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Abstract 
 

The rapid development of novel spatial transcriptomic and proteomic technologies 
has provided new opportunities to investigate the interactions between cells and their native 
microenvironment. However, effective use of such technologies requires the development of 
innovative computational tools that are easily accessible and intuitive to use.  Here we 
present Giotto, a comprehensive, flexible, robust, and open-source toolbox for spatial 
transcriptomic and proteomic data analysis and visualization. The data analysis module 
provides end-to-end analysis by implementing a wide range of algorithms for characterizing 
cell-type distribution, spatially coherent gene expression patterns, and interactions between 
each cell and its surrounding neighbors. Furthermore, Giotto can also be used in conjunction 
with external single-cell RNAseq data to infer the spatial enrichment of cell types from data 
that do not have single-cell resolution. The data visualization module allows users to 
interactively visualize the gene expression data, analysis outputs, and additional imaging 
features, thereby providing a user-friendly workspace to explore multiple modalities of 
information for biological investigation. These two modules can be used iteratively for refined 
analysis and hypothesis development.  We applied Giotto to a wide range of public datasets 
encompassing diverse technologies and platforms, thereby demonstrating its general 
applicability for spatial transcriptomic and proteomic data analysis and visualization.  
 
Introduction 
 

Most tissues consist of multiple cell types that operate together to perform their 
functions. The behavior of each cell is in turn mediated by its tissue environment. With the 
rapid development of single-cell RNAseq (scRNAseq) technologies in the last decade, most 
attention has gone to unravelling the composition of cell types with each tissue. However, 
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recent studies have also shown that identical cell types may have tissue-specific expression 
patterns 1,2, indicating that tissue environment plays an important role in mediating cell 
states.  Since spatial information is lost during the process of tissue dissociation and cell 
isolation, the scRNAseq technology is intrinsically limited for studying the structural 
organization of a complex tissue and interactions between cells and their tissue 
environment.  

Recently, a number of technological advances have enabled 
transcriptomic/proteomic profiling in a spatially resolved manner 3–14  such that cellular 
features (for example transcripts or proteins) can be assigned to single cells for which the 
original cell location information is retained (Fig. 1A, inset). Applications of these 
technologies have revealed distinct spatial patterns that previously are only inferred through 
indirect means 15,16. There is an urgent need for standardized spatial analysis tools that can 
facilitate comprehensive exploration of the current and upcoming spatial datasets 17,18. To fill 
this important gap, we present the first comprehensive, standardized and user-friendly 
toolbox, called Giotto, that allows researchers to process, (re-)analyze and interactively 
visualize spatial transcriptomic and proteomic datasets.  Giotto implements a rich set of 
algorithms to enable robust spatial data analysis, and further provides an easy-to-use 
workspace for interactive data visualization and exploration.  As such, the Giotto toolbox 
serves as a convenient entry point for spatial transcriptomic/proteomic data analysis and 
visualization. We applied Giotto to a wide range of public datasets to demonstrate its general 
applicability.   
 
 
Results 
 
Overview of the Giotto toolbox 

Giotto provides a comprehensive spatial analysis toolbox that contains two 
independent yet fully integrated modules (Fig. 1A, B). The first module (Giotto Analyzer) 
provides step-by-step instructions about the different steps in analyzing spatial single-cell 
expression data, whereas the second module (Giotto Viewer) provides a responsive and 
interactive viewer of such data on the user’s local computer. These two modules can be 
used either independently or iteratively.    
 
Giotto Analyzer requires as minimal input a gene-by-cell count matrix and the spatial 
coordinates for the centroid position of each cell (Fig. 1A). At the basic level, Giotto Analyzer 
can be used to perform common steps similar to scRNAseq analysis, such as pre-
processing, feature selection, dimension reduction and unsupervised clustering; on the other 
hand, the main strength comes from its ability to integrate gene expression and spatial 
information in order to gain insights into the structural and functional organization of a tissue 
and its expression patterns. To this end, Giotto Analyzer creates a spatial grid and 
neighborhood network connecting cells that are physically close to each other. These 
objects function as the basis to perform analyses that are associated with cell 
neighborhoods.  
 
Giotto Analyzer is written in the popular language R. The core data structure is a simple and 
flexible S4 object, which stores all necessary (spatial) information and performs calculations 
(Supplementary Figure 1A). This allows the user to quickly evaluate and create their own 
flexible pipeline for both spatial visualization and data analysis. The Giotto Viewer module is 
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designed to both interactively explore the outputs of Giotto Analyzer and to visualize 
additional information such as cell morphology and transcript locations (Fig. 1B). Giotto 
Viewer provides an interactive workspace allowing users to easily explore the data in both 
physical and expression space and identify relationships between different data modalities. 
Taken together, these two modules provide an integrated toolbox for spatial expression data 
analysis and visualization.  
 
To demonstrate the general applicability of Giotto, we selected and analysed 10 public 
datasets obtained from 9 state-of-the-art technologies (Fig. 1C, Supplementary Table). 
These datasets differ in terms of resolution (single-cell vs multiple cells), physical dimension (2D vs 

3D), molecular modality (protein vs RNA), number of cells and genes, and tissue of origin. 
Throughout this paper we use these datasets to highlight the rich set of analysis tools that 
are supported by Giotto. 
 
Cell type identification and data visualization 
Giotto Analyzer starts by identifying different cell types that are present in a spatial 
transcriptomic or proteomic dataset. As an illustrating example, we considered the seqFISH+ 
mouse somatosensory cortex dataset, which profiled 10,000 genes in hundreds of cells at 
single-cell resolution using super-resolved imaging 9.  The input gene-by-cell count matrix 
was first pre-processed through a sequence of steps including normalization, quality control 
of raw counts, and adjustment for batch effects or technical variations. Then downstream 
analyses were carried out for highly variable gene selection (Supplementary Fig. 1B), 
dimensionality reduction (such as PCA, tSNE 19, and UMAP 20), and clustering (such as 
Louvain 21 and Leiden clustering algorithms 22) (Supplementary Fig. 1C). Cluster specific 
marker genes were identified through a number of algorithms (such as Scran, MAST, and 
Gini) and compared with prior biological knowledge for cell type annotations 
(Supplementary Fig. 1D-E and Supplementary Fig. 2A-G, see Methods and 
Supplemental Notes for details). As a result, we identified 12 distinct cell types, including 
layer-specific excitatory neurons (eNeurons) (Cux2 in layer 2/3, Grm2 in layer 4, Rprm in 
layer 5/6), two types of inhibitory neurons (iNeurons) (Lhx6 vs Adarb2), astrocytes (Gli3), 
oligodendrocytes (Tmem88b), oligodendrocyte precursors (OPCs) (Sox10), endothelial cells 
(Cldn5), mural (Vtn), and microglia (Csf1r) cells. The distribution of these cell types can then 
be visualized in both expression and physical space (Supplementary Fig. 1F).  
 
Next, we analysed additional complex imaging-based spatial transcriptomic datasets 
generated by merFISH 14, STARmap 7 and osmFISH 11. In the merFISH dataset, 12 selected 
thin slices from a 3D mouse pre-optic cortex sample were imaged, resulting in a total of 
roughly 75,000 cells and 155 genes. Here Giotto identified 8 distinct clusters. Based on 
known marker genes, we were able to annotate 7 of the clusters as microglia (Selplg), 
ependymal cells (Cd24a), astrocytes (Aqp4), endothelial cells (Fn1), mature (Mbp) and 
immature (Pdgfra) oligodendrocytes, excitatory (Slc17a6) and inhibitory (Gad1) neurons, 
respectively, which is in agreement with the original paper 14 (Fig. 2A, B). Next, to visualize 
the results Giotto can create an interactive 3D plot for the whole dataset or specifically 
highlight one or more selected 2D slices (Fig. 2C). Together with overlaying gene 
expression information (Fig. 2D, E), such visualization enables the user to explore tissue 
structure and concomitant gene expression variation in a detailed manner.  
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In a similar manner we analysed the mouse visual cortex STARmap (Supplemental Fig. 3 
A-D) and mouse somatosensory cortex osmFISH (Supplemental Fig. 3 E-H) datasets (see 
Supplemental Notes for details). Both datasets show the typical anatomical multi-layered 
structure of the cortex. In the 3D STARmap analysis we present an additional functionality 
that allows the user to create 2D in silico sections of a 3D sample (Supplemental Fig. 3 A, 
C), which could help in dissecting more complex datasets in the future. 
 
