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Abstract 69 

 70 

The vaquita is the most critically endangered marine mammal, with fewer than 19 remaining in 71 

the wild. First described in 1958, the vaquita has been in rapid decline resulting from inadvertent 72 

deaths due to the increasing use of large-mesh gillnets for more than 20 years. To understand the 73 

evolutionary and demographic history of the vaquita, we used combined long-read sequencing 74 

and long-range scaffolding methods with long- and short-read RNA sequencing to generate a 75 

near error-free annotated reference genome assembly from cell lines derived from a female 76 

individual. The genome assembly consists of 99.92% of the assembled sequence contained in 21 77 

nearly gapless chromosome-length autosome scaffolds and the X-chromosome scaffold, with a 78 

scaffold N50 of 115 Mb. Genome-wide heterozygosity is the lowest (0.01%) of any mammalian 79 

species analyzed to date, but heterozygosity is evenly distributed across the chromosomes, 80 

consistent with long-term small population size at genetic equilibrium, rather than low diversity 81 

resulting from a recent population bottleneck or inbreeding. Historical demography of the 82 

vaquita indicates long-term population stability at less than 5000 (Ne) for over 200,000 years. 83 

Together, these analyses indicate that the vaquita genome has had ample opportunity to purge 84 

highly deleterious alleles and potentially maintain diversity necessary for population health. 85 

 86 

 87 

 88 

 89 
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Introduction 90 

 91 

In the afternoon of November 4, 2017, an adult female vaquita porpoise (Phocoena sinus), the 92 

smallest and rarest cetacean in the world, was captured in a massive effort to save the species by 93 

bringing into captivity as many as possible of the estimated maximum of 30 remaining 94 

individuals at the time (Thomas et al., 2017). This represented only the second live capture of a 95 

vaquita ever, the first of which, just a few weeks earlier, resulted in release of the animal after 96 

only hours when it showed signs of continuing stress. Despite the efforts of an international team 97 

of scientists and experts in porpoise capture and care, the second captured vaquita (V02F), 98 

suffered stress-induced cardiac failure and died approximately seven hours after initial capture 99 

(Rojas-Bracho et al., 2019). That death ended the effort by the Vaquita Conservation, Protection, 100 

and Recovery (VaquitaCPR) project to temporarily protect vaquita near their native habitat in the 101 

northern Gulf of California, near San Felipe, Mexico. However, the careful planning and 102 

presence of veterinarian experts in marine mammal stranding response allowed for an immediate 103 

necropsy that went through the night, with harvest and storage of ovaries and other tissues for 104 

delivery to facilities 260 miles north near San Diego, California for tissue culture and 105 

cryopreservation. By eight p.m. the next day, within 24 hours of the animal’s cardiac arrest, the 106 

tissues were delivered to the Institute for Conservation Research, San Diego Zoo Global, for the 107 

culture of cells from as many tissues as possible. After weeks of tissue culture, cells were 108 

harvested and banked for future research, and frozen samples sent to the Vertebrate Genome Lab 109 

at The Rockefeller University to extract ultra-high molecular weight DNA and RNA for genome 110 

sequencing, assembly and transcriptome annotation. 111 

 112 

This extraordinary effort to extract as much information as possible from the VaquitaCPR 113 

project reflects the broad scientific value placed on biodiversity and conservation. Sequencing of 114 

reference genomes is increasingly recognized as an important contribution to identify, 115 

characterize and conserve biodiversity (Garner et al., 2016; Harrisson, Pavlova, Telonis-Scott, & 116 

Sunnucks, 2014; He, Johansson, & Heath, 2016; Kraus et al., submitted; Morin et al., in revision; 117 

Supple & Shapiro, 2018), especially for species that are naturally rare and difficult to study. 118 

Reference genomes provide primary data to understand evolutionary relationships (Arnason, 119 

Lammers, Kumar, Nilsson, & Janke, 2018; Zhou et al., 2018), historical demography (Armstrong 120 
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et al., 2019; Andrew D Foote et al., 2016; Morin et al., 2018a; Robinson et al., 2016; Westbury, 121 

Petersen, Garde, Heide-Jorgensen, & Lorenzen, 2019), evolution of genes and traits (Autenrieth 122 

et al., 2018; Fan et al., 2019; A. D. Foote et al., 2015; Morin et al., in revision; Springer et al., 123 

2016a; Springer, Starrett, Morin, Hayashi, & Gatesy, 2016b; Yim et al., 2014) and susceptibility 124 

to inbreeding and outbreeding depression (Chattopadhyay et al., 2019; Hedrick, Robinson, 125 

