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Abstract

Motivation: When designing experiments, it is advised to start with a small pilot study for determining
the sample size of full-scale investigations. Deep learning techniques for single-cell RNA-sequencing data
that can uncover low-dimensional representations of expression patterns within cells could be useful also
with pilot data. Here, we examine the ability of these methods to learn the structure of data from a small
pilot study and generate synthetic expression datasets useful for planning full-scale experiments.
Results: We investigate two deep generative modeling approaches. First, we consider single-cell variational
inference (scVI) in two variants, either generating samples from the posterior distribution, which is the
standard approach, or from the prior distribution. Second, we propose single-cell deep Boltzmann machines
(scDBM), which might be particularly suitable for small datasets. When considering the similarity of
clustering results on synthetic data to ground-truth clustering, we find that scV Iposterior exhibits high
variability. Expression patterns from scV Iprior and scDBM perform better. All approaches show mixed
results for cell types with different abundance by sometimes overrepresenting highly abundant cell types
and missing less abundant cell types. Taking such tradeoffs in performance into account, we conclude that
for making inference from a small pilot study to a larger experiment, it is advantageous to use scV Iprior or
scDBM, as scV Iposterior produces signals that are not justified by the original data. The proposed scDBM
seems to have an advantage for small pilot datasets. Overall, the results show that generative deep learning
approaches might be valuable for supporting the design of scRNA-seq experiments.
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1. Introduction

Single-cell RNA-sequencing (scRNA-seq) experiments result in data reflecting gene expressions for individ-
ual cells in tissues, leading to an improved understanding of cell-type composition. However, despite the
increase in throughput of scRNA-seq experiments, dataset sizes have to be carefully chosen due to budget
constraints (Ye et al., 2019). In particular, the typical data analysis workflow of detecting cell types via di-
mensionality reduction and subsequent clustering raises the question of how many cells need to be assayed to
identify cell types with high confidence (Svensson et al., 2019). In the following, we are going to investigate
generative deep learning techniques that might be useful for answering such questions.

Deep generative approaches, such as variational autoencoders (VAEs; Kingma and Welling, 2013), are
increasingly used to investigate the underlying structure of scRNA-seq data by learning a low-dimensional
latent representation of gene expression within cells. Often, the focus of these applications is to explore
latent features of the data — representing cell types — after which they are used for clustering, imputation,
or differential expression analysis (Lopez et al., 2018; Eraslan et al., 2019; Amodio et al., 2019). Besides
dimension reduction, another interesting property of these generative approaches is that they can provide
synthetic data once they have been trained on some dataset. As experimental design of scRNA-seq studies
is often based on simulations (Hafemeister, 2019; Zappia et al., 2017; Zhang et al., 2019; Svensson et al.,
2019; Marouf et al., 2020), such synthetic data could be useful, e.g., when training a generative approach on
some pilot data. Sampling from latent representations then allows for generating in-silico expression patterns,
ideally reflecting the most important patterns from the pilot data, and can subsequently be utilized for planning
experiments. More specifically, researchers would specify different numbers of cells to be simulated, then
apply downstream analyses to the simulated data, after which they evaluate the number of cells that promises
the desired statistical power of the downstream analysis to detect anticipated effects—or rare cell types.

Figure 1: Design for evaluating the performance of deep generative models with small pilot datasets: (1) Take a sub-
sample from an original dataset (4182 cells) to obtain pilot data with a known ground truth. (2) Train the
deep generative approaches on the subsampled pilot dataset and generate synthetic cell data in the size of the
original data. (3) Apply the anticipated data analysis, in this case dimensionality reduction with UMAP and
Seurat clustering, to the original data and map each synthetic observation to the closest observation from the
original data, thus getting a cluster assignment. (4) Evaluate the quality of synthetic samples based on the
Davies-Bouldin index, cluster proportions and distributions per gene. The whole analysis is performed for
different sizes of pilot datasets (500, 1000, or 2000 cells) and repeated 30 times for each size.

The right part of Figure 1 indicates this workflow. In contrast, the left part illustrates the approach we
are going to use in the following for evaluating the performance of deep generative approaches in this setting.
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In particular, we will use a large ground truth dataset and small pilot datasets drawn from the large set to
investigate whether deep learning approaches can deliver synthetic data similar to the original data when
presented only with a small pilot dataset.