Due to the similarity of data structure, it is straightforward to apply Giotto to analyse large 
scale spatial proteomic datasets such as CyCIF, CODEX, and MIBI (see Supplemental 
Notes for details). As an illustrating example, we analysed a public dataset obtained by 
CyCIF 10. The dataset profiled the spatial distribution of 21 proteins and 3 cellular 
compartment or organelle markers at single-cell resolution in a human pancreatic ductal 
adenocarcinoma (PDAC) sample that spanned across three distinct tissues: the pancreas, 
small intestine and tumor. In total, 160,000 cells were profiled. Giotto identified 13 coarse 
clusters which include mesenchymal, epithelial, immune and cancer cells (Fig. 2F, G). Next, 
we zoomed into each tissue to refine the cell type structure in the pancreas and small 
intestine separately (Fig. 2H). For example, we can now see clearly that the pancreas is 
structured in distinct zones enriched with epithelial (E-cadherin) and mesenchymal or 
stromal (Vimentin) cells, respectively. On the other hand, the small intestine shows a clear 
proliferating zone (PCNA) and the activation of Wnt signalling (b-catenin) in intestinal 
epithelial cells (Fig. 2I, J). Both observations are consistent with the original paper  10. Using 
a similar approach, we analysed the mouse spleen dataset from CODEX 12 (Supplemental 
Fig. 4 A-E).  
 
 
Analysis of data with lower spatial resolution 
 Recently, a number of lower-resolution spatial transcriptomic technologies have been 
developed, such as 10X Genomics Visium and Slide-seq. Despite their lower spatial 
resolution, these technologies are useful because they are currently more accessible. To 
overcome the challenge of lower resolution, Giotto implements a number of algorithms for 
estimating the enrichment of a cell type in different regions (Fig. 3A). In this approach, a 
continuous value representing the likelihood of the presence of a cell type of interest is 
assigned to a spatial location which contains multiple cells. To this end, Giotto requires 
additional input representing the gene signatures of known cell types. Currently, the input 
gene signatures for the known cell types can either be provided by the user directly as cell 
type marker gene lists, or be automatically inferred by Giotto based on an additional 
scRNAseq data matrix input. Giotto then evaluates the match between each cell type’s gene 
signatures and the expression pattern at each spatial location and reports an enrichment 
score by using one of the three algorithms:  PAGE 23, RANK, and Hypergeometric testing 
(Fig. 3A, see Methods for details). PAGE calculates an enrichment score based on the fold 
change of cell type marker genes for each spot. RANK does not require predefined marker 
genes but instead creates a full ranking of genes ordered by the cell-type specificity score in 
the scRNAseq data matrix, and computes a ranking-based statistic. Hypergeometric 
computes the hypergeometric p-value based on the overlap between each cell-type specific 
marker gene set and the set of spot-specific genes. As negative controls, enrichment scores 
are also calculated for scrambled spatial transcriptomic data.  This allows us to evaluate the 
statistical significance of an observed enrichment score. 
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To rigorously evaluate the performance of these cell-type enrichment algorithms, we created 
a simulated dataset based on the aforementioned seqFISH+ dataset, for which the cell type 
annotation has been established at the single-cell resolution. To mimic the effect of spatial 
barcoding, such as that being used in Visium, the merged fields of view were divided into 
spot-like squares from a regular spatial grid (500 x 500 pixels, ~51.5 μm) (Fig. 3B). For cells 
located in each square, their gene expression profiles were averaged, thereby creating a 
new dataset with lower spatial resolution. To apply cell-type enrichment analysis, we 
obtained scRNAseq data and derived marker gene lists for somatosensory cortex associated 
cell types from a previous study 24. To facilitate cross-platform comparison, we focused on 
the six major cell-types that were annotated by both studies: astrocytes, microgila, 
endothelial mural, excitatory neurons, inhibitory neurons, and oligodendrocytes (Fig. 3B). 
For each cell type, we assigned an enrichment score and p-value for each spot by using one 
of the three enrichment analysis methods mentioned above (Fig. 3C). To quantify the 
performance of each method, we evaluated the area under curve (AUC) score, which was 
obtained by using the ranking of enrichment score values to predict the presence of a cell 
type at each spot. Both PAGE and RANK provide high accuracy (median AUC = 0.95 and 
0.96, respectively, Fig. 3C, Supplemental Fig. 5 and 6A), whereas the hypergeometric 
method is somewhat less accurate (median AUC = 0.86, Fig. 3C, Supplemental Fig. 5 and 
6A). The only cell type that cannot be well predicted by this approach is inhibitory neurons, 
whose gene signatures are less distinct than others. In contrast, the simple approach using 
Spearman correlation is much less accurate (median AUC = 0.72, Supplemental Fig. 6A). 
We also found that all 3 methods are relatively robust to changes in number of transcripts 
(UMIs) (Supplemental Fig. 6B) and that the estimated p-values are useful for selecting an 
appropriate cutoff for classification. For example, using the traditional p = 0.05 cutoff, we can 
effectively distinguish the spots that contain cells from the target cell type (Supplemental 
Fig. 5).  
 
Next, we applied cell-type enrichment analysis to a publicly available mouse brain Visium 
dataset (downloaded from https://www.10xgenomics.com/). Spatial transcriptomic 
information was obtained by using 2,698 spatially barcoded array spots, each covering a 
circled area with 55μm in diameter. To comprehensively perform enrichment analysis, cell 
type annotations and corresponding gene signatures were obtained from a public scRNAseq 
dataset 25. Here, we applied PAGE to identify the spatial patterns of the major cell 
taxonomies identified previously 25. We found that a number of cell types are spatially 
restricted to distinct anatomical regions (Fig. 3D, Supplemental Fig. 6C). The spatial 
patterns of the enrichment scores are consistent with the literature for a number of cell types, 
such as peptidergic cells, granule neurons, ependyma astrocytes, and medium spiny 
neurons (Fig. 3D) 26–28. Similar but less obvious trends can be observed by inspecting the 
expression pattern of specific marker genes (Fig. 3D), which is consistent with the fact that 
cell types are typically defined by the concerted activities of multiple genes. Of note, the 
enrichment analysis also correctly predicted the absence of cell types that should not be 
present in the sample, such as cerebellum, olfactory bulb, and spinal cord cells 
(Supplemental Fig. 6C).   
 To test the general applicability of the enrichment analysis algorithms, we re-
analyzed a Slide-seq dataset 8 (see Supplemental Notes for details), where the read 
coverage of genes is much less than Visium. This dataset profiles the mouse cerebellum, 
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containing 21,000 beads and 10,500 genes at a coverage of 80 UMIs per bead. Cell-type 
gene signature information was obtained from a public scRNAseq dataset for a similar 
region  25. Analysis of this scRNAseq dataset identified 15 different cell types. We applied 
the RANK method for enrichment analysis (Supplemental Figure 7A). and noticed distinct 
spatial enrichment of cell types in the Slide-seq data that are consistent with prior 
knowledge. For example, the enrichment of Purkinje cells is correctly mapped to the Purkinje 
layer, and unipolar bush neurons and granule cells are correctly mapped to the nuclear layer 
(Supplemental Figure 7B).  
     
 
Giotto uncovers different layers of spatial expression variability 

A key component of Giotto Analyzer is the implementation of a wide range of 
computational methods to identify spatial patterns based on gene expression. On a 
fundamental level, Giotto Analyzer represents the spatial relationship among different cells 
as a spatial grid or network (Fig. 4A). To create a spatial grid, each image field is partitioned 
into regular squares and the gene expression patterns associated with cells within each 
square are averaged. As such, the spatial grid is a coarse-resolution representation of the 
data. A spatial network preserves single-cell resolution, and it is created by connecting 
neighboring cells through a Delaunay triangulation network (see Methods). As an alternative 
approach to create a spatial network, the user can create a spatial network by selecting the 
k-nearest neighbors or using a fixed distance cut-off, which allows the user to fine-tune the 
influence of neighboring cells in more downstream applications (Supplementary Fig. 8A). 
However, as shown in the Supplemental Notes, our analysis results are typically insensitive 
to the specific choice of parameter values.  

