNAs by their uridylation levels (Supplementary Table 5). The TAIL-seq results were compared to the small RNA-seq data and indeed, mRNAs that produce spurious siRNAs in *urt1-1 xrn4-3* have a significantly higher propensity to uridylation in wild-type plants (Fig. 6f).

Altogether our data reveal that URT1-mediated uridylation prevents the accumulation of excessively deadenylated mRNAs, and by doing so, avoids the production of spurious siRNAs that can target endogenous mRNAs.

Discussion

Uridylation is now recognized as an integral step of mRNA degradation in eukaryotes. Yet, the full range of its molecular functions in assisting mRNA decay remain to be defined. Based on the URT1 interactome and the functional analysis of URT1-mediated uridylation presented here, we propose a model integrating the dual function of URT1 in preventing excessive deadenylation and favoring the turnover of deadenylated mRNAs through the direct recruitment of decapping activators (Fig. 7). By
preventing the accumulation of excessively deadenylated mRNAs, URT1-mediated uridylation protects endogenous mRNAs from triggering the synthesis of spurious siRNAs in Arabidopsis.

The composite domain organization of most TUTases is proposed to be key for the recruitment of factors that assist TUTases for the recognition of specific RNA substrates or channel the downstream molecular effects of uridylation\(^3,4,14,42\). However, only a few interactants of cytosolic TUTases have been identified to date. In mammals, TUT4/7 contacts the RBP Lin28 which binds Group II let-7 miRNA precursors. The presence or absence of Lin28 toggles TUT4/7 into a processive or a more distributive mode, promoting either degradation or maturation of let-7 precursors, respectively\(^20,21\). In *Drosophila*, the TUTase Tailor binds the 3′-5′ exoribonuclease Dis3l2 to form the terminal RNA uridylation-mediated processing (TRUMP) complex, which degrades a variety of structured non-coding RNAs in the cytoplasm\(^46\). In this study, we show that Arabidopsis URT1 co-purifies with several translational repressors/decapping activators, orthologs of which are known to form an intricate and dynamic interaction network in animals\(^13,20,22,47,48\). However, whether this network also comprises a TUTase in animals is not yet known.

A key factor at the heart of this dynamic network connecting translational repressors and decapping activators is the CCR4-NOT complex. Although not all components of CCR4-NOT were enriched in URT1 IPs, the detection of the CCR4-NOT complex scaffold subunit NOT1 alongside the other CCR4-NOT subunits CNOT10 and CNOT11 strongly supports a connection between the CCR4-NOT complex and URT1. The prime candidate for connecting URT1 to the CCR4-NOT complex is EXA1, a GYF domain containing protein, homologous to the human and fly GIGYF proteins\(^20,21\). GIGYF are translation repressors and decapping activators, that interact with different translation repressors via multiple interfaces, among them the GYF domain\(^20,21\). GIGYF interactants include the RNA helicase DDX6/Me31B, PAT1, the 5′ cap-binding protein 4E homologous protein (4EHP) and the CCR4-NOT complex\(^46,49\). Interestingly, orthologs of all these factors are detected in URT1 IPs, supporting the hypothesis that such an interaction network is conserved in Arabidopsis. In line with our data, a two-hybrid screen using Arabidopsis EXA1 as a bait (called GYN4 in this study) retrieved CNOT4 subunits\(^26\), providing independent support for a physical association between EXA1 and the CCR4-NOT complex. Interestingly, the GYF domain of EXA1 recognizes a PPGE sequence\(^26\), and such a motif is conserved in URT1 of flowering plants. A CCR4-NOT/EXA1/URT1 network may explain, at least in part, how URT1 selects its targets and why deadenylated mRNAs are preferentially uridylated. The 3′ extremity of long poly(A) tails that are either protected by PABPs or being shortened by CCR4-NOT would be poorly accessible to URT1, even though URT1 and CCR4-NOT are connected. However, once poly(A) tails get short enough to loosen their association with the last remaining PABP and when CCR4-NOT’s activity is more distributive, the tethering of URT1 to CCR4-NOT via EXA1 could facilitate the uridylation of oligo(A)-tailed mRNAs.

In *S. pombe* and mammalian cells, uridylation is proposed to favor decapping of deadenylated mRNA by promoting the binding of the LSm1-7 complex\(^5,8\), which recruits the decapping complex through a connection with Pat1\(^50,52\). The LSm1-7 complex preferentially binds short oligo(A) tails of <10 As\(^23\). Our previous TAIL-seq analyses\(^12\) and the 3′RACE-seq data presented here show that the majority of uridylated oligo(A) tails are longer than 10 As and comprise mostly 10-25 As. Such oligo(A) tails are likely suboptimal targets for the LSm1-7 complex. Interestingly, the direct recruitment of decapping activators by URT1 could bypass the requirement for LSm1-7 binding. We demonstrated here that the conserved M1 motif of URT1 directly binds to the decapping activator DCP5. DCP5 interacts with additional decapping factors, like DCP1 and DCP2\(^25\). For yet unknown reasons, neither DCP1 nor DCP2 were significantly enriched in URT1 IPs. By contrast, we detected VCS, an ortholog of human EDC4 which interacts with LSm14 via a FFD motif\(^26\), perfectly conserved in Arabidopsis DCP5. Moreover, a LSm14-DDX6 interaction via LSm14’s FDF and TFG motifs (both conserved in DCP5) is required to expose the FFD motif for EDC4 recruitment\(^29\). Our URT1 IP data support the idea that a DCP5/RH6,8,12/VCS connection also exists in Arabidopsis. In addition, the most straightforward interpretation of the poly(A) profiles observed upon overexpression of different URT1 versions in *N. benthamiana* is that the interaction of URT1’s M1 motif with DCP5 promotes the degradation of oligoadenylated mRNAs (and possibly mRNAs with heteropolymeric A-rich tails). We therefore propose that the conserved M1 motif in the N-terminal IDR of URT1 contacts DCP5 which then recruits the
RH6,8,12-VCS decapping activators. In addition, URT1 contacts the GIGYF-like EXA1, likely via URT1’s PPGF motif. EXA1 recruits further translational repressors and decapping activators like nCBP and PAT1. Altogether these interaction networks would facilitate decapping of mRNAs with oligo(A) tails larger than those typically required for LSm1-7 recruitment.