Besides VAEs, we also consider a second generative deep learning approach, namely deep Boltzmann
machines (DBMs). While VAEs have already been proposed for scRNA-seq data, DBMs still need to
be adapted, and we show how this can be achieved using them with a negative binomial distribution and
incorporating a regularized Fisher scoring algorithm to estimate the inverse dispersion parameter. We chose
DBMs because synthetic observations are generated by Gibbs sampling, which has theoretical properties
that are potentially advantageous for working with smaller sample sizes compared to variational inference in
VAEs (Blei et al., 2017).

VAEs reconstruct their input through a bottleneck layer that corresponds to a low-dimensional latent
representation. They offer two ways of generating samples from the latent representation. Most commonly,
samples are generated from the posterior, which is the probability of the latent variables given the original
data. In a pilot study setting, this will typically mean that multiple copies of the original observations have
to be used to obtain a larger synthetic dataset. This might be problematic, as patterns or random fluctuations
from single cells could be over-emphasized. In contrast, sampling from the prior might produce samples from
a diverse region of the latent space. In our evaluation together with DBMs, we therefore not only investigate
the performance of VAEs when feeding in the original data multiple times for obtaining a larger number of
cells but also when sampling directly from the prior, which has —to our knowledge— not been considered
in the scRNA-seq literature so far.

In the following, we are going to introduce a novel variant of DBMs, single-cell deep Boltzmann machines
(scDBM), and give a brief overview of the other methods used throughout this work—single-cell variational
inference (scVI) and the Davies-Bouldin index (DBI), which will be used as a performance criterion in the
subsequent empirical investigation (see Figure 1). We close with a discussion and an outlook on how the
investigated techniques could subsequently be used for sample size calculation.

2. Methods

2.1. Single-Cell Deep Boltzmann Machine

We adapted deep Boltzmann Machines (DBMs), an unsupervised neural network approach with multiple
hidden layers (Salakhutdinov and Hinton, 2009), to the negative binomial distribution. Specifically, we
employ the exponential family harmonium framework (Welling et al., 2005) that allows restricted Boltzmann
machines (RBMs), the single-hidden layer version of DBMs, to deal with any distribution from the exponential
family as input. This framework was further extended and simplified by Li and Zhu (2018).

We use a parametrization of the negative binomial probability mass function that has been suggested by
Risso et al. (2018):

pNB(v;µ, θ) =
Γ(v + θ)

Γ(v + 1)Γ(θ)

(
θ

θ + µ

)θ(
µ

θ + µ

)v

The mean of the distribution is denoted as µ, the variance is given by µ + µ2/θ, and θ is the inverse
dispersion. Γ denotes the gamma function.

For simplicity, we describe a three-layer DBM where the visible layer corresponds to an input of unique
molecular identifier (UMI) counts for M genes, which can be modeled by a negative binomial distribution
(Grün et al., 2014). The first and second hidden layers are denoted as h(1) and h(2), respectively.

Following Li and Zhu (2018), we define the energy function of the state {x, h(1), h(2)} as:
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E(x, h(1), h(2); Θ) = −aTx−
M∑

m=1

log

(
(xm + θm − 1)!

(θm − 1)!xm!

)
−b(1)Th(1) − b(2)Th(2) − xTW (1)h(1) − h(1)TW (2)h(2)

Here, a, b(1), and b(2) are the bias terms of the first, second, and third layer, respectively. Furthermore,
W (1) and W (2) denote the weight matrices connecting the layers. Hence, Θ = (θ, a, b(1), b(2),W (1),W (2))

are the model parameters. Therefore, the probability of the visible vector is defined as:

p(x; Θ) =
1

Z(Θ)

∑
h(1),h(2)

exp(−E(x, h(1), h(2); Θ))

Z(Θ) is the partition function which is typically intractable (Salakhutdinov and Hinton, 2009). According
to this, the conditional distributions over the visible and the two sets of hidden units are given as:

p(x|h(1)) =
M∏

m=1

NB

(
µ̂, θ̂

)
, µ̂ =

θ̂meâm

(1− eâm)

p(h(1)|x, h(2)) =

K∏
k=1

Bern

(
σ(b̂

(1)
k )