 
A basic task in spatial transcriptomic or proteomic analysis is to identify genes whose 

expression displays a coherent spatial pattern. To this end, Giotto implements a number of 
complementary methods, including SpatialDE 29, trendsceek 30, and three new methods that 
are considerably simpler. One of these methods was previously developed by our group 31 
and has been renamed as SilhouetteRank and works directly on the spatial coordinates of 
the cells. The other two novel methods are based on statistical enrichment of spatial network 
neighbors with high binarized gene expression and has been named BinSpect (Binary 
Spatial Extraction) or more specifically BinSpect-kmeans and BinSpect-rank, depending on 
the binarization method that was used (Supplemental Fig. 8B, Methods). To evaluate the 
performance of these methods, we applied each to the seqFISH+ dataset, where many 
genes are expected to display layer-specific patterns that are consistent with the anatomical 
structure of the somatosensory cortex (Fig. 4B, Supplementary Fig. 8C). For each method, 
we selected the top 1000 genes as candidates for spatially coherent genes. Of note, a large 
subset of these genes were identified by at least four of the methods (Fig. 4C), these include 
previously established layer-specific genes such as Cux2, Grm2 and Rprm, indicating the 
robustness of these methods to identify known spatial coherent genes. On the other hand, 
subsets of genes were detected by only one or a combination of specific method(s) 
(Supplementary Fig. 8D-G, see Supplemental Notes), suggesting it may be beneficial to 
combine results from all methods for comprehensiveness.  While all methods provide similar 
results, the three new methods introduced here are significantly faster compared to 
spatialDE and trendsceek (Supplementary Fig. 8H-I, see Supplemental Notes).   
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Giotto implements two approaches to systematically summarize the spatial patterns 
of a large number of spatial genes (Fig. 4A). First, Giotto identifies spatial domains with 
coherent gene expression patterns by implementing our recently developed hidden Markov 
random field (HMRF) model 32. An HMRF model detects spatial domains by comparing the 
gene expression patterns of each cell with its neighborhood to search for coherent patterns 
(see Methods for details). The inference is based on the joint probability of the intrinsic 
factor (expression pattern of each cell) and the extrinsic factor (domain state distribution of 
the surrounding cells) 32. The analysis starts with the identification of spatial genes using one 
of the previously described methods. Then we applied our HMRF model to infer the spatial 
domain state for each cell or spot. In applying HMRF to the seqFISH+ dataset, our analysis 
identified 9 distinct spatial domains that are consistent with the anatomic layer structure (Fig. 
4D). For example, Domain D7 is similar to Layer L1, Domain D2 is similar to Layer L2/3. Of 
note, such layered structure is not reflected by the distribution of different cell types 
(Supplemental Fig 1F), indicating these two analyses are complementary and can be used 
together to investigate the effect of spatial environment in mediating cell state variation.  
 
In addition, Giotto also implements a summary view of spatial gene expression patterns 
based on co-expression analysis. As an illustrating example, we analyzed a Visium dataset 
obtained from the kidney coronal section, which has known and distinguishable anatomic 
structures. Using the BinSpect-kmeans algorithm in Giotto, we selected the top 500 spatially 
coherent genes. To identify spatial patterns, we created a co-expression matrix as follows. 
First, we spatially smoothed the gene expression data through spatial neighbour averaging, 
and then created co-expression modules by clustering the spatially smoothed data (Fig. 4E). 
Next, the spatial pattern of each module is summarized by a metagene defined by averaging 
the expression of all associated genes, which can be stored and visualized (Fig. 4F). 
Moreover, individual genes representing the co-expression patterns can be easily extracted 
and displayed (Supplementary Fig. 8J). At the same time, we also created a co-expression 
network based on single-cell expression data so that users can further filter or distinguish 
spatial co-expression within a local neighbourhood from co-expression within the same cell. 
Finally, the detection of these global co-expression patterns is largely insensitive to the 
characteristics of the underlying spatial network (Supplemental Fig. 9A-D, see 
Supplemental Notes for details). 
 
 
Giotto identifies distinct cellular neighborhoods and interactions  
Most cells reside within complex tissue structures, where they can communicate with their 
neighboring cells through specific molecules and signalling pathways. Hence gene 
expression within each cell is likely driven by a combination of an intrinsic (cell-type specific) 
component and an extrinsic component mediated by cell-cell communications (Fig. 5A). 
Giotto Analyzer provides a number of tools to explore and extract information related to the 
cell neighborhood organization, cell-cell communication, and the effect of neighboring cell 
types on gene expression. To identify distinct cell-type/cell-type interacting patterns, Giotto 
evaluates the enrichment of the frequency that each pair of cell types are proximal to each 
other. When analysing the seqFISH+ somatosensory cortex data, we observed that layer-
specific neurons usually interact with each other, which agrees with the known multi-layered 
organization of the cortex (Fig. 5B). Such homo-typic (same cell types) relationships are in 
agreement with what was observed by others, including in other tissues 12,33. Here we also 
noticed that astrocytes and oligodendrocytes, L2/3 and L4 excitatory neurons and L5 and L6 
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excitatory neurons form frequent hetero-typic (two different cell types) interactions. This is 
again in line with the expected anatomical structure of the cortex, due to positioning of the 
cortex layers and the increased presence of astrocytes and oligodendrocytes close to where 
they originate in the subventrical zone (Supplemental Fig. 1F and Supplemental Fig. 3F). 
These observations were robust to changes in number of spatial neighbors (k) 
(Supplemental Fig. 10A, see Supplemental Notes) and were furthermore observed in both 
the seqFISH+ and osmFISH somatosensory cortex datasets (Supplemental Fig. 10B, see 
Supplemental Notes).  

To extend this type of analysis to less defined tissues, we also analysed a public 
MIBI dataset profiling the spatial proteomic patterns in triple negative breast cancer (TNBC) 
patients 13. Over 200,000 cells from 41 patients were analysed together to generate over 20 
cell populations (Supplementary Fig. 11A). Of note, the preferred mode of hetero-typic cell-
type interactions is highly patient specific (Supplementary Fig. 11B, C). For example, in 
patients 4 and 5, the Keratin-marked epithelial cells and immune cells are well segregated 
from each other, whereas patients 10 and 17 feature a rather mixed environment between T 
cells, Keratin, and Ki67 cancer cells. (Supplemental Fig. 11B, C). These observations are 
consistent with prior findings 13.  

Giotto builds further on the concept of interacting cell types and aims to identify which 
known ligand-receptor pairs show increased or decreased co-expression, as a reasonable 
proxy for activity, in two cell types that spatially interact with each other (Fig. 5C). By 
creating a background distribution through spatially aware permutations (see Methods), 
Giotto can identify which ligand-receptor pairs are potentially more or less active when cells 
from two cell types are spatially adjacent to each other. By comparing with a spatially 
unaware permutation method, similar as previously done 34, we can see that the predictive 
power is limited without spatial information (AUC = 0.62) (Fig. 5C,D). This analysis is 
relatively stable to different numbers of spatial neighbors (k) within the spatial network 
(Supplemental Fig. 10C-D, see Supplemental Notes) and was observed for multiple 
ligand-receptor pairs spread out over multiple cell type pairs (Fig, 5E). Two potential 
examples of increased co-expression of a ligand-receptor pair was seen in spatially 
interacting astrocytes and layer 5 excitatory neurons displaying increased expression of 
Plxna1-Sema6d and Apln-Aplnr in corresponding endothelial cells and astrocytes, 
respectively (Fig. 5F).  

More generally, Giotto implements a number of statistical tests (t.test, limma, 
Wilcoxon and a spatial permutation test) to identify genes whose expression level variation 
within a cell-type is significantly associated with an interacting cell type (see Methods). After 
correcting for multiple hypothesis testing, we identified 103 such genes (|z-score| > 2 and 
FDR < 0.1), which we refer to as the interaction changed genes (ICGs). These ICGs are 
distributed among different interacting cell type pairs (Supplemental Fig. 10E). For 
example, we noticed that endothelial cells interacting with Lhx6 iNeuron were associated 
with increased expression of Jakmip1 and Golgb1, whereas both Dact2 and Ddx27 
expression levels were increased in cells from the same cell type but interacting with L4 
eNeurons (Fig. 5G). On the opposite direction, interaction with astrocytes was associated 
with decreased expression of Abl1 and Zswim8. Of note, all these subsets of endothelial 
cells do not show any difference in expression of their known marker genes, such as Pltp, 
Cldn5 and Apcdd1 (Fig. 5G, Supplemental Fig. 2D). 
 
Giotto Viewer: interactive visualization and exploration of spatial transcriptomic data 
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Giotto Viewer is designed for interactive visualization and exploration of spatial 
transcriptomic data. Compared to the figure outputs from Giotto Analyzer, the objective of 
Giotto Viewer is to provide an interactive and user-friendly workspace where the user can 
easily explore the data and integrate the results from various analyses from Giotto Analyzer, 
and further incorporate additional information that cannot be easily quantified, such as cell 
staining images.  

