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Abstract 

Recent studies consider lifestyle risk score (LRS), an aggregation of multiple lifestyle exposures, 

in identifying association of gene-lifestyle interaction with disease traits. However, not all cohorts 

have data on all lifestyle factors, leading to increased heterogeneity in the environmental exposure 

in collaborative meta-analyses. We compared and evaluated four approaches (Naïve, Safe, 

Complete and Moderator Approaches) to handle the missingness in LRS-stratified meta-analyses 

under various scenarios. Compared to “benchmark” results with all lifestyle factors available for 

all cohorts, the Complete Approach, which included only cohorts with all lifestyle components, 

was underpowered, and the Naïve Approach, which utilized all available data and ignored the 

missingness, was slightly liberal. The Safe Approach, which used all data in LRS-exposed group 

and only included cohorts with all lifestyle factors available in the LRS-unexposed group, and the 

Moderator Approach, which handled missingness via moderator meta-regression, were both 

slightly conservative and yielded almost identical p-values. We also evaluated the performance of 

the Safe Approach under different scenarios. We observed that the larger the proportion of cohorts 

without missingness included, the more accurate the results compared to “benchmark” results. In 

conclusion, we generally recommend the Safe Approach to handle heterogeneity in the LRS based 

genome-wide interaction meta-analyses. 
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1. Introduction 

Thanks to strong collaborations, many large-scale genome-wide association studies (GWAS) have 

successfully identified many genetic determinants described to explain part of the 

pathophysiological mechanism underlying a wide range of traits. Despite these efforts and 

increased sample sizes, the explained variability of many traits is relatively small and only a small 

proportion of the familial heritability can be explained by the candidate variants found (Evangelou 

et al., 2018; López-Cortegano & Caballero, 2019; Manolio et al., 2009). 

In addition to genetics, environmental factors and gene-environment interactions may contribute 

to this unexplained trait heritability (Manolio et al., 2009; Rao et al., 2017). Recently, genome-

wide gene-environment interaction studies have been conducted to further explore the potential 

mechanisms underlying an array of diseases or disease traits of interest (de las Fuentes et al., 2020; 

Graff et al., 2017; Liu et al., 2012; Noordam et al., 2019; Wu et al., 2020). Thus far, these 

collaborative efforts have largely focused on a single environmental or lifestyle factor, such as 

smoking (Bentley et al., 2019; Justice et al., 2017; Yun J. Sung et al., 2018; Yun Ju Sung et al., 

2019; Wu et al., 2020), physical activity (Graff et al., 2017; Kilpeläinen et al., 2019), alcohol intake 

(De Vries et al., 2019), educational attainment (de las Fuentes et al., 2020) and others (Jiang et al., 

2018; Noordam et al., 2019). By accounting for the environmental risk factor, these efforts 

identified several novel loci beyond those identified by the traditional main effects-only GWAS. 

However, multiple environmental factors may simultaneously modify the genetics effects of loci 

(Osazuwa-Peters et al., 2020). Additionally, single lifestyle variables may not capture the spectrum 

of relevant environmental variation, resulting in biased effect estimation and false-negative results 

due to reduced statistical power.  
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Lifestyle factors, such as smoking, physical inactivity and alcohol consumption, all contribute 

independently to the risk of developing cardiovascular diseases, and composite lifestyle risk scores 

(LRS) have been used previously to assess the combined effect of multiple lifestyle factors on 

cardiovascular disease development (Abdullah Said, Verweij, & Van Der Harst, 2018; Lévesque, 

Poirier, Després, & Alméras, 2017; Sotos-Prieto, Baylin, Campos, Qi, & Mattei, 2016). However, 

when applying LRS methodology to large collaborative consortium settings, challenges arise as 

not all lifestyle components in the LRS are available in all participating cohorts and/or may not be 

measured using the same instrument. If ignored, significant measurement error and potential 

heterogeneity may be introduced with reduced statistical power and potential bias. In the present 

study, we explore different approaches for incorporating missingness of individual lifestyle 

components with meta-analysis of genome-wide gene-environment interaction on systolic blood 

pressure in four European-ancestry (EA) cohorts.  