Peterson, & Vucetich, 2019; Robinson, Brown, Kim, Lohmueller, & Wayne, 2018; Tunstall et 126 

al., 2018). Genomic resources also provide the tools for broader studies of population structure, 127 

relatedness and potential for recovery (e.g., Garner et al., 2016; Morin et al., 2018b; Tunstall et 128 

al., 2018).  129 

 130 

The vaquita was described for the first time in 1958 (Norris & McFarland, 1958) and has been 131 

characterized as a naturally rare endemic species, limited to shallow, turbid and highly 132 

productive habitat in the upper Gulf of California between Baja California and mainland Mexico 133 

(Rodriguez-Perez, Aurioles-Gamboa, Sanchez-Velasco, Lavin, & Newsome, 2018). The 134 

vaquita’s closest relatives are the congeneric Burmeister’s (P. spinipinnis) and spectacled (P. 135 

dioptrica) porpoises, which are found only in temperate and cold waters in the Southern 136 

Hemisphere, separated by at least 5000 km of ocean and two million years of divergence (Ben 137 

Chehida et al., in revision; McGowen, Spaulding, & Gatesy, 2009; Rosel, Haygood, & Perrin, 138 

1995). Similar to other porpoises, vaquitas become entangled and die in gillnets set for finfish 139 

and shrimp (Rojas-Bracho & Reeves, 2013). The mortality rate was known to be unsustainable 140 

when studies on the bycatch rate (D’Agrosa, Lennert-Cody, & Vidal, 2000) and life history 141 

(Hohn, Read, Fernandez, Vidal, & Findley, 1996) were combined with the first abundance 142 

estimate of N=567 individuals (95% C.I. = 177-1073) in 1997 (Armando M. Jaramillo-143 

Legorreta, Rojas-Bracho, & Gerrodette, 1999). The rate of decline has increased since 144 

approximately 2011 due to entanglement in illegal gillnets targeting totoaba (Totoaba 145 

macdonaldi), a large fish approximately the same size as the vaquita, captured for the black 146 

market trade of their swim bladders in China (Rojas-Bracho et al., 2019). The most recent 147 

estimates from 2018 indicate that fewer than 19 vaquita survive (A. M. Jaramillo-Legorreta et 148 

al., 2019). Initial genetics studies found no variation in mitochondrial DNA (mtDNA; Rosel & 149 

Rojas-Bracho, 1999) and low variation in the MHC DRB locus (Munguia-Vega et al., 2007). 150 

These authors have suggested that the low genetic diversity is due to long-term low effective 151 
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population size (Ne) rather than to a recent bottleneck or the current rapid population decline 152 

(Munguia-Vega et al., 2007; Rojas-Bracho & Taylor, 1999; B. L. Taylor & Rojas-Bracho, 1999), 153 

but these data from few loci provide limited power to estimate timing or duration of 154 

demographic changes.  155 

 156 

As part of the effort to prevent extinction of the vaquita and to further develop genomic 157 

resources to facilitate conservation and management planning for this and other endangered 158 

species, we used the Vertebrate Genomes Project (VGP) pipeline to generate a chromosomal-159 

level, haplotype-phased reference vaquita genome assembly that exceeds the “platinum-quality” 160 

reference standards established by the VGP (Rhie et al., 2020a). The VGP standards are 161 

guidelines to ensure minimum error rates (QV40 or higher, or no more than 1 nucleotide error 162 

per 10,000 bp), highly contiguous and complete assemblies (contig N50 ≥ 1 Mb; chromosomal 163 

scaffold N50 ≥ 10 Mb), phasing of paternal and maternal haplotypes to reduce false gene 164 

duplication errors and manual curation to reduce errors and improve genome assembly quality. 165 

Based on the reference-quality assembly, we analyzed genomic diversity and historical 166 

demography to infer the cause of current low genomic diversity and whether genetic factors 167 

should be considered to be of concern for recovery if the immediate reason for decline, incidental 168 

bycatch in gillnets, can be halted in time to prevent extinction. 169 

 170 

Materials and Methods 171 

 172 

Genome data generation 173 

Skin, mesovarium, kidney, trachea, and liver tissues were obtained during necropsy of the adult 174 

female vaquita that died during an attempt to begin ex-situ protection from illegal fishing 175 

operations (Rojas-Bracho et al., 2019). Cells were harvested and cultured at the Institute for 176 

Conservation Research, San Diego Zoo Global (Frozen Zoo®). From these cells, we generated a 177 

reference quality genome using the VGP pipeline 1.5 (Rhie et al., 2020a). In particular, we 178 

collected four genomic data types: Pacific Biosciences (Menlo Park, CA, USA) continuous long 179 

reads (CLR), 10X Genomics (Pleasanton, CA, USA) linked-reads, Bionano Genomics, Inc. (San 180 