Giotto Viewer is a web-based application running in a local environment. It supports a 
multi-panel view of the spatial expression data. Each panel can be configured to display 
either the cells in physical or the expression space and overlays gene expression 
information on top. Complex geometries such as the 2D cell morphology and the associated 
large antibody staining images of the cells can be toggled easily within each panel.  We used 
a Google Map-like algorithm to facilitate efficient navigation of potentially large images and 
large number of data points. Importantly, panels are linked and interactive. The information 
from different panel classes is linked through sharing of cell IDs and annotations across 
panels. This allows seamless integration of different views and facilitates synchronous 
updates across all panels. We tested the ability of the viewer to display over 500,000 data 
points (or mRNA transcripts) within a group of cells on one screen. The viewer is capable of 
handling such a load with ease owing to the position-based caching. 

 
As an illustrating example, we used Giotto Viewer to visualize the Visium brain 

dataset. By default, Giotto Viewer creates two panels, representing the data in physical and 
gene expression space, respectively (Figure 6A, left). Any property that is contained in a 
Giotto object, such as gene expression levels, spatial cell-type enrichment values, cell-type 
or spatial-domain annotations, can be selected for visualization. Additional imaging-related 
information, such as cell staining and segmentation, can also be overlaid. The size and 
location of field of view can be easily adjusted via the zoom and pan functions. At one end of 
the spectrum, the image content at each single spot can be visualized (Figure 6A, right), 
revealing the underlying H&E staining pattern. An animated video is provided to illustrate 
how the user can interactively explore the data and high-level annotations (Supplemental 
Video 1). 

To demonstrate the utility of Giotto Viewer for exploring and integrating a large 
amount of information generated by Giotto Analyzer, we used the aforementioned seqFISH+ 
dataset again. Through the analysis described above, we identified various annotations such 
as cell types, spatially coherent genes, and spatial domains. Therefore, it is of interest to 
compare the cell type and spatial domain annotation to investigate their relationship. To this 
end, we created four panels corresponding to cell type and spatial domain annotations 
represented in the physical and expression space, respectively (Figure 6B).  To facilitate 
easy navigation, the views in these four panels are automatically linked and can be 
synchronously updated through zoom and pan operations. This feature allows the user to 
freely explore the data and inspect any area of interest as desired. For example, as the user 
zooms in onto the L1-L2/3 region (Figure 6C), it becomes apparent that domain D7 consists 
of a mixture of cell types including astrocytes, microglias, and interneurons. Giotto Viewer 
also provides a lasso tool that allows users to select cells of interest for further analyses. The 
borders of the selected cells are highlighted and can be easily traced across different panels. 
As an example, cells from domain D7 are selected and highlighted (Figure 6C). By 
inspecting the pattern in the linked panels, it becomes obvious that this domain contains 
cells from multiple cell types.  As such, both cell type and spatial domain differences 
contribute to cellular heterogeneity.   
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To gain further insights into the difference between cell type and spatial domain 
annotations, we saved the selected cells to an output file. The corresponding information can 
be directly loaded into Giotto Analyzer for further analysis.  This allows us to identify a 
number of additional marker genes, such as Cacng3 and Scg3 (Figure 6D). The seamless 
iteration between data analysis and visualization is a unique strength of Giotto.  

In addition, Giotto Viewer also provides the functionality to explore subcellular 
transcript or protein localization patterns. As an example, we used Giotto Viewer to visualize 
the exact locations of individual transcripts in selected cells from the seqFISH+ dataset 
(Figure 6E, Supplementary Figure 12). To facilitate real-time exploration of the transcript 
localization data, which is much larger than other data components, we adopted a position-
based caching of transcriptomic data (see Methods). From the original staining image 
(Supplementary Figure 12A), the users can zoom in any specific region or select specific 
cells and visualize the locations of either all detected transcripts (Supplementary Figure 
12B) or selected genes of interest (Supplementary Figure 12C). The spatial extent of all 
transcripts is useful for cell morphology analysis (Supplementary Figure 12B), whereas the 
localization pattern of individual genes may provide functional insights into the corresponding 
genes (Supplementary Figure 12C).  For example, transcripts of Snrnp70 and Car10 are 
preferentially localized to the cell nucleus (delineated by DAPI background), while Agap2 
and Kif5a transcripts are distributed closer to the cell periphery (Supplementary Figure 
12C).  
 
Discussion 

Single-cell analysis has entered a new phase – from characterizing cellular 
heterogeneity to interpreting the role of spatial organization. To overcome the challenge for 
data analysis and visualization, we have developed Giotto as a standardized toolbox, which 
implements a rich set of algorithms to address the common tasks for spatial 
transcriptomics/proteomic data analysis, including cell-type enrichment analysis, spatially 
coherent gene detection, spatial pattern recognition, and cell neighbourhood and interaction 
analyses. Through analysing diverse public datasets, we have demonstrated that Giotto can 
be broadly applied in conjunction with a wide range of spatial transcriptomics and proteomic 
technologies.  

 
Giotto has a number of strengths, including modularization, interactive visualization, 
reproducibility, robustness, and flexibility. It differs from existing spatial data analysis and/or 
visualization pipelines 8,29,30,32,35,36–38, and is complementary to alternative strategies that 
computationally infer spatial information from single-cell RNAseq analysis 39. To our 
knowledge, Giotto is the first demonstrated general-purpose toolbox for spatial 
transcriptomic/proteomic data analysis, while the other methods are designed for specific 
data types 36,40–42 or tasks, such as the identification of cell types  35, marker genes 29,30 or 
domain patterns 32. The flexible design of Giotto makes it an ideal platform for incepting new 
algorithms. In addition, Giotto provides a convenient venue to integrate external information 
such as single-cell RNAseq data. As single-cell multi-omics data become more available, 
such integration may greatly enhance mechanistic understanding of the cell-state variation in 
development and diseases.   
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Methods 
 
Data usage and availability. The Giotto package (including both Giotto Analyzer and 
Viewer) is available at www.spatialgiotto.com, which also contains all datasets, or links 
thereto, that were used as examples. At this website, we also provide the script we used to 
perform the first basic steps for each dataset and the corresponding results.  
 
Giotto Analyzer. Giotto Analyzer is an open source R package that at its center creates a 
S4 giotto object, which stores a gene expression matrix and the accompanying cell 
locations. It contains multiple functions that can either extract or add new information to this 
object in a flexible manner. In this way users can either follow the default settings or build 
their own stepwise pipeline to extract and visualize spatial information. In the next part the 
core steps and functions of Giotto Analyzer are explained and names of functions are 
depicted in italic. 
 
Quality control, pre-processing and normalization. A giotto object can be created with 
the function createGiottoObject, which requires as minimum input an expression matrix and 
the spatial coordinates of corresponding cell centroids. If a dataset is composed of multiple 
fields of view or tiles, they can be stitched together by using stitchFieldCoordinates or 
stitchTileCoordinates, respectively. Next, this giotto object can be filtered with filterGiotto to 
exclude low quality cells or lowly expressed or detected genes. As a guide for setting the 
filtering parameters, the cell and gene distributions can be viewed with filterDistributions and 
the effect of multiple parameters can be tested with filterCombinations. Raw counts can 
further be normalized with normalizeGiotto, which can adjust for library size, log transform 
the matrix and/or perform rescaling. Next the function addStatistics computes general cell 
and gene statistics such as the total number of detected genes and counts per cell. To 
adjust for variation due to the former technical covariates the adjustGiottoMatrix can be 
applied to the normalized data. If the dataset does not have single-cell resolution, the above 
steps can still proceed while treating each spatially barcoded spot as a cell.  
 
Feature selection. To identify informative genes for clustering the calculateHVG can be 
used. Highly variable genes can be detected in two different manners. In the first method, all 
genes are divided in a predefined number (default = 20) of equal sized bins based on their 
expression. Within each bin the coefficient of variation for each gene is calculated and these 
are subsequently converted to z-scores. Genes above a pre-defined z-score threshold 
(default = 1.5) are selected for further analysis. For the second method a loess regression 
model is calculated to predict the coefficient of variation based on the log-normalized 
expression values. Genes that show more variability than predicted are considered highly 
variable genes. Genes can be further filtered based on average expression values or 
detection percentage, which is returned by the addStatistics function. 
 