 

2. Methods 

2.1 Participating cohorts and subject inclusion  

In this study, we included data from four cohorts, which were the Atherosclerosis Risk in 

Communities Study (ARIC), the Framingham Heart Study (FHS), the Hypertension Genetic 

Epidemiology Network (HyperGEN), and the Netherlands Epidemiology of Obesity Study (NEO). 

For cohorts with data collected from multiple center visits, we chose a single visit that could 

maximize sample size with non-missing data. We included a total of 24,048 EA individuals who 

were aged 18-80 and had non-missing genotype, phenotype and relevant covariates information, 
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including age, sex, systolic blood pressure (SBP), anti-hypertensive medications, body mass index 

(BMI) and the four lifestyle factors (smoking status, alcohol consumption, education level, and 

physical activity). 

 

2.2 Phenotype and covariates  

Resting SBP (mmHg) was calculated by taking the average of all available BP readings at the same 

clinical visit, and further adjusted by adding 15 mmHg for subjects with anti-hypertensive 

medication use (Tobin, Sheehan, Scurrah, & Burton, 2005). SBP values that were more than six 

standard deviations away from the mean were winsorized to exactly at six standard deviations from 

the mean, in order to reduce the potential influence of outliers.  

Other covariates included age, sex, field center (if appropriate), and principal components to 

account for population stratification. Analyses were performed with and without further adjusting 

for BMI. 

 

2.3 Genotyping and QC  

Genotyping was performed separately within each cohort using Affymetrix (Santa Clara, CA, USA) 

or Illumina (San Diego, CA, USA) genotyping arrays (Supplementary Table S1). Each cohort 

performed imputations with IMPUTE2 (Howie, Donnelly, & Marchini, 2009) or MaCH (Li, Willer, 

Ding, Scheet, & Abecasis, 2010), using the cosmopolitan reference panel from the 1000 Genomes 
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Project Phase 1 Integrated Release Version 3 Haplotypes (2010-11 data freeze, 2012-03-14 

haplotypes) (Altshuler et al., 2012). SNPs were excluded if they were non-autosomal, had minor 

allele frequency (MAF) <1% or low imputation quality (r2<0.1). We conduct further quality 

control filters centrally during the meta-analysis (Section 2.5.2).  

 

2.4 Lifestyle Risk Score 

In this study, we considered four lifestyle factors: smoking status (never/former/current smoker), 

current alcohol intake (drinks per week), educational attainment beyond high school (none/some 

college/college degree) and physical activity (inactive/active). We classified participants as 

“college degree” if they completed at least a 4-year college degree, as “some college” if they 

received any education beyond high school including vocational school but did not complete a 

college degree and as “none” if they received no education beyond high school (de las Fuentes et 

al., 2020). Physical activity is expressed in metabolic equivalents (MET; 1 MET = 1 kcal/kg/hour). 

Inactive individuals were defined as those with <225 MET- minutes per week of moderate-to-

vigorous leisure-time or commuting physical activity, or in the lower quartile (25%) of the physical 

activity distribution within cohort. The detailed definitions of active and inactive physical activity 

followed a previous study on gene-physical activity interaction (Kilpeläinen et al., 2019).  

 

Construction of the lifestyle risk score can be separated into two steps. First, each lifestyle factor, 

treated as an individual lifestyle component, was categorized into no risk (with value of 0), low 

risk (with value of 1) and high risk (with value of 2) based on its effect on BP or cardiovascular 

health, except physical activity which only had no risk and low risk (Osazuwa-Peters et al., 2020). 
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The higher risk value the category was assigned, the more relevant to unfavorable cardiovascular 

health outcomes. Note that we categorized modest alcohol intake as no risk and abstinence as low 

risk because there was evidence that moderate alcohol consumption had consistently been 

associated with a decreased risk of type 2 diabetes (Joosten et al., 2010) and coronary artery disease 

(Klatsky, 1999) compared with abstention or excessive consumption (Feitosa et al., 2018). Table 

1 provides the details of lifestyle risk score component definition. 