Diego, CA, USA) DLS optical maps, and Arima Genomics, Inc. (San Diego, CA, USA) v1 Hi-C 181 

data. From one tube containing ~4 million cells in XPBS buffer with 10% DMSO and 10% 182 
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Glycerol, ultra-high molecular weight DNA (uHMW DNA) was extracted using the agarose plug 183 

Bionano Genomics protocol for Cell Culture DNA Isolation (Bionano Genomics, document No. 184 

30026F). uHMW DNA quality was assessed by a Pulsed Field Gel assay and quantified with a 185 

Qubit 2 Fluorometer. From these extractions, 10 µg of uHMW DNA was sheared using a 26G 186 

blunt end needle (PacBio protocol PN 101-181-000 Version 05). A large-insert PacBio library 187 

was prepared using the Pacific Biosciences Express Template Prep Kit v1.0 (PN 101-357-000) 188 

following the manufacturer protocol. The library was then size selected (>20 kb) using the Sage 189 

Science BluePippin Size-Selection System and sequenced on 30 PacBio 1M v3 SMRT cells on 190 

the Sequel I instrument with the sequencing kit 3.0 (PN 101-597-800) and 10 hours movie. We 191 

used the same unfragmented DNA to generate a linked-reads library on the 10X Genomics 192 

Chromium linked-reads library (Genome Library Kit & Gel Bead Kit v2, PN 120258, Genome 193 

HT Library Kit & Gel Bead Kit v2, PN 120261, Genome Chip Kit v2, PN 120257, i7 Multiplex 194 

Kit, PN 120262). We sequenced this 10X Genomics library on an Illumina Novaseq S4 150 bp 195 

PE lane.  196 

 197 

An aliquot of the same DNA was labeled for Bionano Genomics optical mapping using the 198 

Bionano Prep Direct Label and Stain (DLS) Protocol (document No. 30206E) and run on one 199 

Saphyr instrument chip flowcell. Hi-C reactions were performed by Arima Genomics according 200 

to the protocols described in the Arima-HiC kit (PN A510008). After the Arima-HiC protocol, 201 

Illumina-compatible sequencing libraries were prepared by first shearing purified Arima-HiC 202 

proximally-ligated DNA and then size-selecting DNA fragments from ~200-600 bp using SPRI 203 

beads. The size-selected fragments were then enriched for biotin and converted into Illumina-204 

compatible sequencing libraries using the KAPA Hyper Prep kit (PN KK8504). After adapter 205 

ligation, DNA was PCR amplified and purified using SPRI beads. The purified DNA underwent 206 

standard QC (qPCR and Bioanalyzer (Agilent)) and was sequenced on the Illumina HiSeq X to 207 

~60X coverage following the manufacturer's protocols. 208 

 209 

Transcriptome data generation 210 

Total RNA extraction and purification was conducted with QIAGEN RNAeasy kit (PN 74104). 211 

The quality and quantity of all RNAs were measured using a Fragment Analyzer (Aligent 212 

Technologies, Santa Clara, CA) and a Qubit 2.0 (Invitrogen). PacBio Iso-seq libraries were 213 
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prepared according to the ‘Procedure & Checklist - Iso-Seq™ Template Preparation for Sequel® 214 

Systems’ (PN 101-763-800 Version 01). Briefly, cDNA was reverse transcribed using the 215 

NEBNext® Single Cell/Low Input cDNA Synthesis & Amplification Module (NEB E6421S)  216 

from 238 ng total RNA. Amplified cDNA was cleaned with 86 µl ProNex beads. The PacBio 217 

Iso-seq library was sequenced on one PacBio 8M (PN 101-389-001) SMRT Cell on the Sequel II 218 

instrument with sequencing kit 1.0 (PN 101-746-800) using the Sequel II Binding Kit 1.0 (PN 219 

101-726-700) and 30 hours movie with two hours pre-extension.  220 

 221 

The same RNA was used for mRNA-seq. The RNA-Seq library was prepared with 100 ng total 222 

RNA using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, PN E7490S) 223 

followed by NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (PN E7760S). The 224 

library was then amplified over 14 cycles. Library quantification and qualification were 225 

performed with the Invitrogen Qubit dsDNA HS Assay Kit (PN Q32854). Libraries were 226 

sequenced on the Illumina NextSeq 500 in 150PE mid-output mode (Rockefeller Genomics 227 