But why has a bypass of the LSm1-7 recruitment been selected during plant evolution? A likely reason is that in plants, excessive deadenylation could trigger the biogenesis of spurious siRNAs targeting endogenous mRNAs to PTGS. Indeed, RNA-dependent RNA polymerase 6 (RDR6), the key enzyme converting “aberrant” RNA into double stranded RNA that will be diced into siRNAs, intrinsically favors fully deadenylated mRNAs over polyadenylated mRNAs as templates. We therefore propose that a key role for URT1-mediated uridylation is to avoid the accumulation of excessively deadenylated mRNAs that otherwise erroneously enter the RNA silencing pathway. In line with this hypothesis, a connection between URT1 and RNA silencing was recently suggested by the identification of URT1 as a silencing suppressor of transgenes. Our results indicate two additive modes of action to explain how URT1 limits the accumulation of excessively deadenylated mRNAs (Fig. 7). Firstly, the direct URT1-DCP5 interaction mediates a molecular connection between a TUTase and decapping activators, thereby facilitating the 5'-3' removal of oligoadenylated mRNAs with oligo(A) tails in the 10-25 A range. Secondly, uridylation per se can participate in preventing excessive deadenylation by slowing down deadenylases, at least the CAF1 activity tested in this study. Finally, we have previously shown that uridylation by URT1 repairs deadenylated mRNAs to restore an extension sufficient for the binding of a Poly(A) Binding Protein (PABP). Although it is yet unknown how the binding of PABP to uridylated oligo(A) tails influences deadenylation or translation, binding of a PABP may also protect mRNA 3’ extremity to be accessible to RDR6. Altogether, these data illustrate the complexity of uridylation-mediated processes. Although facilitating degradation emerges as the prototypical function of mRNA uridylation, the underlying molecular mechanisms are complex and may differ across eukaryotes. This diversity is yet to be fully explored.

Methods

Plant material

All Arabidopsis thaliana plants used in this study are of Columbia (Col-0) accession. T-DNA mutants were described previously: urt1-1 (Salk_087647C), urt1-2 (WISCONSLOXHS208_08D), xrn4-3 (SALK_014209), xrn4-5 (SAIL_681E01), dcl2-1 (SALK_064627), dcl4-2 (GABI_160G05). The plant material used for RNA-seq and small RNA-seq corresponds to Arabidopsis plantlets grown for 24 days in vitro on Murashige & Skoog media with 0.8 % agar and 12 h light / 12 h darkness cycles (22/18°C). For other analyses using Arabidopsis, flowers were harvested from plants grown on soil with 16 h light / 8 h darkness cycles (21/18°C). Agroinfiltration experiments were performed in leaves of Nicotiana benthamiana plants grown during 4 weeks on soil with 16 h light / 8 h darkness cycles (22/18°C).

Characterization of URT1 sequence and phylogeny

The characterization of URT1 sequences and phylogenetic analyses are detailed in Supplementary Methods. All protein sequences used for Fig. 1 and Supplementary Fig.1 are provided in Supplementary Table 1.

Plasmids

The Gateway cloning technology (Thermo Fisher Scientific) was used to generate all plasmids. For plant transformation, the URT1 sequence was PCR-amplified from genomic DNA and includes 5’ UTR (URT1-myc constructs) or 3’ UTR (myc-URT1 and YFP-URT1 constructs). For bacterial expression, URT1, DCP5 and CAF1b coding sequences were PCR-amplified from cDNA templates. Primers and expression plasmids used for cloning are listed in Supplementary Tables 6 and 7, respectively.

Co-immunopurifications
Details about samples and replicates of co-immunopurification (IP) experiments are provided in Supplementary Table 2d. For IPs without crosslinking, 300 mg of flower buds or seedlings were ground in 1.5 ml of ice-cold lysis buffer (50 mM Tris-HCl pH 8, 50 mM NaCl, 1 % Triton X-100, protease inhibitors (cComplete, EDTA-free Protease Inhibitor Cocktail, Roche)). After cell debris removal by centrifugation (twice 10 min at 16,000 g, 4 °C) supernatants were incubated for 30 min with 50 µl of magnetic microbeads coupled to anti-c-myc antibodies (Miltenyi). Beads were loaded on magnetized µMACS separation columns equilibrated with lysis buffer and washed four times with 200 µl of washing buffer (20 mM Tris-HCl pH 7.5, 0.1 % Triton X-100). Samples were eluted in 100 µl of pre-warmed elution buffer (50 mM Tris-HCl pH 6.8, 50 mM DTT, 1 % SDS, 1 mM EDTA, 0.005 % bromophenol blue, 10 % glycerol). Negative control IPs were performed under the exact same conditions with Col-0 plants.

For IPs with crosslinking step, 300 mg of flower buds were ground during 10 min in 2.25 ml of ice-cold lysis buffer supplemented with 0.375 % formaldehyde (Thermo Fisher Scientific). The crosslinking reaction was quenched by adding glycine at a final concentration of 200 mM for 5 min. After cell debris removal by centrifugation (twice 15 min at 10,000 g, 4 °C), supernatants were incubated for 45 min with 50 µl of magnetic microbeads coupled to anti-c-myc antibodies or anti-GFP antibodies (Miltenyi). Beads magnetic capture and washing steps were done according to the manufacturer's instructions, except that washes were performed with 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.1% Triton X-100, protease inhibitors (cComplete, EDTA-free Protease Inhibitor Cocktail, Roche). Samples were eluted in 100 µl of pre-warmed elution buffer (50 mM Tris-HCl pH 6.8, 50 mM DTT, 1 % SDS, 1 mM EDTA, 0.005 % bleu de bromophenol, 10 % glycerol). Negative control IPs were performed with beads coupled to anti-c-myc and anti-GFP antibodies in Col-0 plants or in plants expressing the GFP alone. To improve the stringency of the analysis and improve the identification of contaminant proteins, additional negative control IPs were performed using GFP-BPM6 expressing plants. BPM6, encoded by AT3G43700, acts as an adaptor for Cullin3-based E3 ubiquitin ligase and has no known function related to RNA metabolism.