 

Second, the “Complete” Quantitative Lifestyle Risk Score (QLRS-C) was calculated by summing 

up all four components, ranging from 0-7. We also calculated the “Partially Missing” Quantitative 

Lifestyle Risk Score (QLRS-M) using 2-3 components pre-selected for each cohort by design, as 

described in Table 2. For example, for ARIC, we included three lifestyle components (smoking, 

education and physical activity) when constructing QLRS-M. QLRS-M ranges from 0 to 4 or 5, 

depending on the inclusion of lifestyle components for each cohort.  

After constructing the Quantitative Lifestyle Risk Scores, we further created Dichotomous 

Lifestyle Risk Scores for the “Complete” (DLRS-C) and the “Partial” (DLRS-M) summary scores. 

We gave a value of 0 (unexposed group) if the corresponding Quantitative Lifestyle Risk Score 

<2 and a value of 1 (exposed group) if Quantitative Lifestyle Risk Score ≥2 (i.e. at least one risk 

component classified as high risk or at least two components classified as low risk). These 

dichotomized LRS measures are used to define exposed and unexposed strata in our analyses. 

It is worth noting that cohorts with partially missing lifestyle components have equal or lower LRS 

than its actual score had we observed all lifestyle components. This leads to potential 

misclassification when dichotomizing the LRS into exposed and unexposed groups. However, no 
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participant would be misclassified as exposed and they can only be misclassified as unexposed, 

leading to heterogeneity in the unexposed group only. 

 

2.5 Statistical Analysis 

2.5.1    Overview 

We conduct a two-stage analysis procedure. In Stage 1, each cohort performed LRS-stratified 

genome-wide association analysis on SBP using the main effect model (E(Y) = β0 + βG SNP + βC 

Covariates, where Y is the SBP level, SNP is the imputed additive dosage value of the genetic 

variant), in DLRS-C exposed and DLRS-C unexposed strata. The association analyses were also 

repeated in DLRS-M exposed and DLRS-M unexposed strata. In Stage 2, we performed meta-

analysis within each stratum, and then evaluated the joint effects of main and interaction effects 

by calculating the p-values for the 2 degree of freedom joint test. Under Stage 2, we considered 

four different meta-analysis approaches of handling missingness of lifestyle components (Naïve, 

Safe, Complete and Moderator Approaches). We evaluated the performance of the four approaches 

under four scenarios where some cohorts were designed to provide association results using 

“Complete” LRS but the others were designed to only provide “Partially Missing” results. 

 

2.5.2    Stage 1: Cohort-specific stratified analysis and QC of association results 

For Stage 1, each cohort performed eight genome-wide association analyses on SBP using the 

main effect model: two strata (exposed/unexposed) × two LRS (DLRS-C/DLRS-M) × two BMI 
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adjustment (with/without). Association analyses were implemented either using ProbABEL 

(Aulchenko, Struchalin, & van Duijn, 2010) for studies with unrelated samples, or using MMAP 

(https://mmap.github.io/) for studies with family relatedness. Each cohort provided the robust 

estimates of the stratum-specific genetic main effect and corresponding robust standard error (SE) 

for all eight analyses. Cohort-specific details are presented in Supplementary Table S1. 

We performed extensive quality control (QC) using the R package EasyQC (Winkler et al., 2014) 

on each of the eight cohort-specific association results, which contained approximately 8-9 million 

variants. First, we removed variants with invalid alleles and indels, harmonized alleles and variant 

names across cohorts, and compared allele frequencies with the ancestry-specific 1000 Genomes 

reference panel. Next, we compared summary statistics (e.g., mean, standard deviation, minimum, 

maximum) of estimated effect sizes, standard errors, and p-values across cohorts to identify 

potential outliers, and reviewed SE-N (i.e., inverse of the median standard error versus the square 

root of the sample size) plots to look for possible problems with phenotype or covariates (Winkler 

et al., 2014). Finally, SNPs were excluded if imputation quality score was <0.5, or if the product 

of the imputation quality and minor allele count was <20 (de las Fuentes et al., 2020; Kilpeläinen 

et al., 2019). No genomic control was applied after filtering as there were little to no problems 

with inflation (genomic control inflation λ ranged from 1.020 to 1.071).  