Center). Data quality control was done using fastQC (v0.11.5; 228 

https://qubeshub.org/resources/fastqc). 229 

 230 

Genome assembly and annotation 231 

We assembled the vaquita genome using the VGP 1.5 pipeline on the DNAnexus cloud 232 

computing system (https://platform.dnanexus.com/). Briefly, this pipeline is composed of an 233 

assembly step, scaffolding step and final polishing step. First, we assembled raw PacBio data 234 

with Falcon 2.0.0/Falcon-unzip 1.1.0 (Chin et al., 2016). Then, we polished the primary and 235 

alternate contigs using the same PacBio reads with arrow (PacBio smrtanalysis 6.0.0.47841). 236 

Prior to scaffolding, we detected and reassigned haplotype duplicated contigs in the primary 237 

contig set using purge_haplotig 1.0.4 (Roach, Schmidt, & Borneman, 2018) and we also 238 

extracted the mitochondrial reads to assemble the mitochondral sequence (Formenti et al., in 239 

prep). From this step, we only scaffolded the primary contigs using 10X Genomics data with 240 

scaff10x 4.1 (https://github.com/wtsi-hpag/Scaff10X), Bionano CMAP with Bionano Hybrid 241 

Solve 3.3_10252018 (Bionano Genomics) and Hi-C data with Salsa 2.2 (Ghurye, Pop, Koren, 242 

Bickhart, & Chin, 2017). Finally, the resulting primary scaffolds and alternate contigs were 243 

processed together through three polishing rounds: one additional round of arrow polishing and 244 
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two rounds of polishing using 10X Illumina data mapped with Long Ranger 2.2.2 245 

(https://github.com/10XGenomics/longranger) and base calling with FreeBayes 1.2.0 (Garrison 246 

& Marth, 2012). Primary scaffolds and alternate contigs were contamination checked and curated 247 

manually using gEVAL (Chow et al., 2016). For the primary assembly, this resulted in a further 248 

reduction of scaffold numbers by 11% and an increase of the scaffold N50 by 12% to 115 Mb. 249 

The primary and associated alternate assemblies were submitted to NCBI (accession 250 

GCA_008692025.1), and annotation was performed through their standard pipeline 251 

incorporating our RNA-seq and Iso-seq data 252 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/).  The primary assembly was 253 

screened for repetitive elements using RepeatMasker v4.0.5 (Smit, Hubley, & Green, 2013-2015) 254 

and the RepeatMasker combined database Dfam_Consensus-20181026. Base accuracy (QV) was 255 

measured using k=21 with Merqury (Rhie, Walenz, Koren, & Phillippy, 2020b). Gene content of 256 

the primary scaffolds was assessed using BUSCO v3.1.0 (Waterhouse et al., 2017) searches of 257 

the Laurasiatheria and mammalian gene set databases.  258 

 259 

Historical demography 260 

To conduct analysis of historical demography using pairwise sequentially Markovian coalescent 261 

(PSMC; Li & Durbin, 2011), we first generated a diploid consensus genome from the 10X 262 

Genomics paired-end reads aligned to the primary haplotype assembly (Armstrong et al., 2019). 263 

The reads were trimmed with the BBduk function of BBTools (sourceforge.net/projects/bbmap/), 264 

removing the first 22 nucleotides of the R1 reads introduced during the Chromium library 265 

preparation (https://support.10xgenomics.com/genome-exome/library-prep/doc/technical-note-266 

assay-scheme-and-configuration-of-chromium-genome-v2-libraries) and trimming all reads for 267 

average quality (q≥20), 3’ ends trimmed to q≥15 and minimum length (≥40 nucleotides). 268 

Unpaired reads were removed from the trimmed fastq files using the BBTools repair.sh function. 269 

Trimmed reads were aligned to the vaquita mitogenome (accession CM018178.1) using BWA 270 

mem (Li & Durbin, 2009), and the unmapped reads exported as reads representing only the 271 

nuclear genome. Nuclear reads were aligned to the primary haplotype assembly (accession 272 

GCA_008692025.1), and duplicate reads removed using Picard-Tools 273 

(http://broadinstitute.github.io/picard/). The resulting genome alignments from four 10X 274 

Genomics libraries were assessed for average depth of coverage using ANGSD (Korneliussen, 275 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.098582doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.098582


 10

Albrechtsen, & Nielsen, 2014), and combined for 47.8X average depth of coverage. From this 276 

coverage pile-up, the diploid consensus genome was extracted (Li & Durbin, 2011) and used as 277 

input for PSMC with generation time of 11.9 years based on the estimated generation time of 278 

harbor porpoise (Barbara L Taylor, Chivers, Larese, & Perrin, 2007), and an autosomal mutation 279 

rate (µA) of 1.08 x 10-8 substitutions per nucleotide per generation (Dornburg, Brandley, 280 