)

p(h(2)|h(1)) =
L∏

l=1

Bern

(
σ(b̂

(2)
l )

)
Where âm = am+

∑K
k=1 W

(1)
mkh

(1)
k represents the estimate for the visible bias of UMI counts per gene m

(m = 1, ...,M ) and the bias of the first and second hidden layer correspond to b̂(1)k = b
(1)
k +

∑M
m=1 W

(1)
mkxm+∑L

l=1 W
(2)
kl h

(2)
k and b̂(2)l = b

(2)
l +

∑K
k=1 W

(2)
kl h

(1)
k , where k = 1, . . . ,K and l = 1, . . . , L indicate the hidden

nodes in the first and second hidden layer, respectively. The sigmoid activation function is denoted as σ.
Training of the scDBMs via stochastic gradient descent can be performed just as for standard DBMs. For

a detailed description, see Salakhutdinov and Hinton (2009) and Hinton and Salakhutdinov (2012).
After training, synthetic observations can be generated by Gibbs sampling. It can be shown that Gibbs

sampling produces asymptotically exact samples, which leads to more accurate results as compared to VAEs
(Robert and Casella, 2013; Blei et al., 2017). This comes at the cost of a higher computational burden, which
might be acceptable in small sample scenarios. In contrast, scVI (described in more detail below) uses
variational inference, which scales to scenarios with millions of observations but does not have the advantage
of generating exact samples (Blei et al., 2017).

2.1.1 Estimating the Dispersion Parameter

For the negative binomial distribution, we also need to determine values for the inverse dispersion parameter
of each gene which is notoriously difficult (Love et al., 2014).

We use a regularized Fisher scoring algorithm (Jennrich and Sampson, 1976) to estimate the inverse
dispersion parameter θm for each gene m. For this, we use the log-likelihood function of the negative
binomial probability mass function indicated above. The Fisher scoring algorithm can be derived using a
two-term Taylor expansion of the score function, the first derivative of the log-likelihood, at the initial choice
of the inverse dispersion θ0m (Hilbe, 2011). To stabilize estimates of the inverse dispersion parameters, we
add λ

θ2 as a regularization term to the log-likelihood, which results in the following scoring algorithm:
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θm,k+1 = θm,k +
V (θm,k) + λ 2

θ3
m,k

I(θm,k) + λ 6
θ4
m,k

Here, V (·) is the score function, I(·) denotes the Fisher information matrix, λ is the regularization
parameter, and k is the current iteration step.

The inverse dispersion parameter θm corresponds to the amount of heterogeneity between cells, where a
smaller θm indicates more heterogeneity. Recall that the negative binomial variance is defined as µ+ µ2/θ.
Due to the regularization term in our model, smaller θm are subject to larger regularization. This ensures that
we learn the baseline variability between cells, without deflating the estimates of the inverse dispersion due
to, e.g., differences between clusters of cells or excess zeros.

2.1.2 scDBM Training

By combining scDBMs with Fisher scoring, we can estimate all model parameters Θ = (θ, a, b(1), b(2),

W (1),W (2)). First, we initialize all parameters at some reasonable values and learn only a subset of Θ,
namely, (a, b(1), b(2), W (1),W (2)). Hence, the inverse dispersion is fixed. After a predefined number of
epochs, say five, we use the regularized Fisher scoring algorithm to estimate the inverse dispersion parameter
θ̂m and plug the new estimate into the scDBM. Accordingly, all parameters of the scDBM are refined after a
fixed time, e.g., every five epochs.

During training, biases and weights of the network have to be constrained, where am = min{am,−ϵ}
with ϵ = 10−10 and wm,k = min{wm,k, 0}. This is done because we use the natural form of the exponential
family and hence am is used in logarithmic scale (Li and Zhu, 2018).