Since QC and filtering were performed separately within each stratum, the set of variants 

remaining in each stratum differed slightly. Thus, we further harmonized the set of variants 

between the exposed and unexposed strata within each LRS construction – BMI adjustment 

combination, to ensure that the set of variants was identical between strata. After QC, the number 

of variants in each association result was between 5.3M-8.2M. 
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2.5.3    Stage 2: Meta-analysis 

After obtaining cohort-specific GWAS results using “Complete” and “Partially Missing” LRS, we 

first performed meta-analyses within each stratum (exposed/unexposed) using the results obtained 

from analyses using “Complete” LRS, and considered this set of meta-analyzed results as the 

“benchmark” results as there is no missing lifestyle component in each cohort’s LRS construction.  

Then, to mimic the real life situation where some of the cohorts would provide GWAS association 

results obtained from analyses using “Complete” LRS but the others could only provide “Partially 

Missing” results, we further performed the meta-analyses using a mixture of results obtained from 

cohort-specific analyses conducted with “Complete” LRS and “Partially Missing” LRS. We 

considered four scenarios using different cohort mixture patterns by changing each cohort’s 

contribution of lifestyle components, in order to better utilize the data. The setting of each scenario 

is presented in Table 3. For example, Scenario 1 is to use “complete” results from ARIC, and 

“partially missing” results from HyperGEN, FHS and NEO. 

As mentioned in the LRS section, the missingness in lifestyle components will cause 

misclassification when dichotomizing LRS into exposed and unexposed groups, hence leading to 

heterogeneity in the unexposed group only. To account for this heterogeneity, we considered four 

different meta-analysis approaches of utilizing “Complete” and “Partially Missing” results under 

various scenarios discussed above.  

1) Naïve Approach. This approach simply takes all association results contributed by each 

participating cohort without worrying whether their LRS includes all lifestyle components, 

for both exposed and unexposed groups. 
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2) Safe Approach. Since heterogeneity only occurs in the unexposed group, it is “safe” to only 

take association results from cohorts with complete LRS for the unexposed group analysis, 

while including results from all cohorts no matter whether the missing data exist in LRS 

for the exposed group analysis.  

3) Complete Approach. This approach only uses association results from cohorts with 

complete LRS data in meta-analysis, for both exposed and unexposed groups.  

4) Moderator Approach. This approach uses all the contributed data from cohorts without 

regard to their missingness in lifestyle components. It utilizes the framework of meta-

regression, while including moderator terms indicating the missing LRS components 

across cohorts in the design matrix of the meta-regression to account for missingness 

during meta-analysis. Technical details of this approach are available in the Supplementary 

Method. 

Table 3 also shows the inclusion of association results in the meta-analysis using each of the 

approaches described above under Scenarios 1-4. Here we take Scenario 1 as an example: For the 

Naïve Approach, we analyze exposed and unexposed groups separately using “complete” results 

from ARIC, and “partially missing” results from HyperGEN, FHS and NEO without 

differentiating “complete” or “partially missing”. For the Safe Approach, we include ARIC results 

alone and ignore other cohorts’ contributions with “partially missing” results for the unexposed 

group; for the exposed group, we analyze all four cohorts using “complete” results from ARIC, 

and “partially missing” results from HyperGEN, FHS and NEO. For the Complete Approach, we 

analyze exposed and unexposed groups separately, but only use “complete” results from ARIC 

with no other cohorts included. For the Moderator Approach, we take “complete” results from 
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ARIC, and “partially missing” results from HyperGEN, FHS and NEO for both exposed and 

unexposed groups as input of the meta-regression.  

For the “benchmark” meta-analysis and the first three approaches (Naïve, Safe and Complete), we 

used METAL software (Willer, Li, & Abecasis, 2010) to perform meta-analyses within each 

stratum and used EasyStrata (Winkler et al., 2015) to calculate the 2 degree of freedom joint p-

values. For the Moderator Approach, we used the Moderator Web App and R code developed by 

Dr. RJ Waken (https://rjwaken.shinyapps.io/missing_lrs_meta/). 