Mass spectrometry analysis and data processing. Eluted proteins were digested with sequencing-grade trypsin (Promega) and analyzed by nanoLC-MS/MS. For IPs with crosslinking (Fig. 2a and 2f), digested proteins were analyzed on a QExactive+ mass spectrometer coupled to an EASY-nanoLC-1000 (Thermo Fisher Scientific). For IPs without crosslinking (Fig. 2b), digested proteins were analyzed on a TT5600 mass spectrometer (SCIEX) coupled to an Eksigent Ultra2D-plus nanoHPLC. IP data were searched against the TAIR 10 database with a decoy strategy. Peptides were identified with Mascot algorithm (version 2.5, Matrix Science) and data were imported into Proline 1.4 software (http://proline.profiproteomics.fr/). Proteins were validated on Mascot pretty rank equal to 1, and 1% FDR on both peptide spectrum matches (PSM score) and protein sets (Protein Set score). The total number of MS/MS fragmentation spectra was used to quantify each protein from at least four independent IPs and two independent biological replicates (see details in Supplementary Table 2). Volcano plots in Fig. 2 display the adjusted p-values and fold changes in Y- and X-axis, respectively, and show the enrichment of proteins co-purified with tagged URT1 IPs as compared to control IPs (Fig. 2a and 2b) or the differential accumulation of proteins between URT1 IP and m1URT1 IPs (Fig. 2f). The statistical analysis based on spectral counts was performed using a homemade R package that calculates fold change and p-values using the quasi-likelihood negative binomial generalized log-linear model implemented in the edgeR package. Common and tagwise dispersions were calculated with the implemented edgeR function by filtering out the 50% less abundant proteins that could adversely affect the dispersion estimation. The size factor used to scale samples were calculated according to the DESeq2 normalization method (i.e., median of ratios method). P-value were adjusted using Benjamini Hochberg method from stats R package. The gene ontology analysis for URT1 co-purifying proteins was performed using the Functional Annotation tool implemented in DAVID (v6.8).

In vitro pull-down assays
Recombinant 6His-GST, 6His-GST-URT1, 6His-m1GST-URT1, 6His-MBP-DCP5, 6His-MBP-ΔLSmDCP5 were expressed into Escherichia coli BL21 DE3 using plasmids listed in Supplementary Table 2d.
Table 7. Conditions for protein expression and purification are detailed in Supplementary Methods. Ten pmol of each purified protein were incubated in a final volume of 500 μl of 20 mM MOPS pH 7.2, 100 mM KCl, 15 % glycerol and 0.1 % Tween 20 with 100 ng/μl of RNase A for 10 min at 4°C under rotation. 80 μl of glutathione sepharose resin (GE healthcare) were added to each reaction and incubated under rotation for 1 h at 4°C. The resin was sedimented at 500 g for 5 min and washed 5 times with 500 μl of the same buffer without RNase A. The elution was performed by adding 80 μl of elution buffer 20 mM MOPS pH 7.2, 100 mM KCl, 15 % glycerol and 0.1 % Tween 20, 10 mM reduced glutathione (Sigma-Aldrich) and incubated 5 min at 4°C before elution by centrifugation at 500 g for 5 min. Eluted proteins were separated by SDS-PAGE and stained using SYPRO Ruby dye (Bio-Rad). An Attan DIGE imager (Amersham Biosciences) was used for visualization.

In vitro activity assays
Recombinant 6His-GST-CAF1b and 6His-GST-CAF1bD42A proteins were expressed in E. coli BL21 using plasmids listed in Supplementary Table 7. Conditions for protein expression and purification are detailed in Supplementary Methods. The deadenylation test was performed in 20 mM MOPS pH 7.2, 5 mM MgCl₂, 50 mM KCl, 7 % glycerol and 0.1 % Tween 20. The oligoribonucleotides CACCAACCACU₁₂, CACCAACCACU₁₃U₁ and CACCAACCACU₁₂U₂ were used as substrates. Thirty nM of purified 6His-GST-CAF1b and 6His-GST-CAF1bD42A proteins were incubated with 17.5 nM of radiolabelled substrate for 1 h at 25°C. Aliquots were taken at different time points and separated on a 17 % polyacrylamide/7 M urea gel before autoradiography.

Agroinfiltration experiments in N. benthamiana
Agrobacterium tumefaciens GV3101 (pMP90) were transformed with plant expression plasmids listed in Supplementary Table 7 and inoculated in 10 ml of LB for 20 h at 28°C. Pre-cultures were then centrifuged at 5,000 g for 15 min. The pellets were resuspended at an OD600 of 1 in 5 ml of agroinfiltration buffer (10 mM MgCl₂ and 250 μM of 3’5’-Dimethoxy-4’-hydroxyacetophenone (Sigma-Aldrich)). The cell suspensions containing the P19, URT1 and GFP constructs were mixed to a 1:1:1 ratio and infiltrated into N. benthamiana leaves using needleless syringes. The plant material was harvested 4 days after infiltration for RNA and protein extraction. Pictures of the infiltrated leaves were taken under UV illumination at 365 nm using a UVP Blak-Ray B-100Y UV lamp (Thermo Fisher Scientific) to detect the expression of the GFP reporter. The intensity of the GFP fluorescence was quantified using ImageJ (see details in Supplementary Methods).

Western blot analysis
N. benthamiana infiltrated leaf patches (four different leaves per sample) were ground in SDS-urea extraction buffer (62.5 mM Tris pH 6.8, 4 M urea, 3 % SDS, 10 % glycerol, 0.01 % bromophenol blue). The samples were separated by SDS-PAGE and electrotransferred to a 0.45 μm Immobilon-P PVDF membrane (Millipore). The membrane was incubated overnight at 4°C with primary monoclonal c-myc antibody (Roche, used at a 1/10000 dilution). The monoclonal antibodies were detected by goat anti-mouse IgG coupled to peroxidase (Invitrogen) using Lumi-Light Western Blotting Substrate (Roche). Pictures were taken with a Fusion FX camera system. The PVDF membranes were stained with 0.1 % Coomassie Brilliant Blue R-250, 7 % acetic acid, 50 % methanol) to monitor loading.