Dimensionality reduction. To reduce dimensions of the expression dataset users can 
perform principal component analysis (PCA) with runPCA. Significant PCs can be estimated 
with the signPCA function using a scree plot or the jackstraw method 43. Further non-linear 
dimension reduction can be performed with uniform manifold approximation and projection 
(UMAP) 20 and t-distributed stochastic neighbour embedding (t-SNE) 19 directly on the 
expression matrix or on the PCA space using runUMAP and runtSNE, respectively. 
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Clustering. First a shared or k nearest neighbour (sNN or kNN) network needs to be 
constructed with createNearestNetwork which uses as input either processed expression 
values or their projection onto a selected dimension reduction space, such as that obtained 
from PCA. Louvain and Leiden clustering 22 are implemented as doLouvainCluster and 
doLeidenCluster and can directly be applied on the created expression-based network. 
Further subclustering on all or a selected set of clusters can be performed in an analogous 
manner with doLouvainSubCluster or doLeidenSubCluster. Alternative clustering options 
such as kmeans and hierarchical clustering are also available as doKmeans and doHclust. 
To aid in further fine-tuning the clustering results users can compute cluster correlation 
scores with getClusterSimilarity and decide to merge clusters with mergeClusters based on 
a user defined correlation threshold and cluster size parameters. 
 
Marker genes detection. Giotto provides 3 different ways within the function findMarkers to 
identify marker genes for one or more clusters: scran, mast, and gini. The first two methods 
have been previously published 44,45 and are implemented as findScranMarkers and 
findMastMarkers. In addition, we also developed a novel method based on the Gini-
coefficient 46 and implemented it as findGiniMarkers. First, we calculated the average log-
normalized expression for the each gene in each cluster, and represented the result as 
matrix X, with X(i, j) representing the average expression of i-th gene in j-th cluster. Similarly, 
we calculated the detection fraction of each gene in each cluster, and represented the result 
as matrix Y, with Y(i, j) representing the detection fraction of i-th gene in j-th cluster. For 
each gene i, we calculated two related quantities Gexpr(i) and Gdet(i), by computing the Gini-
coefficient associated with of row X (i, .) and Y (i, .), respectively. Gini-coefficient of a vector 
x = [x1,x2, …, xn] is defined as:  
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In the meantime, for each gene i, we also ranked the clusters based on either gene 
expression  X (i, .) or detection rate Y (i, .), and the corresponding ranks are denoted by 
Rexpr(i, .) and  Rdet(i, .), respectively.  The ranks were subsequently rescaled between 0.1 and 
1. Finally, an aggregated score Gfinal(i, j) is defined as follows:  
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The markers genes associated with a cluster j is then identified as those with top values   of 
Gfinal(., j).  We have found this to be a fast and simple approach for effectively identifying 
genes that are very specific, but also sufficiently expressed in a particular cluster. In addition, 
an automatic version to perform systematic pairwise comparisons between each cluster and 
all other clusters is also implemented as findMarkers_one_vs_all. 
 
Enrichment analysis of spatial expression data 
Three enrichment methods were implemented into Giotto for enrichment analysis:  
1. Enrichment analysis by using PAGE (Parametric Analysis of Gene Set Enrichment) 23 
In this method, a known set of m cell-type specific marker genes is used as input. The 
objective is to evaluate if these genes are more highly expressed as compared to other 
genes. Specifically, for each spot, we define an enrichment score corresponding to a set of 
marker genes as follows. First, for each gene in the entire genome, we calculate the 
expression fold change of this gene by using the expression value in this spot versus the 
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mean expression of all spots. The mean and standard deviation of these fold change values 
are denoted by µ and δ , respectively. For comparison, we also calculated the mean fold 
change associated with the set of marker genes, denoted by Sm. The enrichment score (ES) 
is then defined as follows: 
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A higher ES value indicates a cell-type is more likely to be associated with the spot in 
question. To estimate the null distribution, we repeated the analysis by using 1000 random 
gene sets with the same size. The resulting values were fit by a normal distribution.  By 
randomly selection the same size of signature genes for 1000 times. This null distribution is 
used to derive p-values associated with the enrichment scores for the real data. 
 
2. Enrichment analysis based on rank of gene expression 
In this method, a known list of marker genes is not required. Instead, an external single-cell 
RNAseq dataset is used as input along with the cell-type annotation for each cell. Based on 
such information, Giotto automatically identifies cell-type specific gene signatures by 
computing the fold change for each gene, g, defined as the ratio between its mean 
expression level within a cell type and the mean across all cell types, followed by evaluating 
its relative rank R1g among all genes. In the meantime, genes are also ranked based on 
location specificity, R2g, using the spatial transcriptomic data. This is obtained by calculating 
the fold change comparing its expression level at a specific spot versus the overall mean 
and then ranking the results. The mutual rank 47 of g is then computed as 
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which is then converted to a rank-biased precision (RBP) score 48,, which is defined as 
follows:  
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where p is a constant set at 0.99. Intuitively, the RBP score is used to select genes that are 
highly ranked in terms of both cell-type specificity and location-specificity.  The tuning 
parameter p in the above equation is introduced to control the relative weight of highly 
ranked genes. In the end, the enrichment score (ES) is determined by the sum of genes with 
top ranked RBP scores: 
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To estimate the null distribution, we randomly shuffled the ranking of genes in the scRNAseq 
dataset for 1000 times of each cell type and then applied the above analysis to the shuffled 
data. The resulting values are fit by a gamma distribution, using “fitdistrplus” package in R. 
This null distribution is used to derive p-values associated with the enrichment scores for the 
real data. 
 
3. Enrichment analysis by using hypergeometric distribution   
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This method also requires a known set of m cell-type specific marker genes as input, but it 
evaluates enrichment by simply using a hypergeometric test. A contingency table is 
constructed by dividing all genes into four non-overlapping categories, based on marker 
gene annotation and binarization of gene expression values. The latter is determined by top 
5% expression genes for each spot. Based on this contingency table, a p-value is calculated. 
Here the enrichment score is defined as -log10(p-value). 
 
Simulation analysis of seqFISH+ data. We coarse-gridded seqFISH+ dataset to simulate 
spatial expression data of multiple cellular level. The dataset was gridded by 500 pixels by 
500 pixels (~51.5 µm) length. This length is quite similar with the diameter of spots from 
Visium spatial expression dataset (55µm). Then the gene expression for each grid was 
calculated as the sum of normalized single cell expression within grid. After normalization of 
gene expression for coarse-gridded data, we performed enrichment analysis by using 
somatosensory cortex single-cell RNA-seq data from 24 (GSE60361). scRNA-seq data was 
normalized by normalizeGiotto using Giotto. Marker genes for each cell type were identified 
by using findMarkers_one_vs_all with parameter: method = 'scran', expression_values = 
'normalized'. We then intersect those marker genes with genes in seqFISH+  data. Top 100 
intersect marker genes for each cell type were kept for further enrichment analysis. 
 
To match the cell-type annotations between seqFISH+ and scRNA-seq data, we aggregated 
the major clusters annotated by Giotto pipeline. 'L2/3 eNeuron', 'L4 eNeuron', 'L5 eNeuron' 
and 'L6 eNeuron' were marked as excitatory neuron (eNeuron). 'Adarb2 iNeuron' and 'Lhx6 
iNeuron' were marked as inhibitory neuron (iNeuron). 'endothelial' and 'mural' were marked 
as “endothelial_mural”. The percentage of cell type for each grid was calculated to evaluate 
the performance of enrichment methods. Top 100 marker genes identified were used for 
PAGE and hypergeometric analysis by createSpatialEnrich with parameter: enrich_method = 
'PAGE' and enrich_method = 'hypergeometric', respectively. Single-cell expression matrix as 
well as cell labels were used for rank matrix generation by using makeSignMatrixRank with 
default parameters and enrichment analysis by using createSpatialEnrich with parameter: 
enrich_method = 'rank'.  
 
Performance of three enrichment methods in Giotto as well as Spearman correlation were 
systematically evaluated by using the coarse-gridded seqFISH+ dataset. Based on the -
log10(pvalue) calculated in three enrichment methods and the Spearman correlation value, 
area under curve (AUC) was calculated by using “pROC” package in R for each cell type. 
 