In the following sections, we focus on the comparison of results obtained from the analyses without 

adjusting for BMI, since we observed the same pattern for BMI-adjusted analyses and the primary 

objective of our study is to evaluate the meta-analysis approaches of handling missingness instead 

of identifying novel loci under confounder adjustment.  

 

3. Results 

3.1 Sample Characteristics 

Sample characteristics are presented in Supplementary Tables S2, S3, and S4. ARIC had the largest 

sample size (N=9,426) and HyperGen cohort had the fewest number of participants (N=1,249). 

All cohorts had similar distributions of sex, age and BMI, except that FHS and HyperGEN had a 

wider age range than ARIC and NEO (Supplementary Table S2). In Supplementary Tables S3 and 

S4, the exposed group had slightly higher SBP level than the unexposed group for all four cohorts 

in terms of DLRS-C. However, the difference in SBP levels between exposed and unexposed 
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groups was smaller when we defining exposure groups using DLRS-M. The proportion of subjects 

in the exposed group was smaller when using DLRS-M compared to DLRS-C, indicating potential 

misclassification.  

 

3.2 Results Comparison between Approaches 

Figure 1 presents the results of comparison of the four meta-analysis approaches to the “benchmark” 

results derived from analyses of cohorts where all lifestyle components were present. Among 

variants that reach genome-wide significance level (p-value<5×10-8), we observed that the 

Complete Approach yielded much larger p-values than the “benchmark” results, thus could be 

considered underpowered. The Naïve Approach was able to detect the same set of genome-wide 

significant variants as the “benchmark” results, but with slightly smaller p-values. The Safe and 

Moderator Approaches led to slightly larger p-values than “benchmark” results. The Q-Q plot 

(Figure 2) also shows that the Complete Approach obtained the most deflated p-values among the 

four approaches (λComplete vs benchmark = 0.972). The Safe Approach and Moderator Approach yielded 

similar slightly conservative results (λSafe vs benchmark = λModerator vs benchmark =0.985), while the results 

of the Naïve Approach were slightly liberal (λNaive vs benchmark = 1.004).  

Figure 3 shows the pair-wise comparison among four meta-analysis approaches. Similar to what 

we observed in Figure 1, the Complete Approach was underpowered compared to other three 

approaches. The Safe and Moderator Approaches yielded similar but slightly larger p-values than 

Naïve Approach, and the degree of similarity increased with significance. Notably, the results of 

Safe Approach and Moderator Approach were almost identical, but the number of variants 
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included in the analyses for the Moderator Approach (Number of variants = 5,258,666) was much 

smaller than the Safe Approach (Number of variants =8,181,669).  

Scenarios 2-4 presented similar patterns to Scenario 1 in terms of comparison with “benchmark” 

results and within-scenario comparison between different approaches; so we focus on illustrating 

Scenario 1 in the results section. The detailed comparison results of Scenarios 2-4 are available in 

the Supplementary Figures S1-S9.  

 

3.3 Result Comparison between Scenarios for Safe Approach 

Here we further evaluated the performance of the same meta-analysis approach under different 

scenarios. Since we generally were concerned with false-positive results, we focused our attention 

only to the non-inflated Safe Approach. Figure 4 presents the scatterplot of association results 

between “benchmark” and the Safe Approach for each of the four scenarios, for variants with p-

value<1×10-6 in at least one of comparing results. We observed that for SNPs reaching genome-

wide significance (p-value<5×10-8) in “benchmark” results, the points of Scenarios 3 and 4 almost 

lay along the diagonal line, while points of Scenarios 1 and 2 were a bit away from the diagonal. 

This indicated that the Safe Approach under Scenarios 3 and 4 more accurately identified positive 

signals than under Scenarios 1 and 2. 