2.2. Single-Cell Variational Inference

Lopez et al. (2018) proposed a method called single-cell variational inference (scVI), which utilizes the
structure of VAEs to encode the transcriptome onto a lower-dimensional representation from which the input
is reconstructed. Just as the scDBM, scVI is also based on the (zero-inflated) negative binomial distribution
(Lopez et al., 2018). The model comprises two components, the encoder and the decoder parts of the network.
Lopez et al. (2018) use four neural networks for encoding the size factors and the latent variables using the
variational distribution q(zn, ln|xn, sn) as an approximation to the posterior p(zn, ln|xn, sn), where zn is a
low-dimensional vector of Gaussians, ln is a one-dimensional Gaussian encoding technological differences
in capture efficiency and sequencing depth, xn is the vector of observed expressions of all genes of cell n,
and sn describes the batch annotation for each cell (Lopez et al., 2018). The variational distribution can be
written as:

q(zn, ln|xn, sn) = q(zn|xn, sn)q(ln|xn, sn)

Therefore, the variational lower bound is:

log p(x|s) ≥ Eq(z,l|x,s) log p(x|z, l, s)
−DKL(q(z|x, s)||p(z))−DKL(q(l|x, s)||p(l))

The probabilistic model of scVI is based on a gamma-Poisson mixture. It starts by sampling from the
latent space, a standard multivariate normal distribution, which is then fed into a neural network—together
with the batch annotation. The neural network then learns the mean proportion of transcripts expressed across
all genes. The output is used to sample from a gamma distribution together with the inverse dispersion θm.
The model accounts for technical effects by incorporating a library size scaling factor which, in combination
with the gamma-distributed samples, is used to sample from a Poisson distribution. This mixture of the

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.119594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119594


gamma and Poisson distribution is equivalent to the negative binomial distribution (Lopez et al., 2018). scVI
additionally learns a neural network to account for technical dropouts.

Observations are generated from the scVI approach by using original data as input and then sampling
from the posterior distribution p(z|x). A straightforward approach for generating more samples than were
used during training is to create (multiple) copies of the original data. For example, for scVI trained on 500
cells, we sampled from the model seven times and stacked the resulting samples together to make inference
about a larger number of cells. As an alternative, we adapted scVI to sampling from the prior distribution
p(z) instead of the more common sampling from the posterior p(z|x). To do that, we changed the inference
procedure to sample latent z from Normal(0, 1) and library sizes from Normal(lµ, 1).

2.3. Evaluation of Synthetic Data Quality

The overall approach taken here for evaluating the quality of generated synthetic observations is illustrated
in Figure 1. Specifically, a relatively large original dataset is used as ground truth data, and deep generative
approaches are tasked with generating synthetic data based on pilot datasets drawn from the original data. We
consider Seurat clustering (Butler et al., 2018;Stuart et al., 2019) on the UMAP representations (Becht et al.,
2019) of the original data as a typical data analysis workflow, which provides ground truth cluster labels
for the original data. When subsequently assessing synthetic data, each generated observation is assigned
the cluster label of the nearest original observation, as determined by Euclidean distance. If a generative
approach can provide synthetic observations very close to the original observations, these cluster labels will
correspond to a reasonable clustering solution also in the synthetic data. Thus, we can evaluate the quality of
the synthetic data by calculating summary statistics for the clusters in the synthetic data, and compare them
to cluster statistics from the original data.

Specifically, we use the Davies-Bouldin index (DBI)

DBI(CK) =
1

K

K∑
i=1

Di,

where
Di = maxj ̸=iRij

with between-cluster similarity

Rij =
Si − Sj

Mij
, i, j = 1, . . . ,K

the distance between cluster centroids
Mij =

∥∥x̄i − x̄j

∥∥
p

and within-cluster dispersions

Sk =

(
1

nk

∑
c(i)=k

∥∥∥∥xi − x̄k

∥∥∥∥q
2

) 1
q

where we set p = q = 2.
Consequently, a small DBI indicates homogeneous and well-separated clusters (Davies and Bouldin, 1979

; Hennig et al., 2015).
To examine whether the models learn to adequately represent frequencies of different cell types, we also

compare the number of cells per cluster in the original data and the synthetic observations.
It should be noted that an in-depth evaluation of samples, instead of comparing model fit based on the

log-likelihood, is indispensable because it was shown that comparing deep generative models based only on
the log-likelihood can be misleading. In particular, even when log-likelihood is low, the quality generated
samples can be good and vice-versa (Theis et al., 2015). In contrast, we focus on properties, such as cluster
quality, which are important for experimental design.