Spatial grid and neighborhood network. A spatial grid is defined as a Cartesian 
coordinate system with defined units of width and height and is created with the function 
createSpatialGrid. The gene expression levels of cells within each grid box are averaged. 
Another representation of the spatial relationship is the spatial neighborhood network, where 
each node represents a cell, and each pair of neighboring cells are connected through an 
edge. The number of neighbors can be defined by setting (a minimal) k and/or radial 
distance from the centroid position of each cell, and the edge weights can be either binary or 
continuous. Alternatively, a Delaunay network can be created, which does not require k or 
radial distance to be specified and is based on Delaunay triangulation. The Delaunay 
triangulation and its related concept of Voronoi Tessellation was previously applied to study 
species distribution in the field of eco-geography with the goal to partition a space according 
to certain neighbourhood relations of a given set of points (e.g. cells) in this space. It has 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2020. ; https://doi.org/10.1101/701680doi: bioRxiv preprint 

https://doi.org/10.1101/701680
http://creativecommons.org/licenses/by/4.0/


15 

been used and adopted in various fields of biology, including to analyse tissue distribution at 
the single-cell level 12. 
 
Spatially coherent gene detection. In total Giotto currently has five different methods to 
identify spatial coherent gene expression patterns. Two previously published methods 
SpatialDE 29 and trendsceek 30 can be run with the functions spatialDE and trendSceek. 
Another method was part of a previous publication in the lab 9  and computes a silhouette 
score per gene based on the spatial distribution of two partitions of cells (expressed L1, and 
non-expressed L0). Here, rather than L2 Euclidean norm, it uses a rank-transformed, 
exponentially weighted function to represent the local physical distance between two cells. It 
is implemented as SilhouetteRank. The next two methods are novel and are based on 
statistical enrichment of binarized expression data in neighboring cells within the spatial 
network. First, for each gene, expression values are binarized using kmeans clustering (k = 
2) or simple thresholding on rank (default = 30%), which is the only difference between these 
two methods. Next, a contingency table is calculated based on the binarized expression 
values between neighboring cells and used as input for a Fisher exact test to obtain an 
odds-ratio estimate and p-value. In this way a gene is considered a spatial gene if it is 
usually found to be highly expressed in proximal or neighboring cells. In addition to the odds-
ratio and p-value for each gene, the average gene expression, the number of highly 
expressing cells and the number of hub cells are computed and provided. A hub cell is 
considered a cell with high expression of a gene of interest and which has multiple high 
expressing neighboring cells of that gene. These features can be used by the user to further 
rank and explore spatial genes with different characteristics. We have named the latter 
method BinSpect (Binary Spatial extract) and implemented it as binSpect, within this 
function the user can choose to use kmeans or threshold ranking to binarize the expression 
matrix.  
 
 
Spatial co-expression patterns. To identify robust patterns of co-expressed spatial genes 
the functions detectSpatialCorGenes and clusterSpatialCorGenes can be used on the 
identified individual spatial genes. The first function spatially smooths gene expression 
through a grid averaging or k-nearest neighbour approach and then calculates the gene-to-
gene correlation (default = Pearson) scores. In addition, it also calculates gene-to-gene 
correlation within the original single-cells to distinguish between spatial and cell intrinsic 
correlation. The second function performs hierarchical clustering to cluster the gene-to-gene 
co-expression network into modules and creates metagene scores by averaging all the 
genes for each identified co-expression module, which can subsequently be viewed using 
the standard viewing options provided in Giotto. 
 
 
Spatial domain detection. Spatial domains were identified with a hidden Markov random 
field (HMRF) model as previously described 32. In brief, HMRF is a graph-based model that 
infers the state of each cell as the joint probability of the cell’s intrinsic state (inferred from 
the cell’s own gene expression vector), and the cell’s extrinsic state, which is based on the 
distribution of the states of the cell’s neighbours. The notion of state is the spatial domain in 
our case. The neighbourhood graph defines the extent of the neighbour cell influence, 
together with the parameter beta that defines the strength of the interaction of cells. At the 
end, HMRF assigns each cell to one of k spatial domains (k to be defined by the user). This 
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HMRF model was implemented in Python and is incorporated in Giotto by using the 
consecutive wrapper functions doHMRF, viewHMRF and addHMRF to discover, visualize 
and select HMRF domain annotations respectively. 
 
Identification of proximal or interacting cell types. To identify cell types that are found to 
be preferentially located in a spatially proximal manner, as a proxy for potential cell-cell 
interactions, we use a random permutation (default n = 1000) strategy of the cell type labels 
within a defined spatial network.  First, we label the edges of the spatial network as homo- or 
hetero-typic, if they connect cells of identical or different annotated cell types, respectively. 
Then we determine the ratio of observed-over-expected frequencies between two cell types, 
where the expected frequencies are calculated from the permutations. Associated p-values 
were calculated by observing how often the observed value were higher or lower than the 
simulated values for respectively increased or decreased frequencies. A wrapper for this 
analysis is implemented in Giotto Analyzer as cellProximityEnrichment. 
     
 
Gene expression changes within cellular neighborhood. 
 
Spatially informed ligand-receptor pairing.  
To investigate how cells communicate within their microenvironment, Giotto can incorporate 
known ligand-receptor information from existing databases 49. By calculating the increased 
spatial co-expression of such gene pairs in neighboring cells from two cell types, it estimates 
which ligand-receptor pairs might be used more (or less) for communication between 
interacting cells from two cell types. This is implemented in the function spatCellCellcom, 
which is short for spatially informed cell-to-cell communication. More specifically, for each 
ligand-receptor pair, a cell-cell-communication score S is calculated for every pair of cell 
types. In particular, for ligand L, receptor R, cell type A, and cell type B, S(L,R,A,B) is 
defined as the weighted average expression of R and L in all the interacting A and Bs,  or in 
other words in the subset of A and B cells that are proximal to each other (based on spatial 
network). 
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where n represents the number of A-type cells that interact with B-type cells, m represents 
the number of B-type cells that interact with A-type cells, Li represents the expression level of 
the ligand in the i-th A-type cell, and Rj represents the expression level of the receptor in the 
j-th B-type cell Next, to assess if the calculated score S is statistically significant, a random 
null distribution is computed. This background distribution is created by shuffling cell 
locations within the same cell type for A and B for 1000 (= default) times. In each round a 
permutation score Sp is calculated using the same formula. Associated p-values were 
calculated as the probability of the Sp to be greater or smaller than the actual observed 
score S. The p-values for all ligand receptor pairs in all cell-type pairs were subsequently 
adjusted for multiple hypothesis testing. 

A final differential activity score was calculated by multiplying the log2 fold-change 
with the adjusted p-values. The ligand-receptor pair information was retrieved from 
FANTOM5 49. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2020. ; https://doi.org/10.1101/701680doi: bioRxiv preprint 

https://doi.org/10.1101/701680
http://creativecommons.org/licenses/by/4.0/


17 

 
 
Expression informed ligand-receptor pairing. 
This analysis can be performed with exprCellCellcom, short for expression informed cell-to-
cell communication, and is analogous to the method for ‘spatially informed ligand-receptor 
pairing’ (described above) except that no spatial information is used. This means that ligand-
receptor expression levels are calculated for all cells from two cell types and that the 
background null distribution is similarly computed by reshuffling all cell labels. This approach 
is used to mimic scRNAseq based analysis. 
 
Comparison between spatially- and expression-information ligand-receptor pairing 
We performed a direct comparison between expression-informed ligand-receptor pairing 
(with the function exprCellCellcom) and spatially-informed ligand-receptor pairing (with the 
function spatCellCellcom). For both analyses, we ranked all ligand-receptor pairs according 
to their interaction-induced expression changes in all pairs of cell types. This means that for 
spatCellCellcom we use the cells from two cell types that proximally interact (based on the 
spatial network) and for exprCellCellcom we use all cells from two cell types. Next, we 
computed the AUC to examine how efficient the expression ranked ligand-receptor pairs can 
predict the top ranked spatially informed ligand-receptor pair. 
 
Cell-type interaction mediated gene expression changes. 
To identify all potential gene expression changes associated with specific cell-type 
interactions in an unbiased manner, Giotto implements 4 differential expression tests to 
identify such interaction changed genes (ICG), including t-test, limma test, Wilcoxon rank 
sum test, and spatial permutation test. For each cell type, we divided the annotated cells into 
two complementary subgroups, with one containing the subset which neighbour cells from 
another specific cell type. Differentially expressed genes between these groups are identified 
by using each of the statistical tests mentioned above. To adjust for multiple hypothesis 
testing, a background null distribution is created by reshuffling the cells within the same cell 
type. This analysis is implemented as the function findCellProximityGenes or the shorter 
version findCPG. Additional filtering can be achieved by using filterCellProximityGenes or 
filterCPG in order to reduce errors due to low (interacting) cell number, fold-change or 
absolute expression differences.  
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Giotto Viewer. Giotto Viewer is a web-based application that can be installed on any Linux, 
Windows or MAC OS based computer. The Giotto Viewer canvas consists of a cell object 
layer, containing all the differently shaped cells, an image layer corresponding to staining 
images, and an annotation property layer that specifies the cluster membership and gene 
expression information. Below is a setup overview: 
 
Input files. The minimal input files for Giotto Viewer contain the gene expression matrix and 
the cell centroid spatial coordinates. Such information can be either provided manually in 
tabular format, or directly loaded through the output files of Giotto Analyzer. If available, 
additional input files such as cell segmentations (ROI files), staining images (TIFF files), 
transcript locations (TXT files), can also be incorporated. Giotto Viewer provides tools to 
process such information for visualization (see next sections).  
 