The Q-Q plot (Supplementary Figure S10) shows that when p-values were large (>10-5), Scenario 

4 with less missingness provided more similar p-value distributions with “benchmark” results 

(λscenario 4 vs benchmark=0.991) compared to Scenario 1 (λscenario 1 vs benchmark=0.983) and Scenario 3 

(λscenario 3 vs benchmark=0.984). Although Scenario 2 seemed to perform very well on large p-values 
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(λscenario 2 vs benchmark=0.994), it provided substantially deflated results toward the tail when reaching 

genome-wide significance. In the meantime, Scenarios 3 and 4 had similar p-value distributions 

and both of their p-values were very close to the “benchmark” distribution when p-values were 

small. The p-values of Scenario 1 were closer to the diagonal line than those of Scenario 2 when 

p-values were small, and this may due to the sample size of the cohort with “complete” results in 

Scenario 1 (ARIC, N=9,426), which was greater than that of Scenario 2 (FHS, N=7,638). 

In general, we consider Scenario 4 performed better than Scenario 3, in turn better than Scenarios 

1 and 2. This meets our expectation as Scenario 4 had the smallest proportion of cohorts using 

“partially missing” results; thus it was expected to bring the most comprehensive information into 

meta-analysis. 

 

4. Discussion 

In this study, we evaluated four different strategies handling the missingness of individual lifestyle 

components in the meta-analysis of gene-lifestyle interaction using LRS-stratified summary 

statistics from participating cohorts. We aimed to find the best way to leverage the available data 

while appropriately handling the heterogeneity due to missing data in the LRS, and further improve 

the power of identifying novel loci for the trait of interest. Only utilizing data contributed by the 

cohorts without missingness in any lifestyle components (the Complete Approach) is very 

underpowered, while freely meta-analyzing all the association results contributed by the cohorts 

even with missing components in the LRS (the Naïve Approach) is slightly liberal. The Safe 

Approach and Moderator Approach are both slightly conservative and their p-values are almost 
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identical to each other. We also observed that, as expected, the more cohorts with information for 

all lifestyle components we used in meta-analysis, the more accurate the results.  This result 

confirms our primary hypothesis. 

A risk score is a commonly used approach to evaluate combined effects of risk factors and it may 

play an important role in personalized medicine. In the past, the scientific community has proposed 

several well-known risk scores. For example, the Framingham Risk Score (Wilson et al., 1998) is 

a sex-specific score used to estimate the 10-year cardiovascular risk, and the diabetes risk score 

(Lindström & Tuomilehto, 2003) is a screening tool for identifying subjects at high-risk for type 

2 diabetes. Lifestyle Risk Scores have also become popular as people are increasingly interested 

in their clinical implications drawn by the joint effects of individual lifestyle factors to a specific 

trait, disease, or time-to event outcome. In the meantime, the genetic risk score (GRS) has become 

a widely used tool to improve identification of persons who are at risk for common complex 

diseases after numerous stories about exceptional success in genome-wide association studies 

(GWAS).  

There have been some prior studies combining genetic risk scores and lifestyle risk scores to 

explore their joint behavior on risk of CVD (Abdullah Said et al., 2018) and Colorectal Cancer 

(Cho et al., 2019). Specifically, these studies divided study samples into subgroups based on the 

combination of genetic risk score level and lifestyle risk score level, and found that within and 

across genetic risk groups, adherence to poor behavioral lifestyle was associated with increased 

risk of diseases, and there was no interaction effect between genetic risk and lifestyle risk. This 

might seem discouraging whether adding genetic information could add much to the risk prediction 

studies using lifestyle risk scores. However, it is important to note that the genetic risk score was 
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calculated based on variants reported from previous standard genome-wide significant analyses 

without taking its potential modification effect into consideration; variants whose effects may 

differ by level of lifestyle risk score might therefore be missed by standard GWAS screening. 

Moreover, a LRS may have a different modification effect on each variant, so instead of looking 

at aggregated genetic risk score only, interaction with one variant at a time should also be evaluated. 

Our study looked into the combination of genetic and lifestyle information in the way of 

performing meta-analysis of gene-by-lifestyle interaction in order to find novel loci for complex 

disease traits, and those potential novel loci may provide additional information for computing a 

genetic risk score, which could increase the power of previous studies. 