McGowen, & Near, 2012). PSMC atomic time intervals were combined as suggested by the 281 

authors (https://github.com/lh3/psmc) such that after 20 rounds of iterations, at least ~10 282 

recombinations are inferred to occur in the intervals each parameter spans: p = (8+23*2+9+1). 283 

The remaining parameters were left as the default values used for humans (Li & Durbin, 2011), 284 

and we performed 100 bootstrap resamplings on all PSMC analyses to assess variance of the 285 

model. 286 

 287 

Genome-wide heterozygosity 288 

The distribution of heterozygosity across the genome was determined using previously described 289 

analysis pipelines (Robinson et al., 2019). Briefly, we used HaplotypeCaller in the Genome 290 

Analysis Toolkit (GATK; McKenna et al., 2010) to call genotypes from the short-read pile-up 291 

(above), filtering out sites with <1/3X or >2X the average depth of coverage. Heterozygosity was 292 

calculated as the number of heterozygous sites divided by the total number of called genotypes in 293 

nonoverlapping 1Mb windows across each scaffold. 294 

 295 

Modeling demographic effects on heterozygosity 296 

A coalescent simulation was constructed to estimate recent effective population size (rNe), 297 

historical effective population size (hNe) and time since a bottleneck (b) in which the population 298 

reduced in size from hNe to rNe. The analysis computed the likelihood of the empirical 299 

distribution of the number of heterozygous sites per kb (Hkb) observed in 2244 1 Mb windows in 300 

the vaquita genome (from above) given similar distributions drawn from an equivalent genome 301 

arising from random draws of each of these parameters, which were sampled as:  302 

 303 

rNe ~ Uniform(0, 3) x 104 304 

hNe ~ Uniform(0, 9) x 104 305 

b ~ 10Uniform(0, 7) 306 
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 307 

We initially drew 50,000 random values from these distributions. We then randomly selected 308 

20,000 of these values where average growth rates ((rNe / hNe) / b) were less than 1.06, as values 309 

above this were considered to be biologically improbable (B. L. Taylor et al., 2019). 310 

 311 

For each of the 20,000 scenarios, we generated one million independent SNPs for a single 312 

individual with a mutation rate of 1.08 x 10-8 substitutions/site/generation and a generation time 313 

of 11.9 years. To capture variability in the coalescent, we ran 4488 replicates of each scenario, 314 

which was twice the number of ~1 Mb windows in the empirical vaquita genome. This ensured 315 

that we could produce enough random sets of 2244 1 Mb windows from which to compute the 316 

scenario likelihoods as described below. The simulations were run with fastsimcoal v2.6.2 317 

(Excoffier, Dupanloup, Huerta-Sanchez, Sousa, & Foll, 2013) through the R package strataG 318 

(v4.9.05). 319 

 320 

For each of the 4488 replicates of one million SNPs in a scenario, we calculated the number of 321 

heterozygous SNPs per KB (H’kb). We then drew a random 2244 values of H’kb without 322 

replacement to represent one simulated genome for this scenario. We fit a gamma distribution to 323 

these values, which was used to compute the negative sum of log-likelihoods (-logL) of the 324 

empirical Hkb from the vaquita genome. For each scenario, we repeated this random draw of 325 

2244 values of H’kb and computation of -logL 100 times and recorded the mean and standard 326 

deviation of -logL. Likelihoods were plotted as heatmaps of the LOESS smoothed fit of -logL 327 

across pairs of simulation parameters. LOESS models were fit to each pair of parameters 328 

separately, and the surfaces represent the predicted -logL of 100,000 (10,000 x 10,000) evenly 329 

spaced points across each plot. 330 

 331 

 332 

Results 333 

A highly contiguous assembly of the vaquita genome 334 

We assembled a 2.37 Gb genome (Table 1) in only 64 scaffolds, of which 21 represented arm-to-335 

arm autosomes, named according to synteny with the blue whale (Balaenoptera musculus) and 336 

the X chromosome, in agreement with the 22-chromosome karyotype. The remaining 42 337 
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unplaced scaffolds consisted of only 0.198 Gb combined (0.08% of the total length), meaning 338 

that 99.92% of the assembled sequence has been assigned to chromosomes. Consistent with this 339 

mostly complete assembly, the N50 contig value was 20.22 Mb (273 contigs), N50 scaffold was 340 

115.47 Mb, and base call accuracy was QV40.88 (0.82 errors per 10,000 bp). There were only 341 

208 gaps, of which the annotated chromosomes had 3-17 gaps each. The Hi-C heat-map showing 342 

genomic interactions (Figure 1) indicates strong agreement between the close interactions and 343 

chromosome-length scaffolds. The alternate haplotype contigs are made up of 1 Gb of the 344 

genome, indicating low heterozygosity. Depth of coverage for each data type are presented in 345 