To streamline setup, we provide guidelines for setting up various platforms.  
 
i) SeqFISH/MerFISH: this applies to SeqFISH/merFISH where multi-field imaging data, 

transcript locations, and cell segmentations are available. Giotto Viewer first extracts 
multi-channel images (where a channel may correspond to Nissl, DAPI, polyA) from 
TIFF using ImageMagick library (https://imagemagick.org/). Images within the same 
channel are next stitched. For stitching, Giotto provides an option to stitch images 
across multiple fields of view (FOV) with gaps in between. The layout can be 
manually controlled by modifying a coordinate offset file specifying the relative 
positions of FOVs. To automate these various actions, an initial setup is done using 
“giotto_setup_image --require-stitch=y --image=y --image-multi-channel=y --
segmentation=y --multi-fov=y --output-json=step1.json” which creates a template that 
sets up the sequence of tasks to be performed. Details of the template such as 
specifying the image file, the stitch offset file, and tiling are next achieved through 
“giotto_step1_modify_json” script. Lastly, sequence of tasks is performed through 
“smfish_step1_setup”. An overview of the Giotto Viewer processing steps is in 
Supplementary Fig. 13. 

Cell boundary segmentation is a necessary step for assignment of each transcript to its 
corresponding cells. However, this task is highly dependent on the specific 
technology platform therefore not implemented in Giotto. On the other hand, Giotto 
Viewer can accept user-provided cell boundary segmentation information as input, in 
the form of Region-of-Interest (ROI) files, for visualization. Giotto Viewer extracts 
information from the ROI files by adapting a JAVA program based on the ImageJ 
framework.  

The next step is tiling the stitched staining image. Giotto Viewer uses a Google Maps-like 
algorithm to facilitate multi-level zooming and navigation. To this end, Giotto Viewer 
further processes the stitched image by dividing it into equal-sized smaller images 
using the image tiling function in the tileup package in Ruby 
(https://github.com/rktjmp/tileup).  This creates a set of tiled images corresponding to 
6 zoom levels with 1.5X increment. The size of each tile is fixed at 256 by 256 pixels. 

 
ii) For Visium platform with accompanying image, the highest resolution raw H&E 

staining image is first padded to be square dimension. Next, a template is setup: 
“giotto_setup_image --require-stitch=n --image=y --image-multi-channel=n --
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segmentation=n --multi-fov=n --output-json=step1.json”. The next two steps 
“giotto_step1_modify_json” and “smfish_step1_setup” are proceeded as usual.  

 
iii) Other platforms with no image nor cell segmentations (e.g. Slide-seq). We run 

“giotto_setup_image --require-stitch=n --image=n --image-multi-channel=n --
segmentation=n --multi-fov=n --output-json=step1.json”, followed by the subsequent 
two steps (described in ii). Here, Giotto Viewer will render cells as circles in the 
physical space, and there will not be an image background overlay. 

 
Panels. Giotto Viewer supports a multi-panel view configuration, which means that users 
can load and visualize any number of panels simultaneously (default number = 2), and add 
different types of data to each panel. To permit flexibility, there are four types of panels 
implemented in the Giotto Viewer:  PanelTsne, PanelPhysical, and PanelPhysicalSimple, 
PanelPhysical10X. PanelTsne requires cell coordinates in the expression space as input. 
PanelPhysical lays out the cells in the physical space in the segmented cell shapes. 
PanelPhysicalSimple is a simplified version to PanelPhysical except that cell segmentation 
and staining images are not required, and instead renders cell objects as fixed size circle 
markers. PanelPhysical10X is unique to Visium in that it also registers the spot-level details 
of the Visium platform. The number of panels and the panel types can be specified, for 
example, through: “giotto_setup_viewer --num-panel=2 --input-preprocess-json=step1.json --
panel-1=PanelPhysical10X --panel-2=PanelTsne --output-json=step2.json --input-
annotation-list=annotation_list.txt”.  
 
Annotations. Cell annotations, such as spatial domains, cell types are required by Giotto 
Viewer. In brief, Viewer supports both continuous and discrete annotations. Continuous 
annotations include value-based cell type enrichment result of Visium, the number of reads 
per spot/cell, gene expression, or others analysed within Giotto, whereas discrete 
annotations may represent cell type or spatial domain memberships. Annotations generated 
Giotto Analyzer can be directly imported by using the exportGiottoFunction().  
 
Once panels, annotations, images are all prepared, then website files are created using: 
“smfish_read_config -c step2.json -o test.js -p test.html -q test.css”. A python webserver is 
next launched (python3 -m http.server) and the viewer can be viewed at 
http://localhost:8000/test.html. 
 
Implementation of interactive visualization of multi-layer spatial transcriptomic 
information.  The Giotto Viewer package is written in Javascript utilizing a number of state-
of-the-art toolboxes including  Leaflet.js (https://leafletjs.com/), Turf.js (https://turfjs.org/), 
Bootstrap (https://getbootstrap.com/), and jQuery (https://jquery.com/).  The Leaflet.js 
toolbox is used to efficiently visualize and explore multiple layers of information in the data, 
based on a Google Maps-like algorithm.  
 
As described above, Giotto Viewer contains 4 types of panels: PanelTsne, PanelPhysical, 
and PanelPhysicalSimple, PanelPhysical10X. The implementation of these 4 panels follows 
closely the paradigm of object-oriented design in Javascript, specified by the MDN Web 
Docs and ECMAScript. Briefly, the various panel types are motivated by the fact that 
depending on data availability, property of cells change from dataset to dataset, so different 
ways of cell representation should be considered. In the presence of cell staining images, 
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images should serve as background overlays to the data. If segmentation information is 
available, cells should be represented in their true cell shape. Yet when neither staining nor 
segmentation is available, Giotto Viewer should represent cells as basic geometric shapes 
(circles) so that the viewer can still run in the absence of staining or segmentation data. We 
designed the panel classes with these considerations in mind. Giotto Viewer makes it easy 
for users to specify the number of panels, the type of each panel, and the layout 
configuration. Users specify such information in a JSON formatted configuration file. A script 
then automatically generates the HTML, CSS, JS files of the comparative viewer that is 
ready for exploration in a standard web browser. 
 
To enable interactivity, panels are linked to each other. This is implemented by first defining 
mouseover and mouseout events for each cell object. The exact specification of events 
depends on the type of panel, the action chosen by the user, and the context in which the 
action is performed. Next, we maintain equivalent cell objects across panels by creating a 
master look-up table to link cell IDs in different panels. This is useful to facilitate interactive 
data exploration and comparison, synchronous updates of zoom and view positions during 
data exploration. Finally, the order and dependency with which interactions are executed are 
enforced by constantly polling element states and proceeding each step only when states 
are changed. In the API, the functions addInteractions(), addTooltips() enable the easy 
specification of cross-panel interactions. In the JSON configuration file, interactions between 
panels are simply defined by the user using the “interact_X: [panel ids]” and “sync_X: [panel 
ids]” lines.  
 
Giotto Viewer provides an intuitive utility to select a subset of cells of interest for visualization 
and further analysis. The toggle lasso utility allows a user to hand-draw an enclosed shape 
in any displayed panel to select cells directly.  We implemented this function by modifying 
the Leaflet-lasso.js toolbox to add support for the selection of the dynamic polygon shaped 
markers. Giotto Viewer can also highlight Individual cells with summary information 
displayed. This is achieved by using built-in functions in the Turf.js toolbox. 
 
Visualizing subcellular transcript localization. To visualize subcellular transcript 
localization information, an additional layer is created in Leaflet.js.  To efficiently handle the 
large amount of data,  we have written new functions to cache  only a small subset of 
transcripts that falls within the current viewing area, to be rendered by the Leaflet engine and 
thereby saves the systems resources.    
 