Northern blot analysis
For each sample, four infiltrated patches pooled from different leaves were harvested from N. benthamiana four days after agroinfiltration. Total RNA was extracted using Tri-Reagent (Molecular Research Center), followed by extraction with acid phenol:chloroform:isoamyl alcohol and RNA precipitation with ethanol. Five μg of RNAs were then separated on a 1.5 % agarose gel containing 0.2 M MOPS pH 7.0, 20 mM sodium acetate, 10 mM EDTA, 5.55 % formaldehyde and transferred onto a nylon membrane (Amersham’s Hybond N+, GE Healthcare). After transfer, RNAs were UV crosslinked at 120 mJ/cm² for 30 seconds with a Stratagene Stratalinker. The membrane was stained with methylene blue and a picture was taken for illustrating equal loading between samples. After destaining, membranes were incubated with PerfectHyb hybridization buffer (Sigma-Aldrich) for 30 min at 65°C and
hybridized overnight at 65°C with radiolabelled probes to detect PR2 (Niben101Scf04869g03002.1) or GFP mRNAs. PR2 or GFP PCR amplicons of about 500 pb (Supplementary Table 6) were used as templates to produce random labelled probes using the Decalabel DNA Labelling kit (Thermo Fisher Scientific) and [α-32P]-dCTP according to manufacturer’s instructions. Radiolabeled probes were purified on a Sephadex G-50 matrix before hybridization. The membranes were exposed to a photosensitive Phosphor screen and visualized with an Amersham Typhoon IP Biomolecular Imager (GE Healthcare Life Sciences).

3’ RACE-seq library preparation and data processing
Total RNA was extracted using Tri-Reagent (Molecular Research Center) from N. benthamiana infiltrated leaves or Arabidopsis flowers. Ten pmoles of a 5’-riboadenylated DNA oligonucleotide (3’-Adap RACEseq, Supplementary Table 6) were ligated to 5 µg of total RNA using 10 U of T4 ssRNA Ligase 1 (NEB) in a final volume of 50 µl for 1 h at 37°C and 1X T4 of RNA Ligase Reaction Buffer (NEB, 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 1 mM DTT). The ligation products were purified from reagents and non-ligated adapter molecules with Nucleospin RNA Clean-up columns (Macherey Nagel). cDNA synthesis was performed in 20 μl-reaction that contains 2 to 3 µg of purified ligated RNA, 50 pmol of the 3’-RT oligonucleotide (Supplementary Table 6), 10 nmol of dNTP, 0.1 µmol of DTT, 40 U of RNaseOUT (Invitrogen), 200 U of SuperScript IV reverse transcriptase (Invitrogen) and 1X of SuperScript IV RT buffer (Invitrogen). Reactions were incubated at 50°C for 10 min, and then at 80°C for 10 min to inactivate the reverse transcriptase. Two nested PCR amplification rounds of 30 and 20-30 cycles, respectively, were then performed. PCR1 was run using 0.5 to 2 µl of cDNA, 10 pmol of gene-specific primer (Supplementary Table 6), 10 pmol of RACSeq_rev1 primer (Supplementary Table 6), 10 nmol of dNTP, 1 U of GoTaq DNA Polymerase (Promega) and 1X of Green GoTaq Reaction Buffer (Promega) in a 20 μl final volume. The conditions for PCR1 were as follows: a step at 94°C for 30 s; 30 cycles at 94°C for 20 s, 50°C for 20 s and 72°C for 30 s; a final step at 72°C for 30 s. PCR1 was performed using 1 µl of PCR1 product, 10 pmol of gene-specific primer (Supplementary Table 6) and 10 pmol of a TruSeq RNA PCR index (RPI, Supplementary Table 6) 10 nmol of dNTP, 1 U of GoTaq DNA Polymerase (Promega) and 1X of Green GoTaq Reaction Buffer (Promega) in a 20 μl final volume. The conditions for PCR2 were as follows: a step at 94°C for 1 min; 20-30 cycles at 94°C for 30 s, 56°C for 20 s and 72°C for 30 s; a final step at 72°C for 30 s. All PCR2 products were purified using one volume of AMPure XP beads (Agencourt). Library were paired-end sequenced with MiSeq (v3 chemistry) with 41 × 111 bp cycle settings. After initial data processing by the MiSeq Control Software v 2.6 (Illumina), base calls were extracted and further analyzed by a set of homemade scripts detailed in Supplementary Methods. In addition to the analysis based on the Illumina base-calling software), the poly(A) sizes shown in Supplementary Fig. 2b were also estimated using the TAILseeker software9 (v3.1, https://github.com/hyeshik/tailseeker) as detailed in Supplementary Methods. Distribution profiles shown in Fig. 3-5 and in Supplementary Fig. 2-4 display the percentages of sequences according to poly(A) tail sizes calculated for tails from 1 to 90 nucleotides. Tail length takes into account the number of As and potential 3’ added nucleotides. For GFP and NbPR2 mRNAs (Fig. 3-4 and Supplementary Fig. 2-3), poly(A) distributions were generated by considering only 3’ extremities that map in a region of ± 50 nt around the main polyadenylation site. The numbers of sequences obtained at each processing step of 3’RACE-seq libraries are provided in Supplementary Table 3.

Small RNA-seq library preparation and data processing
Total RNA was extracted using Tri-Reagent (Molecular Research Center) from WT, urt1-1, xnr4-3 and urt1-1 xnr4-3 24-day-old seedlings, two biological replicates each, and subsequently treated with DNase I (Thermo Fisher Scientific). Small RNA libraries were prepared and sequenced at Fasteris (http://www.fasteris.com). Libraries were generated from 3 µg of DNase treated-RNA using the Illumina TruSeq Small RNA protocol after size selection of 18-30 nt RNA fragments on a denaturing polyacrylamide gel. Libraries were sequenced on a HiSeq 2500 (HiSeq High-Output (HO) mode, 1 × 50 bp). The base calls were acquired from HiSeq 2500 after processing by Illumina RTA 1.18.61.0 and CASAVA pipeline v.1.8.2. Details about further data processing are provided in Supplementary
Methods. The numbers of sequences obtained for small RNA-seq libraries and the list of mRNA loci that show differential small RNA accumulation are provided in Supplementary Table 4.