Table 2. Assemblies of both primary and alternate haplotypes have been deposited at 346 

DDBJ/ENA/GenBank under the accessions VOSU00000000 (principle haplotype) and 347 

VOSV00000000 (alternate haplotype) in BioProjects PRJNA557831 and PRJNA557832, 348 

respectively. 349 

 350 

BUSCO analysis showed 89.9% and 91.6% gene content identification from the primary 351 

haplotype when compared to the Laurasiatheria and mammalian data sets, respectively, with only 352 

1.0 and 1.1% of the complete genes duplicated, respectively, and 4.3 and 4.6% fragmented 353 

(Supplemental Table S1). Genome annotation identified 26,497 genes and pseudogenes, 19,069 354 

of which are protein coding (Table S2). The cumulative number of genes with alignment to the 355 

UniProtKB/Swiss-Prot curated proteins was 18,748 (89%) at ≥90% coverage of the target 356 

protein. This coverage was 5-48% higher than the number of genes aligned from other annotated 357 

cetacean genomes (Table S2). Similar to other cetacean genomes (e.g., Fan et al., 2019; Keane et 358 

al., 2015; Tollis et al., 2019), the vaquita genome consisted of about 46% repeats (Table 3) based 359 

on RepeatMasker.  360 

 361 

Low heterozygosity of the vaquita genome 362 

Genome-wide heterozygosity was 0.0105% overall, with even distribution of heterozygosity 363 

across the genome (Figure 2A). Heterozygosity per 1 Mb window ranged from 0 to 1.2/kb, but 364 

only two (noncontiguous) windows out of 2247 had no heterozygotes, and the standard deviation 365 

of heterozygosity across the windows was very low (SD = 0.0000767). None of the 1 Mb 366 

windows had heterozygosity of >1.3/kb, and 94% of the windows had heterozygosity of <0.2/kb 367 

(Figure 2B). In comparison to other mammals, the vaquita genome exhibits the lowest 368 
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heterozygosity yet detected in an outbreeding mammalian species (Figure 3), with the exception 369 

of the San Nicolas Island fox (Urocyon littoralis), an endemic subspecies found only on a 58 370 

km2 island approximately 100 km off the coast of California, with an estimated population size 371 

of about 500 individuals (Robinson et al., 2016). However, unlike the vaquita, heterozygosity is 372 

not evenly distributed across the genome in the San Nicolas Island fox and other small inbred 373 

populations of canids, due to the effects of recent inbreeding in addition to long-term small 374 

population sizes (Robinson et al., 2019). 375 

 376 

Vaquita population size over time 377 

This low, relatively even heterozygosity across the vaquita genome could be indicative of a long-378 

term small, outbred population (Robinson et al., 2019; Westbury et al., 2019) To test this 379 

hypotheses, we performed PSMC analysis. The results indicates that the vaquita effective 380 

population size has been small, ranging from about 1,400 to 3,200 for most of the last ~300,000 381 

years (Figure 4A). This finding corroborates previous conclusions based on single-locus analyses 382 

(Munguia-Vega et al., 2007; B. L. Taylor & Rojas-Bracho, 1999) but extends the duration of 383 

persistence of the species at low Ne to the mid Pleistocene, prior to the penultimate glacial 384 

period, the Saalian, which lasted from approximately 300,000 to 130,000 years ago.  385 

 386 

Discussion 387 

We have assembled the most complete cetacean genome to date, as measured by the low number 388 

of scaffolds, small number of gaps per chromosome scaffold, high percentage of scaffolds 389 

assigned to 22 chromosomes, cumulative number of genes with an alignment to the 390 

UniProtKB/Swiss-Prot curated proteins and small amount of missing data. Identification of gene 391 

content was also in the expected range for a high-quality mammalian genome at 90.5% of 392 

complete single-copy genes from the BUSCO mammalian gene set, with a low level of false 393 

duplicates and low levels of fragmented genes.  394 

 395 

The PSMC analysis indicates that the vaquita population declined during the late Pleistocene, 396 

most likely due to climate change and the associated habitat changes in the eastern North Pacific 397 

coastal regions of North and Central America, and that it remained small over the last 398 

approximately 300,000 years. PSMC results can be affected by population structure, inbreeding, 399 
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changes in connectivity among populations and stochastic variation in coalescent events when 400 

diversity is low (Beichman, Phung, & Lohmueller, 2017; Li & Durbin, 2011; Mazet, Rodriguez, 401 