Handling missing data in the aggregation of risk factors is challenging, yet important and worth 

the effort to explore in further detail. Based on the properties of genetic architecture, GRS can be 

computed using imputed or proxy SNPs, when the originally reported variants are not available, 

based on the largely available reference panel, such as 1000 Genome Project (Auton et al., 2015). 

Thus, it is more flexible than LRS in terms of dealing with missingness. There were several 

methods proposed to impute phenotypes using the correlation structure between phenotypes, 

family structure or information from other cohorts (Chen, Peloso, & Dupuis, 2018; Dahl et al., 

2016; Hormozdiari et al., 2016), but these methods rarely dealt with the case that one phenotype 

is completely unavailable for all the individuals in one particular cohort contributing to a large 

meta-analysis, which is what we encountered in our study. When considering using summary 

statistics in meta-analysis, a previous study (Loef & Walach, 2012) tried to deal with the issue of 

missingness by restricting the study sample to cohorts with at least three out of five lifestyle 

behaviors available, reducing sample size and thus power to a great extent, with the issue of 

heterogeneity unresolved. Our study proposes making the best use of the available data gathered 
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from cohorts to obtain accurate combined effects of risk factors, thereby providing a novel 

perspective for risk score based meta-analysis in future research. 

Our study examined the Moderator Approach, which is a novel approach of accounting for 

missingness via meta-regression in the gene-by-environment interaction field. Instead of 

performing stratum-specific meta-analyses and then evaluating the interaction, this approach can 

achieve the final goal in one step via meta-regression, with meta-analysis results of both exposure 

groups as input. However, due to the meta-regression setting, the Moderator Approach requires 

that the number of cohorts have GWAS results available for a SNP (which equals to 4 in our study) 

is greater than the number of predictors divided by two (which equals to [one main effect + one 

interaction effect + four missingness effects]/2 = 3 in our study). Therefore, it restricted the 

analyses to the SNPs existing in the GWAS results of all four cohorts, thereby eliminating a large 

number of SNPs from the analyses and possibly missed positive signals. On the other hand, the 

design matrix of the meta-regression model in the Moderator Approach should be treated with 

caution because in some cases of missingness pattern, the design matrix would suffer from 

multicollinearity and we could not successfully obtain the least square estimates. Since the Safe 

Approach can provide almost identical results as the Moderator Approach but does not have a 

restriction on the missingness pattern and the number of cohorts and predictors, we would 

recommend using the Safe Approach to handle missingness during meta-analysis. Potential future 

directions of our study would be to further investigate the Moderator approach and to evaluate the 

performance of Safe Approach and Moderator Approach under larger scale of meta-analyses. 
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Strengths and Limitations  

Our study has several important strengths. To our knowledge, this is the very first study to explore 

how to deal with missingness in individual lifestyle components in order to improve the power for 

identifying novel genetic loci for complex disease traits. Our study performed thorough 

comparisons between four meta-analysis approaches via various cohort mixture scenarios, thus 

providing comprehensive information for investigators to refer to.  

Although this study has several strengths as an innovative work for dealing with missingness in 

gene-by-lifestyle interaction, it has some limitations. When calculating the “Partially Missing” 

LRS, we assigned the missingness pattern to each of the cohorts. Also, when performing the meta-

analyses using a mixture of results obtained from cohort-specific analysis conducted with 

“Complete” LRS or “Partially Missing” LRS, although we considered various cohort mixture 

scenarios, we still were not able to catch every possible pattern. This kind of design may lose some 

flexibility and consequently fail to capture all the information during the comparison. Moreover, 

our study mainly evaluated the performance of different approaches in terms of joint effects instead 

of focusing on the interaction effect. We did not manage to capture a clear pattern when comparing 

the interaction effect between different meta-analysis approaches, due to the small sample size of 

our study. It is worth pursuing the comparison of the interaction effect itself among different 

approaches with a larger sample size, by incorporating more cohorts in our next step. 