TAIL-seq library preparation and data processing
TAIL-seq libraries were generated from three biological replicates of Arabidopsis Col-0 flower buds. Total RNA was extracted using Tri-Reagent (Sigma-Aldrich), treated with DNase I (Thermo Fisher Scientific) and purified using the RNaseq MinElute Clean-up (Qiagen). Per sample, three individual ribodepletion on 10 μg of RNA each in a final volume of 10 μl were performed using the RiboMinus Plant kit (Thermo Fisher scientific) following the manufacturer’s instructions. Ribodepleted RNA were then ligated to 10 pmol of a biotinylated 3’ adapter, (3’-Adap TAIL-seq, Supplementary Table 6) using 10 units of T4 RNA ligase 1 (NEB) in a final volume of 10 μl for one h at 37°C. RNAs were partially digested with 0.001 unit of RNase T1 (Invitrogen) in a final volume of 80 μl for 5 min at 50°C. RNAs were then purified with streptavidin beads (Dynabeads M-280 Streptavidin), phosphorylated using T4 PNK (NEB), and gel purified on a denaturing 6 % polyacrylamide gel (Novex, 300nt-1200nt). Purified RNAs were ligated to 5 pmol of 5’ adapter (5’-Adap TAIL-seq, Supplementary Table 6), using 8 units of T4 RNA ligase 1 (NEB) and 8 nmol of ATP in a final volume of 8 μl for 1 h at 37°C. cDNAs were synthesized using Superscript III (Invitrogen) and 50 pmol of RT primer (3’-RT, Supplementary Table 6). Finally, cDNAs were amplified using the DNA Phusion Polymerase master mix (Thermo Fisher Scientific) with 25 pmol of TAIL-seq-fw primer (Supplementary Table 6) and 25 pmol of a TruSeq RNA PCR index (RPI, Supplementary Table 6) in a final volume of 50 μl. PCR conditions were as follows: a step at 98°C for 30 s; 19 cycles at 98°C for 10 s, 60°C for 30 s and 72°C for 45 s; a final step at 72°C for 5 min. Libraries were first purified on 6 % polyacrylamide gel (Novex) to extract DNA fragment from 300 to 1000 nucleotides and further purified using one volume of AMPure XP beads (Agencourt). Library concentrations were determined using a Qubit fluorometer (Invitrogen). Quality and size distribution were assessed using a 2100 Bioanalyzer system (Agilent). Library were paired-end sequenced with MiSeq (v3 chemistry) with 41 × 111 bp cycle settings. The base calling-based pipeline was adapted from12 and is detailed in Supplementary Methods. Uridylation percentages were calculated for 3340 mRNAs detected with at least 20 reads using the pooled dataset from the three biological replicates. The number of sequences obtained at each processing step of TAIL-seq libraries and the calculated uridylation percentages are provided in Supplementary Table 5.

Statistical analysis
Statistical analyses were performed using R 3.6.1, Rstudio 1.2 and the following R packages: edgeR 3.26.5, stats 3.6.1, multcompView 0.1-8. For all analyses, a p-value of 0.05 was defined as the threshold of significance. For each figure, the exact value of n and the test used for the statistical analysis are indicated in the figure or in the corresponding legend. Fold change and p-values in Fig. 2a, 2b and 2f were computed using the quasi-likelihood negative binomial generalized log-linear model implemented in the edgeR package62. Statistical significance shown in Fig. 3 and Supplementary Fig. 2-3 were obtained using Pairwise Wilcoxon Rank Sum Tests with data considered as paired. Statistical significance shown in Fig. 6f were obtained using Pairwise Wilcoxon Rank Sum Tests with data considered as unpaired. Differential statistical analysis shown in Fig. 6d was performed using the edgeR package and its implemented negative binomial generalized log-linear model. All p-value were adjusted using the Benjamini Hochberg method.

Data availability
NGS datasets generated during this study have been deposited in NCBI’s Gene Expression Omnibus65 and are accessible through GEO Series accession number GSE148449 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148449). GEO Series accession numbers for individual datasets are GSE148406 for 3’ RACE-seq in Arabidopsis, GSE148409 for 3’RACE-seq in N. benthamiana, GSE148417 for TAIL-seq and GSE148427 for small-RNA seq.
Mass spectrometry proteomics raw data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository, with the dataset identifier PXD018672 and 10.6019/PXD018672. Source data for all figures in the paper, including raw data underlying graphs and uncropped versions of gels or blots presented in the figures are available as Mendeley data: http://dx.doi.org/10.17632/vycvvtcn9.1

The raw intensity files (.cif files) used to test the TAILseeker3 software (results shown in Supplementary Fig. 2) have not been deposited in a public repository because of their large size but are available from the corresponding author on request.

Code availability

Bioinformatic pipelines including python and bash source code for 3'RACE-seq and TAIL-seq analyses are available as Mendeley data: http://dx.doi.org/10.17632/v8d9bd692c.1.

References

Acknowledgements

The authors gratefully acknowledge Nicolas Baumberger for helping with DCP5 purification, Heike Lange and Damien Garcia for critical reading of the manuscript, Timothée Vincent and IBMP bioinformatics core facility and IT service for helping with the implementation of TAILseeker tools and providing computing resources. This research was funded by the Centre National de la Recherche Scientifique (CNRS), by an IdEx grant from the University of Strasbourg (H.Z.) and by a research grant from the French National Research Agency ANR-15-CE12-0008-01 (D.G.). All mass spectrometry analyses, the purchase of the mass spectrometer TripleTOF 5600 (SCIEX) and salaries for E. F. and C. D. A. were supported by a funding from the state managed by the French National Research Agency as part of the “Investments for the Future” program under the framework of the LABEX: ANR-10-LABX-0036_NETRNA and ANR-17-EURE-0023. The authors also acknowledge the funding of a QExactive Plus mass spectrometer (ThermoFisher) by an IdEx grant from the University of Strasbourg. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Declaration of Interests

The authors declare no competing interests.
Figure Legends

Fig. 1: Short linear motifs are conserved in plant URT1 orthologs. a Domain organization of URT1. CCD: Catalytic Core Domain; Ntrf: polymerase β-like nucleotidyltransferase domain; PAP-assoc: Poly(A) polymerase-associated domain. The region of P/Q/N/G enrichment is indicated. Numbers refer to amino acid positions in URT1. b Disorder propensity of URT1 predicted by ESPript-NMR and aggregated by FELLS. c Disorder propensity of URT1 orthologs in Archaeplastida. The length of URT1 sequences was normalized to 100. The number of sequences considered are indicated for each group. d Sequence conservation of URT1 orthologs among land plants. The conservation score was calculated with ConSurf from an alignment of 247 sequence homologs of URT1 in land plants and using URT1 sequence as a reference. e Occurrence of M1 (red), M2 (green) and PPGF (purple) motifs among URT1 orthologs of land plants. The slightly divergent M1 motif of URT1 paralogs in Poales is in light red. The length of 74 URT1 sequences was normalized to 100. The source data are available in Supplementary Table 1.