Grusea, Boitard, & Chikhi, 2016; Orozco-terWengel, 2016). The coalescent results are consistent 402 

with the PSMC-inferred historical demography being the most likely cause of current 403 

heterozygosity levels rather than a recent severe bottleneck or inbreeding. Importantly, the 404 

duration of the small population size indicates that the observed level of heterozygosity is the 405 

result of a population at genetic equilibrium, where mutations are balanced by drift and selection, 406 

and that highly deleterious mutations are likely to have been purged from the population (Day, 407 

Bryant, & Meffert, 2003; Dussex et al., in revision; Robinson et al., 2018; Westbury et al., 2018; 408 

Westbury et al., 2019).  409 

 410 

Examples of species with low diversity but long-term viability and potential for adaptability are 411 

becoming more common (Dussex et al., in revision; Andrew D Foote et al., 2019; Robinson et 412 

al., 2018; Westbury et al., 2018; Westbury et al., 2019; Xue et al., 2015). Among odontocetes 413 

(toothed whales, dolphins and porpoises), in particular, there are examples of species with nearly 414 

as low diversity as the vaquita that exhibit strong evidence of the influence of demographic 415 

factors influencing genome-wide diversity over tens to hundreds of thousands of years of 416 

diversification and adaptation (Andrew D Foote et al., 2019; Andrew D Foote et al., 2016; Van 417 

Cise et al., 2019; Westbury et al., 2019). In several of these cases where it has been examined, 418 

genome-wide heterozygosity patterns do not indicate that low diversity was caused by rapid 419 

bottlenecks or inbreeding; instead, these patterns indicate that low diversity has been present for 420 

extended periods while species persist and diversify (e.g., narwhal (Westbury et al., 2019), orca 421 

(Andrew D Foote et al., 2019)). These examples and others (Robinson et al., 2018; Robinson et 422 

al., 2016; Westbury et al., 2018) indicate that, contrary to the paradigm of an “extinction vortex” 423 

(Gilpin & Soulé, 1986) that may doom species with low diversity, some species have persisted 424 

with low genomic diversity and small population size. Long-term small population size enables 425 

the purging of recessive deleterious alleles, thereby reducing the risk of inbreeding depression, 426 

perhaps allowing for continued future persistence with relatively small population sizes and an 427 

increased tolerance to the genetic consequences of bottlenecks. 428 

 429 
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The vaquita’s current habitat in the upper Gulf of California was likely diminished or absent due 430 

to low sea levels several times through the last 350,000 years (Siddall et al., 2003), with the 431 

lowest sea level occurring at the end of the Saalian complex and the LGM (Figure 2) followed by 432 

a rapid rise of 120-140 m (similar to the present level) during the Eemian warm period between 433 

115,000 and 130,000 years ago and after the LGM (Figure 5). Over much of the last 100,000 434 

years, sea level has been intermediate between the high points (present and Eemian warm period) 435 

and lows (end of Saalian and the LGM) (Rohling et al., 2017). There is no fossil record or other 436 

indication that vaquita have ever inhabited colder parts of the eastern North Pacific along the 437 

west coast of Baja California, Mexico, or further north off of California at the southern end of 438 

the current range of the congeneric harbor porpoise (Phocoena phocoena) (Brownell Jr., 1983). 439 

The closest relative of the vaquita, the Burmeister’s porpoise or the ancestor of two sister 440 

species, Burmeister’s and spectacled porpoise (Ben Chehida et al., in revision), are both found 441 

only in temperate and cold waters of the southern hemisphere. Based on the closer relationship to 442 

southern hemisphere species and on the similar timing of rapid climate warming and vaquita 443 

population decline, it appears that climate change at the end of the Saalian ice age caused a 444 

northward shift of the species range, resulting in a remnant population being isolated in the Gulf 445 

of California, where it has persisted in the newly expanded and shallow, highly productive upper 446 

Gulf region.  447 

 448 

The reference genome presented here has provided important insight into the demographic 449 

history of the critically endangered vaquita, reinforcing a previous hypothesis (B. L. Taylor & 450 

Rojas-Bracho, 1999) that the low genetic diversity of the vaquita is not due to a recent extreme 451 

bottleneck or current inbreeding. These results taken together with recent evidence of healthy 452 

looking vaquitas, often with robust calves (B. L. Taylor et al., 2019), suggest that population 453 

recovery may not be hindered because of genetic issues. Analysis of re-sequenced genomes from 454 

multiple individuals sampled over the previous few decades will shed light on changes in 455 

inbreeding as the population has declined due to bycatch in gillnets, and whether deleterious 456 

mutations are likely to have been purged from the genome as a result of the long-term 457 

persistence at a small population size, as has been suggested for some other species and 458 

populations (e.g., Dussex et al., in revision; Robinson et al., 2018; Westbury et al., 2018; 459 

Westbury et al., 2019).  460 
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 461 