Visualizing cell-type enrichment data. Continuous annotations providing cell type 
enrichment per spot are exported from Analyzer to Viewer via exportGiotto() function. Then 
as with all other annotations, these are added to the setup JSON used to generate the 
website files. The cell type enrichments will appear under the “Annotations” tab of the viewer 
panel. 
 
Selecting and exporting cells. To encourage iterative analysis between the Viewer and 
Analyzer, users may select any cells of interest with the Lasso button. Then clicking “Save” 
will save the cell IDs that can be read in Giotto Analyzer within the R environment. 
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Figure Legends  
 
Figure 1. The Giotto framework to analyze and visualize spatial expression data 
A. Schematic representation of the Giotto workflow to analyze and visualize spatial 
expression data. Giotto Analyzer requires a count matrix and physical coordinates for the 
corresponding cells. It follows standard scRNA-seq processing and analysis steps to identify 
differentially expressed genes and cell types. In a following step a spatial grid and 
neighborhood network is created which is further used to incorporate the spatial information 
of the single-cell environment and which is used for spatial analysis. B. Cell coordinates, 
annotations, and clustering information are utilized and incorporated in the Giotto Viewer. 
This interactive viewer allows users to explore the link between cells’ physical positions and 
their clustering pattern in the expression space (UMAP or tSNE). The addition of raw 
subcellular transcript coordinates, staining images or cell segmentation information is also 
supported. C. Overview of the selected broad range of different spatial technologies and 
datasets which were analyzed and visualized with Giotto. For each dataset the number of 
features (genes or proteins) and number of cells are shown before filtering. The technologies 
depicted are sequential fluorescence in situ hybridization plus (seqFISH+), Visium 10X 
(Visium), Slide-seq, cyclic-ouroboros single-molecule fluorescence in situ hybridization 
(osmFISH), multiplexed error-robust fluorescent in situ hybridization (merFISH), spatially-
resolved transcript amplicon readout mapping (STARmap), tissue-based cyclic 
immunofluorescence (t-CyCIF), Multiplex Ion Beam Imaging (MIBI), and CO-Detection by 
indexing (CODEX).  
 

Figure 2. Analysis and visualization of large-scale transcriptomic and proteomic 
spatial datasets 
A. Visualization in both expression (top) and physical (bottom) space of the cell types 
identified by Giotto Analyzer in the pre-optic hypothalamic merFISH dataset, which consists 
of 12 slices from the same 3D sample (distance unit = 1 µm). B. Heatmap showing the 
marker genes for the identified cell populations in A. C. Visualization in both expression and 
physical space of two representative slices within the z-orientation (100 µm and 400 µm). D-
E. Overlay of gene expression in both expression and physical space for the selected slices 
in C. F. Visualization in both expression (top) and spatial (bottom) space of the clusters 
identified by Giotto Analyzer in the pancreatic ductal adenocarcinoma (PDAC) tissue-CyCIF 
dataset, which covers multiple tissues, including pancreas, small intestine and cancer cells 
(distance unit = 1 µm). G. Heatmap showing the marker proteins for the identified cell 
clusters in F. H. Visualization in both expression and physical space of two selected 
windows (red squares in F.) in the normal pancreas and small-intestinal regions. I-J. Overlay 
of gene expression in both expression and physical space for the selected windows in H. 

Figure 3: Cell-type enrichment analysis on spatial expression data 

A. Schematic of cell-type enrichment analysis pipeline. The inputs are spatial expression 
data and cell type specific gene signatures. These two sources of information are integrated 
to infer cell type enrichment scores. Giotto implements three methods for enrichment 
analysis: PAGE, RANK and Hypergeometric. B. Single-cell resolution seqFISH+ data are 
used to simulate coarse-resolution spatial transcriptomic data generated from spot-like 
squares by projecting onto a regular spatial grid (500 x 500 pixels). Colored squares indicate 
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those that contain cells.  External scRNAseq data are visualized by UMAP. C.  Comparison 
of cell-type enrichment scores (left, inferred by PAGE) and observed frequency of various 
cell types (right, based on seqFISH+ data). The agreement between the two is quantified by 
area under curve (AUC) scores (green circles). D.  Cell type enrichment analysis for the 
mouse Visium brain dataset (distance unit = 1 pixel, 1 pixel ≈ 1.46 µm). Enrichment scores 
for selected cell types are displayed (top left) and compared with the expression level of 
known marker genes (bottom left). For comparison, a snapshot of the anatomic structure 
image obtained from mouse Allen Brain Atlas is displayed. Known locations for the selected 
cell types are highlighted. 

Figure 4: Layers of spatial gene expression variability 
A. Schematic representation of the subsequent steps needed to dissect the different layers 
of spatial gene expression variability. The original cell locations, a spatial grid or a spatial 
network is required to identify individual genes with spatial coherent expression patterns. 
Those spatial genes can then be used as input to compute continuous spatial co-expression 
patterns or to find discrete spatial domains with HMRF. B-D. Spatial gene expression 
analysis of the seqFISH+ somatosensory cortex dataset (distance unit = 1 pixel, 1 pixel ≈ 
103nm). B. Examples of identified spatial genes within the somatosensory multi-layered 
cortex. The outer layers are on the left, while more inner layers are on the right. C. Overlap 
between the top 1000 spatial genes identified from the 5 methods implemented in Giotto.  D. 
Visualization of spatial domains identified by the HMRF model. The layered anatomical 
structure (L1-6) of the somatosensory cortex is indicated on top. E-F. Spatial gene 
expression analysis of the Visium kidney dataset (distance unit = 1 pixel, 1 pixel ≈ 1.46 µm). 
E. Heatmap showing the spatial gene co-expression results. Identified spatial co-expression 
modules are indicated with different colors on top. F. Metagene visualizations for all the 
identified spatial gene co-expression modules from E.  
 
Figure 5: Cell neighborhood and cell-to-cell communication analyses 
A. Schematic of a multi-cellular tissue with an organized cellular structure (left) and 
environment specific gene expression (right). B. A network representation of the pairwise 
interacting cell types within identified by Giotto in the seqFISH+ somatosensory cortex 
dataset. Enriched or depleted interactions are depicted in red and green, respectively. Width 
of the edges indicates the strength of enrichment or depletion. C. Visualization of the cell-to-
cell communication analysis strategy. For each ligand-receptor pair from a known database 
a combined co-expression score was calculated for all cells of two interacting cell types (e.g. 
yellow and blue cells, left). This co-expression score was compared with a background 
distribution of co-expression scores based on spatial permutations (n = 1000). A cell-cell 
communication score based on adjusted p-value and log2 fold-change was used to rank a 
ligand-receptor pair across all identified cells of interacting cell types (right). D. Heatmap 
(left) showing the ranking results for the ligand-receptor analysis as in C (y-axis) versus the 
same analysis but without spatial information (x-axis) for all the ligand-receptor pairs. AUC 
plot (right) indicating the percentage of expression ranks that need to be considered to 
recover all the first spatial ranks. E. Dotplot for ligand-receptor pairs that exhibit differential 
cell-cell communication scores due to spatial cell-cell interactions. The size of the dot is 
correlated with the adjusted p-value and the color indicates increased (red) or decreased 
(blue) activity. Dots highlighted with a black box are used as examples in F. F. Heatmaps 
showing the increased expression of indicated ligand-receptor pairs between cells of two 
interacting cell types. G. Barplot showing gene expression changes in subsets of endothelial 
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cells (left) stratified based on their spatial interaction with other indicated cell types (right, 
schematic visualization). 
 
 
 
Figure 6: Giotto Viewer provides an interactive workspace to visualize and compare 
multiple cell annotations. 
A. Visualization of the Visium brain dataset. Two inter-linked panels are displayed, showing 
the data in the physical (left) and expression space (middle). A zoomed-in view shows 
underlying cell staining pattern at individual spots (right). B-E. Visualization of the seqFISH+ 
mouse somatosensory cortex dataset. B. Four inter-linked panels are displayed, showing the 
spatial domain (top) and cell type (bottom) distribution in both physical (left) and expression 
space (right). C. A zoomed-in view of B. focusing on the L1-3 regions. Cells in domain D7 
are selected (indicated by red outline in left panels and highlighted in the right panels) to 
enable comparison of spatial domain and cell type annotations. D. Expression patterns of 
representative domain-specific genes. E. Subcellular transcript localization patterns of all 
(top) or selected genes (middle and bottom) in a representative cell.  Each dot represents an 
individual transcript.  
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