Fig. 2: URT1 co-purifies with translational repressors/decapping activators. a-b Enrichment of proteins co-purified with myc and YFP-tagged URT1 with formaldehyde crosslink (a) or without (b). The dashed line indicates the threshold above which proteins are significantly enriched (adjusted p-value <0.05). c Common domain organization of Arabidopsis (At) DCP5 and its human (Hs) and yeast (Sc) orthologs LSM14A and Scd6, respectively. d In vitro GST pull-down assay showing a direct URT1-DCP5 interaction. Pull-downs were performed in presence of RNase A with the recombinant proteins 6His-GST, 6His-GST-URT1, 6His-MBP-DCP5, 6His-GST-m1URT1 and 6His-MBP-∆SmDCP5. e Diagram illustrating the point mutations in m1URT1 constructs. f Volcano plots showing proteins differentially enriched (log2 fold change > 0) or depleted (log2 fold change < 0) in myc-tagged m1URT1 versus myc-tagged URT1 IPs. The dashed line indicates the significant threshold (adjusted p-value <0.05). The source data are available in Supplementary Table 2, at [https://doi.org/10.6019/PXD018672] and at [http://dx.doi.org/10.17632/ybcvvmtcn9.1].

Fig. 3: Ectopic expression of URT1 remodels poly(A) tail profiles. a Domain organization and mutations of different URT1-myc versions transiently expressed in N. benthamiana leaf patches. Legend as in Fig. 1a. b Western blot analysis of URT1-myc expression. c Representative N. benthamiana leaf under UV light to detect the expression of the GFP reporter co-expressed with the different URT1-myc versions (top). Quantification of GFP fluorescence of the different patches relative to control (ctrl) for 11 independent replicates (bottom). d Northern blot analysis of the steady-state level of GFP mRNAs. The arrows indicate unspliced and mature forms of GFP mRNAs. e Uridylation percentage of GFP reporter mRNAs for six biological replicates. f-g Distribution profiles of GFP mRNA poly(A) tail sizes. The percentages of sequences were calculated for six biological replicates for uridylated (f) and homopolymeric poly(A) tails (non-uridylated) (g) tails from 1 to 90 nucleotides. The pie charts represent the average proportion of tails longer than 90 nucleotides. Letters in (c, e-g) represent significant statistical p-value (Wilcoxon rank-sum test, n=11 (c) and n=6 (e-g)). The source data are available in Supplementary Table 3, at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148409] and at [http://dx.doi.org/10.17632/ybcvvmtcn9.1].

Fig. 4: Uridylation prevents accumulation of excessively deadenylated mRNAs. a Deadenylation assay. Identical amounts of purified wild-type and mutated 6His-GST-CAF1b proteins (left gel) were incubated with 5'-labeled RNA substrates comprising an oligo(A) stretch and 0, 1 or 2 terminal uridines as indicated (right gel). b Domain organization and mutations of URT1-myc versions. c Western blot analysis of URT1-myc expression. d-f Distribution profiles of GFP mRNA poly(A) tail sizes. The percentages of sequences were calculated for three biological replicates for uridylated (d), non-uridylated (e) and A-rich (f) tails from 1 to 90 nucleotides. The source data are available in Supplementary Table 3, at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148409] and at [http://dx.doi.org/10.17632/ybcvvmtcn9.1].
Fig. 5: URT1-mediated uridylation shapes poly(A) tails in Arabidopsis. Distribution profiles of poly(A) tail sizes for 22 mRNAs in WT (gray) and urt1-1 (orange). The panels for the 22 mRNAs were ranked according to their uridylation levels in wild-type plants. The percentages of sequences were calculated for tails from 1 to 90 nt for two biological replicates. Tail length includes poly(A) stretches and eventual 3’ terminal uridines. Dashed lines indicate the 10 and 25 nt tail sizes. Small bar plots display the uridylation percentage in WT and urt1-1 for each mRNA. The source data are available in Supplementary Table 3 and at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148406.

Fig. 6: URT1-mediated uridylation prevents the production of spurious siRNAs targeting mRNAs.
- **a** Rosettes of WT, urt1-1, xrn4-3 and urt1-1 xrn4-3 plants. Numbers below the enlarged images of the rosette center indicate the ratio of normally developed shoot apical meristem to total numbers of plants.
- **b** Flowering time of WT, urt1-1, xrn4-3 and urt1-1 xrn4-3 defined as the number of days from seed sowing until the opening of the first flower. Bar plots show the mean (+ SD) of the flowering time measured for twelve plants of two biological replicates. Numbers of flowering plants/total number of plants are indicated above each bar plot. Plants in (a-b) were grown in 12h light/12h darkness photoperiod.
- **c-d** Small RNA-seq analyses performed for two biological replicates from 24 day-old seedlings grown in vitro in 12h light/12h darkness photoperiod.
- **c** Bars plot show the number of 21-25 nt reads as counts per million (CPM) that map to mRNAs in WT, urt1-1, xrn4-3 and urt1-1 xrn4-3.
- **d** Venn diagrams show the number of mRNAs for which siRNA levels differentially increased or decreased in urt1-1 (orange), xrn4-3 (blue) and urt1-1 xrn4-3 (green) when compared to WT.

Fig. 7: Model of URT1 mode of action. The name correspondence of RNA decay factors conserved between Arabidopsis and humans is indicated at the bottom.