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.119594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.119594


2.4. Data Description and Processing

We evaluate the performance of the two scVI variants and the scDBM approach on three typical datasets. First,
a 10x Genomics dataset containing peripheral blood mononuclear cells from a healthy donor (Zheng et al.,
2017) is considered. We preprocessed the data following Amezquita et al. (2019), after which 4182 cells and
1352 most highly variable genes were left for downstream analysis. We refer to this dataset as PBMC4k

throughout this work.
Second, analyses are performed on a data set of neuronal subtypes in the mouse cortex and hippocampus,

where Zeisel et al. (2015) sequenced 3005 cells from male and female juvenile mice. We specifically consider
data from 2816 cells and 1816 highly variable genes which were left after preprocessing (Amezquita et al.,
2019). We refer to this dataset as Zeisel throughout this work.

Additionally, we demonstrate the performance on a currently unpublished scRNA-seq dataset from the
hippocampus of three embryonic (E16.5) mice processed with the CEL-Seq2 protocol (Hashimshony et al.,
2016; Sagar et al., 2018). The unnormalized count matrix contained 3808 cells, and we selected the 1500 most
highly variable genes for downstream analysis. We used scran and scater (Lun et al., 2016; McCarthy et al.,
2017) for pre-processing. We refer to this dataset as Hippocampus4k throughout this work. The results for
Zeisel and Hippocampus4k can be found in the supplementary material.

2.5. Implementation

The scDBM implementation is based on the Julia package ‘BoltzmannMachines.jl’ (Lenz et al., 2019) and
extends the packages’ scope to scRNA-seq data. Furthermore, we used the Python implementation of scVI
(https://github.com/YosefLab/scVI), which we adapted to be able to sample from the prior distribution.

3. Results

We evaluated how well scDBM and scVI perform in learning the distribution of pilot data. To mimic a situation
where we want to plan an experiment using a pilot study with a small number of cells, we investigated the
impact of varying amounts of cells and generative approaches on the clustering performance, measured by the
Davies-Bouldin index (DBI). To do this, we took 30 subsamples of 500, 1000, and 2000 cells of the original
dataset, trained the scDBM and scVI on these subsamples, and generated synthetic data. More precisely, we
sampled from the scDBM using Gibbs sampling and from scVI using the prior and posterior distribution,
respectively. We then applied UMAP and acquired the cluster labels by mapping to the original data (Figure
1). For hyperparameters of scDBM and scVI, see Supplementary Table 1.

As seen in Figure 2, the scDBM results are rather close to the original data, particularly for small
sample sizes, which indicates good performance for small experiments. The performance of scV Iposterior
is decidedly worse for small sample sizes, with large variability, but improves for larger pilot data. The
scV Iprior approach exhibits little variability, similar to scDBM, but does not surpass the performance of the
latter even for large pilot data. We observed similar patterns for the Zeisel and Hippocampus4k datasets
(see Supplementary Data, Figure S1, S2).

To uncover heterogeneity and subpopulation frequencies, we inspected whether the models accurately
estimated the proportions of cells per cluster. As seen in Figure 3, scDBM and scV Iposterior tend to
underestimate the number of cells per cluster. The scDBM encountered difficulties with detecting the smaller
clusters where especially cluster 9 was not identified. In contrast, scV Iposterior consistently overestimated
the size of clusters 7 and 9. We observed a similar pattern for scV Iprior (not shown here).

We also inspected the marginal distributions of two exemplary genes, specifically RPS6 and FTL, in
samples from scDBM and scVI and compared them with the distributions in the original data (Figure
4A). We observed that the synthetic data generated from the scDBM trained on 500 cells match the true
distribution of RPS6 rather well, but miss the bimodality of FTL. In contrast, scV Iprior and scV Iposterior
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Figure 2: Davies-Bouldin index (DBI), indicating the quality of synthetic data generated by scDBM and scVI (prior
and posterior sampling) from pilot data of different sizes. The orange line indicates the reference DBI for the
Seurat clustering on the original data (PBMC4k) with 4182 cells.