In summary, we evaluated four approaches of incorporating the missingness of lifestyle 

components in the meta-analysis of gene-by-lifestyle interaction. Based on our results, we 

generally recommend using the Safe Approach since it is straightforward to implement and yields 

non-inflated results. Handling the missingness of individual lifestyle components properly can 
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efficiently increase statistical power of gene-by-lifestyle interaction analysis for identifying novel 

loci of complex traits. 
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Table 1. Definition of Lifestyle Risk Score Component, with no risk as the value of 0, low risk 

as the value of 1 and high risk as the value of 2. 

Component variables No risk (0) Low risk (1) High risk (2) 

Smoking Never Former Current 

Current Alcohol Intake (drinks/week) Modest (1 – 7) Abstinence* (0) Heavy (> 7) 

Education (after High School) College Degree Some College None 

Physical Activity Active Inactive -- 

 * Includes Former Drinkers 

 

 

 

Table 2. Components included in the calculation of “Partially Missing” Lifestyle Risk Score 

(QLRS-M) for each cohort (by design) 

Cohort Smoking Alcohol Education Physical Activity 

ARIC Include Not Include Include Include 

FHS Not Include Include Include Include 

HyperGEN Not Include Include Include Not Include 

NEO Include Not Include Include Not Include 
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Table 3. Setting of Scenarios 1-4 using a mixture of results obtained from cohort-specific 

genome-wide association analyses conducted with “Complete” LRS and “Partially Missing” 

LRS, and the inclusion of association results in the meta-analysis using Naïve, Safe, Complete 

and Moderator Approaches. 

 

Scenario Strata 
Cohort 

ARIC FHS HyperGEN NEO 

Scenario 

1 

Unexposed CompleteN,S,C,M 
Partially 

MissingN,M 

Partially 

MissingN,M 

Partially 

MissingN,M 

Exposed CompleteN,S,C,M 
Partially 

MissingN,S,M 

Partially 

MissingN,S,M 

Partially 

MissingN,S,M 

Scenario 

2 

Unexposed 
Partially 

MissingN,M 
CompleteN,S,C,M 

Partially 

MissingN,M 

Partially 

MissingN,M 

Exposed 
Partially 

MissingN,S,M 
CompleteN,S,C,M 

Partially 

MissingN,S,M 

Partially 

MissingN,S,M 

Scenario 

3 

Unexposed CompleteN,S,C,M 
Partially 

MissingN,M 

Partially 

MissingN,M 
CompleteN,S,C,M 

Exposed CompleteN,S,C,M 
Partially 

MissingN,S,M 

Partially 

MissingN,S,M 
CompleteN,S,C,M 

Scenario 

4 

Unexposed CompleteN,S,C,M 
Partially 

MissingN,M 
CompleteN,S,C,M CompleteN,S,C,M 

Exposed CompleteN,S,C,M 
Partially 

MissingN,S,M 
CompleteN,S,C,M CompleteN,S,C,M 

 

N: included in the meta-analysis using Naïve Approach; S: included in the meta-analysis using 

Safe Approach; C: included in the meta-analysis using Complete Approach; M: included in the 

meta-analysis using Moderator Approach. 
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Figure 1. Scatterplots of comparison of four approaches to “benchmark” results in terms of –

log10 (p-value). Each plot shows SNPs with p-value<10-6 for any of the two approaches being 

compared in the plot. SNPs reaching genome-wide significant (p-value<5×10-8) in “benchmark” 

results are marked as triangle. 
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Figure 2: Q-Q plot of different approaches compared to “benchmark” results for Scenario 1 

(Scenario 1: use “complete” results from ARIC, and “partially missing” results from HyperGEN, 

FHS and NEO). λNaive = 1.004, λSafe = λModerator =0.985, λComplete = 0.972. 
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Figure 3. Scatterplots of comparison between four approaches in terms of –log10 (p-value). Each 

plot shows SNPs with p-value<10-6 for any of the two approaches being compared in the plot. 
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Figure 4. Scatterplots of comparison of four scenarios to “benchmark” results in terms of –log10 

(p-value) for Safe Approach. Each plot shows SNPs with p-value<10-6 for any of the two 

approaches being compared in the plot. SNPs reaching genome-wide significant (p-value<5×10-

8) in “benchmark” results are marked as triangle. 
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