Finally, this genome assembly is the highest quality, most complete genome in the odontocete 462 

lineage that consists of all dolphins, porpoises and toothed whales. As such, it provides a 463 

genomic resource for better reference-guided assemblies and scaffolding of other cetacean 464 

genomes (Alonge et al., 2019; Lischer & Shimizu, 2017; Morin et al., in revision) and for 465 

comparative genomics, especially for variation in genome structure. We expect that the vaquita 466 

genome, along with expected assembly of reference genomes for other endangered species, will 467 

continue to contribute to both understanding and conservation of global biodiversity (Kraus et 468 

al., submitted). 469 

 470 
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Table 1. Vaquita genome assembly metrics. Genome size is the kmer estimate based on 
GenomeScope (v1.0) analysis of the 10X Genomics data with k = 31. The BUSCO score is for 
complete genes identified from the mammalian single-copy conserved gene data set. 
 
Genome quality metric   
Contig N50 20.22 Mb 
Scaffold N50 (max size) 115.47 Mb (185.85 Mb) 
No. scaffolds (primary haplotype) 64 
Base quality (QV) 40.9 
Genes identified (BUSCO) 91.6% 
Assembly size (ungapped) 2,363,494,880 bp 
Assembly size (total) 2,371,540,524 bp 
Genome size 2,667,451,016 bp 
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Table 2. Estimated genome sequence average depth of raw data coverage (before adapter and 
quality trimming) for sequencing and mapping technologies based on an estimated genome size 
of 2.7 Gb. 
 
Data type Raw data (bp) Coverage 

10x Genomics 200,218,960,380  74X 

Arima Genomics HiC 255,724,383,000  94X 

Bionano Genomics 480,155,600,000  178X 

PacBio SubReads 325,960,000,000  121X 
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Table 3. Repetitive content of the vaquita genome (total assembly length 23.72 Gb) as 
determined by RepeatMasker. 
 
Repeat type Length (bp) % of Genome 
SINEs             189,109,608  7.97% 
LINEs             653,546,597  27.56% 
LTR             134,757,334  5.68% 
DNA transposons               76,591,695  3.23% 
Unclassified                 1,047,864  0.04% 
Satellites                 1,588,863  0.07% 
Simple repeats               23,753,228  1% 
Low complexity                 4,527,734  0.19% 
Total repeats:          1,085,270,145  45.76% 
 
 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.098582doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.098582


Figure 1. HiC heat-map of genomic interactions. Interactions between two locations are 
depicted by a dark blue pixel. Gray lines depict scaffold boundaries for the 22 chromosome-
length scaffolds. Different scaffolds should not share any interactions (pixels off diagonal 
outside the scaffold boundaries), while patterns within a scaffold show chromosome-
substructure.  
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Figure 2. Distributions of heterozygosity across the vaquita genome. A) Bar plot shows per-
site heterozygosity in nonoverlapping 1-Mb windows across 22 scaffolds >10 Mb in length. 
Scaffolds are shown in alternating shades. B) Histogram of the count of per-window 
heterozygosity levels. 
 
A)                    B) 
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Figure 3. Comparison of genome-wide heterozygosity (π) among mammals. Values are 
drawn from the literature, based on Robinson et al. (2016), plus the vaquita and blue whale. Dots 
are colored by the endangered status according to the Red List for Threatened Species, 
International Union for Conservation of Nature (IUCN). Although the Baiji, or Yangtze River 
dolphin, is listed as critically endangered, it is believed to have been extinct since at least 2006 
(Turvey et al., 2007). See supplemental Table S4 for heterozygosity information.  
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Figure 4. Changes in vaquita population size over time. A) Changes in effective population 
size (Ne) of the vaquita over time inferred from PSMC analysis of the nuclear genome. The 
darker blue line represents the median and lighter lines represent the 100 bootstrap replicates. 
The black line shows relative sea level (right axis, compared to present) with 95% confidence 
intervals (gray dashed lines) from Grant et al. (2014), and shading corresponds to cold and warm 
periods. B – D) Heatmap of the distribution of the negative log-likelihood (-logL) of the 
empirical heterozygosity distribution across pairs of demographic parameters from the coalescent 
model, with higher likelihood combinations shown by lighter color. The dashed white line in (D) 
represents a 1:1 slope, where current and historical population sizes would have been equal 
before and after the modeled change in population size.  
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Figure 5. Bathymetric map of the Gulf of California showing 500m isobath lines. Transition 
to yellow is at -140m, indicating portions of the Gulf that were likely above sea level during the 
last two glacial maxima, ~22,000 and 140,000 years ago. The area north of the red line is the 
approximate historical range of the vaquita (Brownell, 1986). 
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