Supplementary Figure and Table legends

Supplementary Fig. 1: Conservation of short linear motifs in URT1 sequences across land plants.
- **a** Conservation of URT1 sequences across land plants. Consensus logo displayed in bits calculated from the alignment of 247 URT1 sequence homologs from land plants (see Supplementary Table 1). The conserved M1, M2 and PPGF motifs are highlighted in red, green and purple, respectively. β-like nucleotidyltransferase and PolA polymerase-associated domains are highlighted in yellow and blue, respectively.
- **b** Conservation of the M1 motif in Poales. URT1 homologous sequences in Poales and URT1 from *Arabidopsis thaliana* (see Supplementary Table 1) were aligned using Muscle, curated with Gblocks and used to construct a tree with the maximum-likelihood method and WAG substitution model implemented in PhyML (v. 3.1). Confidence values are shown on branches. The phylogenetic tree shows that URT1 homologs in Poales can be separated into 2 groups (A and B) with 2 distinct M1 motifs. The consensus logos showing the respective conservation of the M1 motif (red/light red in URT1A and URT1B groups, respectively) are shown on the right. The source data are available in Supplementary Table 1 and at http://dx.doi.org/10.17632/ycjvcmn9.1.

Supplementary Fig. 2: Additional information related to URT1’s impact on GFP expression.
- **a** Picture of *N. benthamiana* rdr6i mutant plant leaves under UV light to detect the expression of the GFP reporter co-expressed with the different URT1-myc versions indicated, with or without co-expression of...
the P19 silencing suppressor. b Size distribution for non-uridylated poly(A) tails using the TAILseeker software (v3.1, https://github.com/hyeshik/tailseeker) for six biological replicates. The pie charts represent the average proportion of non-uridylated poly(A) tails longer than 90 As. Letters shown above pie charts represent significant statistical p-value (Wilcoxon rank-sum test, n=6). c Examples of A-rich tails for GFP mRNAs. d Percentage of poly(A) tails with 1U, 2U or at least 3U for six biological replicates. The source data are available in Supplementary Table 3 and at [http://dx.doi.org/10.17632/ycvvvmtcn9.1].

Supplementary Fig. 3: URT1 ectopic expression affects poly(A) profiles of an endogenous mRNA. a Northern blot showing the levels of endogenous PR2 mRNAs upon ectopic URT1 expression. b Uridylation percentage of endogenous PR2 mRNAs for six biological replicates. Letters represent significant statistical p-value (Wilcoxon rank-sum test, n=6). c-e Size distribution of poly(A) tails of endogenous PR2 mRNAs. The percentages of sequences were calculated for six biological replicates for uridylated (c), non-uridylated (d) and A-rich (e) tails from 1 to 90 nucleotides. The source data are available in Supplementary Table 3, at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148409] and at [http://dx.doi.org/10.17632/ycvvvmtcn9.1].

Supplementary Fig. 4: Uridylation tags mostly oligoadenylated mRNAs with less than 25As. Distribution of poly(A) tail sizes for uridylated sequences of 22 mRNAs in Arabidopsis plants. The percentages of sequences were calculated for tails from 1 to 90 nt for two biological replicates. Tail length comprises As and 3' terminal uridines. Dashed lines indicate the 10 and 25 nt tail sizes. Red numbers indicate the uridylation percentage in WT for each mRNA. The source data are available in Supplementary Table 3 and at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148406].

Supplementary Fig. 5: Inactivation of both URT1 and XRN4 triggers a severe developmental phenotype. Rosettes of WT, urt1-1, urt1-2, xrn4-3, xrn4-5, urt1-1 xrn4-3, urt1-2 xrn4-5 plants. Plants were grown for 6.5 weeks in 12h light/12h darkness photoperiod conditions.

Supplementary Table 1: Sequences used for phylogeny analysis, Related to Fig. 1

Supplementary Table 2: Differential analysis of protein accumulation in URT1 IPs as compared to control or to m1 URT1 IPs, Related to Fig. 2. a,b Differential analysis of protein accumulation in URT1 IPs as compared to control IPs. Immunoprecipitation experiments were performed with (a) or without (b) formaldehyde crosslink. c Differential analysis of protein accumulation in m1URT1 IPs as compared to URT1 IPs. d Details of biological material used for IPs.

Supplementary Table 3: Source data related to 3'RACE-seq experiments, Related to Fig. 3-5. Number of reads analyzed at each step of the data processing for N. benthamiana (a,b) and A. thaliana (c,d).

Supplementary Table 4: Source data related to small RNA-seq experiment, Related to Fig. 6. a Summary of the number of reads obtained for small RNA-seq. b Total number of 21-25 nt reads that map on mRNAs in WT, urt1-1, xrn4-3 and urt1-1 xrn4-3. c List of mRNA loci that show differential siRNA accumulation in urt1-1, xrn4-3, urt1-1 xrn4-3 when compared to WT.

Supplementary Table 5: Source data related to TAIL-seq experiment, Related to Fig. 6. a Summary of the number of reads obtained at each step of the data processing step. b Uridylation frequency for the 3440 detected mRNAs.

Supplementary Table 6: List of primers used in this study.

Supplementary Table 7: List of plasmids used in this study.
Fig. 1: Short linear motifs are conserved in plant URT1 orthologs. a Domain organization of URT1. CCD: Catalytic Core Domain; Ntrf: polymerase β-like nucleotidyltransferase domain; PAP-assoc: Poly(A) polymerase-associated domain. The region of P/Q/N/G enrichment is indicated. Numbers refer to amino acid positions in URT1. b Disorder propensity of URT1 predicted by ESpritz-NMR and aggregated by FELLS. c Disorder propensity of URT1 orthologs in Archaeplastida. The length of URT1 sequences was normalized to 100. The number of sequences considered are indicated for each group. d Sequence conservation of URT1 orthologs among land plants. The conservation score was calculated with ConSurf from an alignment of 247 sequence homologs of URT1 in land plants and using URT1 sequence as a reference. e Occurrence of M1 (red), M2 (green) and PPGF (purple) motifs among URT1 orthologs of land plants. The slightly divergent M1 motif of URT1B paralogs in Poales is in light red. The length of 74 URT1 sequences was normalized to 100. The source data are available in Supplementary Table 1.
Fig. 2: URT1 co-purifies with translational repressors/decapping activators.

