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Supplemental Figure 1: Frequency distributions of data sets in Figure 1C.

For each bead-positive condition analyzed in Figure 1C, individual cell data was plotted in
histogram form to depict the percent of cells within each condition experiencing a given level of
lysosomal damage. The relative frequency in percentages (y-axis) of a given level of % Fdx
release (represented in increments of 10% on the x-axis) for each treatment condition was plotted
and compared with the frequency distribution of % Fdx release values for resting BMM. The
frequency distribution for resting BMM was compared with that for BMM stimulated with LPS
(A), LPS+IFN-y (B), IL-4 (C), LPS+PGEZ2 (D), LPS+Ado (E), PGE2 (F), Ado (G). Statistical
significance of the difference between each pair of frequency distributions was determined using
the Kolmogorov-Smirnov test. Shown are pooled cell data from two to four independent
experiments (n > 97 cells per condition). NS: no significant difference, **p < 0.01, ****p <
0.0001.
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Supplemental Figure 2: Frequency distributions of data sets in Figure 2A.

Histograms depicting the percent of cells (y-axis) experiencing a given level of % Fdx release
(represented in bins of 10% on the x-axis) based on individual cell data from each bead-positive
condition analyzed in Figure 2A. The frequency distribution for resting BMM was compared
with that for BMM stimulated with the following TLR agonists: (A) Pam3CSK4, (B) Poly(l:C),
(C) LPS, (D) FLA-ST, (E) R848, (F) ODN 1826. Shown are pooled cell data from two or three
independent experiments (n > 110 cells per condition). NS: no significant difference, ***p <
0.001, ****p <0.0001.
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Supplemental Figure 3: Frequency distributions of data sets in Figure 3.

Histograms depicting the percent of cells (y-axis) experiencing a given level of % Fdx release
(represented in bins of 10% on the x-axis) based on individual cell data from each bead-positive
condition analyzed in Figure 3. To visualize the effect of each genetic knockout on the
distribution of damage for each stimulation condition, the frequency distribution for a given
stimulation condition was compared between WT and Myd88/Trif’” BMM (A-F), WT and
Myd88” BMM (G-L), and WT and Trif” BMM (M-R). Shown are pooled cell data from two
independent experiments (n > 107 cells for A-F, n > 63 cells for G-L, n > 85 cells for M-R). NS:
no significant difference, ***p < 0.001, ****p <0.0001.
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Supplemental Figure 4: Frequency distributions of data sets in Figure 4.

Histograms depicting the percent of cells (y-axis) experiencing a given level of % Fdx release
(represented in bins of 10% on the x-axis) based on individual cell data from each bead-positive
condition analyzed in Figure 4. In the top panel, the frequency distribution for resting WT BMM
was compared with that for WT BMM stimulated with LPS (A) or poly(l:C) (B). In the bottom
panel, the frequency distribution for each given stimulation condition was compared between
WT and Ifnarl” BMM. Shown are pooled cell data from three independent experiments (n > 252

cells per condition). ****p <0.0001.
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Supplemental Figure 5: Frequency distributions of data sets in Figure 5.

Histograms depicting the percent of cells (y-axis) experiencing a given level of % Fdx release
(represented in bins of 10% on the x-axis) based on individual cell data from each bead-positive
condition analyzed in Figure 5. The frequency distribution for resting BMM was compared with
that for BMM stimulated with LPS (A) or infected with MNV-1 at one of three MOls (0.05, 0.5,
5; B-D) before being subjected to lysosomal damage. Shown are pooled cell data from five

independent experiments (n > 396 cells per condition). ****p < 0.0001.
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Supplemental Figure 6: MNV-1 infects BMM in an MOI-dependent manner at 18 hours
post-infection in 5 different experiments.

WT BMM were infected with MNV-1 at three different MOlIs (0.05, 0.5 and 5). Viral titers in
cell culture lysates were measured by virus titration using a plaque assay and reported as plaque
forming units/ml (PFU/ml). Bars show MNV-1 infection titers of three different MOIs from 5
independent experiments performed in duplicate or triplicate. These assays were performed in

parallel with the viral infections for the lysosomal damage experiments described in Figure 5.