Std. Dev. scDBM

Std. Dev. scVI Posterior

Figure 3: Performance with respect to recovering cell-type abundances. Each ellipse represents the number of cells
in a specific cluster from one of the generative models divided by the number of cells in the original cluster.
scDBM and scVI were trained on a subsample of 500 cells after which 4182 cells were generated. The y-axis
shows the number of cells per cluster generated by the scDBM divided by the number of cells per cluster in the
original data. Hence, if the proportion is higher than one, scDBM overestimated the amount of cells in that
particular cluster. The x-axis exhibits the same for samples from scV Iposterior . The color coding represents
the number of cells per cluster in the original dataset. Additionally, the width of ellipses shows the standard
deviations of cluster proportions for the 30 subsamples (500 cells each).

tend to underestimate the expression of FTL, while scV Iposterior correctly estimated the mean of RPS6, but
exhibits high dispersion.

To get a better insight to what extent relations between genes are recovered, we also consider bivariate
scatterplots, shown in Figure 4B. Samples from the scDBM adequately reflect the correlation between RPS6
and FTL, whereas scV Iposterior tends to overestimate correlation and exhibits a much higher variability.
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Figure 4: Univariate (Panel A) and bivariate distribution (Panel B) of expression values for exemplary genes, as generated
by scDBM and scVI when trained on 500 cell pilot data, compared to the original data.

scV Iprior performs better in capturing the relation between genes but also shows higher variability compared
to the scDBM approach. We also checked pairwise correlations between further genes (results not shown)
and found similar patterns.

4. Discussion and Conclusion

In this paper, we investigated how well deep generative models can generate realistic synthetic scRNA-seq
data from pilot studies. In particular, we evaluated the quality of the respective samples by training the
models on small numbers of cells, after which we generated the number of cells corresponding to a large-
scale study. For this, we generated samples using a single-cell deep Boltzmann machine (scDBM), and
single-cell variational inference (scVI) approaches, where samples from the latter were either drawn from
the prior or the posterior distributions, respectively. We could show that scDBMs outperform scVI in settings
with small sample sizes and could, therefore, be more suitable for the design of scRNA-seq experiments —
particularly for determining the appropriate amount of cells to be sequenced. Besides this, we examined
differences between prior and posterior sampling, where we conclude that posterior sampling in scVI leads
to increased variability in clustering results when inferring from a small to a larger population of cells.

Our investigation focused on the number of cells, while sequencing depth is a second critical component
for deciding on the trade-off that biologists face in the design of scRNA-seq experiments (Zhang et al., 2018;
Svensson et al., 2019). Taking this into account in future work could give even more detailed information
on the ability of deep generative models to learn the structure of scRNA-seq data and, consequently, on the
quality of generated cells by different methods and sampling approaches. Motivated by the results so far,
which already indicate reasonable performance of generative approaches with pilot data, our future work will
focus on a fully developed approach for determining the appropriate sample size for scRNA-seq experiments,
based on cluster stability and statistical power for identifying clusters.

We conclude that deep generative models are promising for sample size determination as they learn
important parts of the correlation structure from a small pilot dataset and subsequently generate synthetic
data from varying numbers of cells for evaluation of cluster stability in the envisioned data analysis workflow.
The corresponding improvement of experimental design could also advance the replicability of scRNA-seq
experiments and might thus support translation to medical applications.
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Figure S1: Davies-Bouldin index (DBI), indicating the quality of synthetic data generated by scDBM and scVI (prior
and posterior sampling) from pilot data of different sizes. The orange line indicates the reference DBI for
the Seurat clustering on the original data (Zeisel) with 2816 cells.
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Figure S2: Davies-Bouldin index (DBI), indicating the quality of synthetic data generated by scDBM and scVI (prior
and posterior sampling) from pilot data of different sizes. The orange line indicates the reference DBI for
the Seurat clustering on the original data (Hippocampus4k) with 3808 cells.
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Table 1: Hyperparameters

PBMC4k Zeisel Hippocampus4k
Model scDBM scVI scDBM scVI scDBM scVI

Learningrate 0.00005 0.001 0.00001 0.001 0.00001 0.001
Hidden layers 2 2 2 2 2 2

Epochs 270 100 200 100 2000 100
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