a-b Enrichment of proteins co-purified with myc and YFP-tagged URT1 with formaldehyde crosslink (a) or without (b). The dashed line indicates the threshold above which proteins are significantly enriched (adjusted p-value < 0.05).

c Common domain organization of Arabidopsis (At) DCP5 and its human (Hs) and yeast (Sc) orthologs LSM14A and Scd6, respectively.

d In vitro GST pull-down assay showing a direct URT1-DCP5 interaction. Pull-downs were performed in presence of RNase A with the recombinant proteins 6His-GST, 6His-GST-URT1, 6His-MBP-DCP5, 6His-GST-m1URT1 and 6His-MBP-ΔLSmDCP5.

e Diagram illustrating the point mutations in m1URT1 constructs.

f Volcano plots showing proteins differentially enriched (log2 fold change > 0) or depleted (log2 fold change < 0) in myc-tagged m1URT1 versus myc-tagged URT1 IPs. The dashed line indicates the significant threshold (adjusted p-value < 0.05). The source data are available in Supplementary Table 2, at https://doi.org/10.6019/PXD018672 and at http://dx.doi.org/10.17632/ybcvvmtcn9.1.
Fig. 3: Ectopic expression of URT1 remodels poly(A) tail profiles.

a Domain organization and mutations of different URT1-myc versions transiently expressed in N. benthamiana leaf patches. Legend as in Fig. 1a.

b Western blot analysis of URT1-myc expression.

c Representative N. benthamiana leaf under UV light to detect the expression of the GFP reporter co-expressed with the different URT1-myc versions (top). Quantification of GFP fluorescence of the different patches relative to control (ctrl) for 11 independent replicates (bottom).

d Northern blot analysis of the steady-state level of GFP mRNAs. The arrows indicate unspliced and mature forms of GFP mRNAs.

e Uridylation percentage of GFP reporter mRNAs for six biological replicates.

f-g Distribution profiles of GFP mRNA poly(A) tail sizes. The percentages of sequences were calculated for six biological replicates for uridylated (f) and homopolymeric poly(A) tails (non-uridylated) (g) tails from 1 to 90 nucleotides. The pie charts represent the average proportion of tails longer than 90 nucleotides. Letters in (c, e-g) represent significant statistical p-value (Wilcoxon rank-sum test, n=11 (c) and n=6 (e-g)). The source data are available in Supplementary Table 3, at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148409] and at [http://dx.doi.org/10.17632/ybcvvmtcn9.1].
Fig. 4: Uridylation prevents accumulation of excessively deadenylated mRNAs.

a) Deadenylation assay. Identical amounts of purified wild-type and mutated 6His-GST-CAFb proteins (left gel) were incubated with 5'-labeled RNA substrates comprising an oligo(A) stretch and 0, 1 or 2 terminal uridines as indicated (right gel).

b) Domain organization and mutations of URT1-myc versions.

c) Western blot analysis of URT1-myc expression.

d-f) Distribution profiles of GFP mRNA poly(A) tail sizes. The percentages of sequences were calculated for three biological replicates for uridylated (d), non-uridylated (e) and A-rich (f) tails from 1 to 90 nucleotides. The source data are available in Supplementary Table 3, at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148409] and at [http://dx.doi.org/10.17632/ybcvvmtcn9.1].
Fig. 5: URT1-mediated uridylation shapes poly(A) tails in Arabidopsis. Distribution profiles of poly(A) tail sizes for 22 mRNAs in WT (gray) and urt1-1 (orange). The panels for the 22 mRNAs were ranked according to their uridylation levels in wild-type plants. The percentages of sequences were calculated for tails from 1 to 90 nt for two biological replicates. Tail length includes poly(A) stretches and eventual 3’ terminal uridines. Dashed lines indicate the 10 and 25 nt tail sizes. Small bar plots display the uridylation percentage in WT and urt1-1 for each mRNA. The source data are available in Supplementary Table 3 and at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148406].
Fig. 6: URT1-mediated uridylation prevents the production of spurious siRNAs targeting mRNAs.

a) Rosettes of WT, *urt1-1*, *xrn4-3* and *urt1-1 xrn4-3* plants. Numbers below the enlarged images of the rosette center indicate the ratio of normally developed shoot apical meristem to total numbers of plants.

b) Flowering time of WT, *urt1-1*, *xrn4-3* and *urt1-1 xrn4-3* defined as the number of days from seed sowing until the opening of the first flower. Bar plots show the mean (+/- SD) of the flowering time measured for twelve plants of two biological replicates. Numbers of flowering plants/total number of plants are indicated above each bar plot. Plants in (a-b) were grown in 12h light/12h darkness photoperiod.

c) Small RNA-seq analyses performed for two biological replicates from 24 day-old seedlings grown in vitro in 12h light/12h darkness photoperiod. Bars plot show the number of 21-25 nt reads as counts per million (CPM) that map to mRNAs in WT, *urt1-1*, *xrn4-3* and *urt1-1 xrn4-3*. Venn diagrams show the number of mRNAs for which siRNA levels differentially increased or decreased in *urt1-1* (orange), *xrn4-3* (blue) and *urt1-1 xrn4-3* (green) when compared to WT.

d) Rosettes of WT, *dcl2-1 dcl4-1*, *urt1-1 xrn4-3* and *dcl2-1 dcl4-1 urt1-1 xrn4-3* plants grown in 12h light/12h darkness photoperiod. Boxplot analysis comparing the percentage of mRNA uridylation in WT vs the accumulation of siRNAs in *urt1-1 xrn4-3*. Uridylation percentages were measured by TAIL-seq. Datasets from three biological replicates were pooled. Numbers and letters above the boxplot represent the number of mRNAs for each category and significant statistical p-values (Wilcoxon rank-sum test), respectively. The source data are available in Supplementary Table 4 and 5, and at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148449 and http://dx.doi.org/10.17632/ybcvvmtcn9.1.
Fig. 7: Model of URT1 mode of action.
The name correspondence of RNA decay factors conserved between Arabidopsis and humans is indicated at the bottom.