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Abstract

We study a model of neural coding with the structure of a variational auto-encoder.
The model posits that the encoding of individual stimulus values is optimally
adjusted for a finite training sample of stimuli retained in memory. We demonstrate
that this model can rationalize existing experimental evidence on both perceptual
discrimination thresholds and neural tuning curve widths in multiple sensory
domains. Finally, since our model implies that encoding is optimized for a sample
from the environment, it also provides predictions about the adaptation of neural
coding as the environmental frequency distribution changes.

1 Introduction

An influential literature has proposed that variation in the degree of precision with which sensory
magnitudes are encoded over the range of possible stimulus values can be explained by a principle of
efficient coding [3, 4, 25], according to which a finite range of possible internal representations is used
in a way that is well-adapted to the frequency distribution of the stimuli that the organism encounters
in its environment. A variety of assumptions have been proposed as to the precise formulation of
the relevant constraint on feasible encoding schemes, and the performance measure that an efficient
coding scheme should maximize; under one popular proposal (“infomax” theories), the efficiency
criterion should be maximal mutual information between the internal representation and the objective
stimulus magnitude [11, 12, 16, 17, 28].

A relatively neglected topic in this literature has been the question of how an efficient internal
representation scheme is supposed to be learned from experience of instances of individual stimuli.
This question is relevant both for understanding how cortical maps self-organize during development,
and for understanding the speed and reliability with which an efficient encoding scheme for a new
frequency distribution should be expected to arise when the statistics of the environment change. In
this paper we propose a statistical learning approach to neural coding that draws on recent work in
unsupervised representation learning.

We posit that the way in which internal representations of sensory stimuli are formed and used in
the nervous system has the structure of a variational auto-encoder (VAE) [14, 15]. Such a system
includes both an encoding circuit, that produces a low-dimensional internal representation for any
presented stimulus, and a decoding circuit that can produce a reconstructed value for the original
stimulus on the basis of this coarse categorization. The decoder learns a generative model of the
stimulus distribution in the environment, in which the category to which a stimulus is assigned plays
the role of a latent explanatory variable; the encoder is assumed to be optimized to label stimuli in
a way that will make the labeled data useful for training the decoder. This architecture is useful,
not only because it provides an arguably realistic model of what encoding schemes are adapted to
do well, but because it provides a model of how unsupervised learning of a set of coarse categories
appropriate to a given environment can occur.
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We show that this model of neural coding produces predictions regarding the widths of neural tuning
curves and discrimination thresholds that are consistent with evidence from multiple sensory domains,
so that it is competitive with other proposed models of efficient coding (e.g., [12]) in this respect. At
the same time, our model provides an account of how an efficient coding scheme can be learned, and
naturally allows the coding scheme to rapidly adapt to a new statistical environment, as we illustrate
through a numerical example.

2 A Model of Neural Coding

2.1 General Setup

We suppose that each stimulus is described by a single real number x drawn independently from a
continuous frequency distribution ⇡(x). Each stimulus is to be encoded as belonging to one of J
latent categories, J = {1, . . . , J}; this bound on the number of possible categories is taken as a
constraint. We consider neural coding systems with the structure of a VAE. In particular, we suppose
that the nervous system learns an encoding rule that stochastically classifies a continuous stimulus as
belonging to one of the discrete set of latent categories, with probabilities p(j|x), and a decoding
rule that stochastically decodes the latent category back to a continuous stimulus magnitude, with
probabilities p̃(x|j). Thus the perceived stimulus x̂ is the stochastic output of the original input
being encoded according to p(j|x), and then decoded back to the stimulus space according to p̃(x̂|j).
The collection of distributions {p̃(x|j)}, together with learned frequencies of occurrence {q(j)}
of the latent categories, form a generative model for the distribution of stimulus magnitudes in the
environment; the distribution p̃(x|j) can be thought of as a “posterior” distribution for the stimulus
magnitude when a given stimulus is encoded using category j, in a model of approximate inference.

The encoding rule, or recognition model, must be chosen from a parametric family of possible rules,
p�(j|x), where � is a finite-dimensional vector of parameters. The encoding rule, combined with the
environmental distribution ⇡(x), implies a joint distribution for true stimulus magnitudes and their
labels given by

p�(j, x) = ⇡(x) · p�(j|x).
The decoding rule is likewise chosen from the family of parametric models, p✓(x|j), where ✓ is a
finite-dimensional vector of parameters. The implied generative model for the joint distribution of
stimulus magnitudes and labels is then given by

p̃✓(j, x) = q✓(j) · p̃✓(x|j),
where we include the frequencies {q(j)} among the elements of ✓. The problem for the recognition
model is one of inferring the latent category j that has given rise to stimulus x, according to the
generative model.

We can interpret this as a model of neural coding in a region of sensory cortex (say, the visual cortex),
under the theory that the cortex maintains an internal generative model of how images are generated
by underlying visual features, and that the role of early processing (for example, in V1) is then to
invert this generative process and infer the extent to which a given image contains each of the possible
features [18, 21, 23]. Following [9, 19], we suppose that each of our categories j represents a possible
feature, and corresponds to a particular population of cortical neurons, with the rate of firing in each
of the populations indicating an inferred posterior distribution over the possible features in the image.
Under this interpretation, the conditional probabilities p(j|x) in our model correspond to the relative
firing rates of J populations of neurons. This allows us to derive quantitative predictions about the
distribution of neural tuning curves, in addition to the model’s predictions about the discriminability
of different stimuli.

We suppose that the neural coding system is organized to learn a good representation of the environ-
ment. But as we do not assume that it is optimized for a particular downstream task, it remains a
question what objective function the coding system ought to optimize; there has been considerable
debate in the representation learning literature about which objectives lead to the most useful rep-
resentations [5, 26]. A natural approach would be to follow [14, 15] and suppose that � and ✓ are
jointly optimized so as to minimize the Kullback-Leibler divergence of the joint distribution implied
by the encoder relative to that implied by the decoder, DKL(p�(j, x)||p̃✓(j, x)). However, as noted
by [7, 8], this would ensure a reasonable approximation to the environmental distribution ⇡(x), but
would not necessarily lead to a meaningful latent representation. Instead, we follow [2], who propose
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extending the objective function used in [14, 15] to explicitly incentivize the model to learn a more
meaningful representation. Their “�-VAE” approach allows for more “disentangled” representations
by providing an additional bonus for classification schemes in which the different categories are more
informative about the underlying stimuli (the objective proposed in “infomax” theories).

Formally, we suppose that the parameters are optimized to solve the problem:

min
�,✓

D + �R (1)

D is a measure of the average distortion and R is a measure of the complexity resulting from the
coding scheme. � trades off the relative importance assigned to minimizing distortion as opposed
to complexity where a lower � implies a higher relative importance assigned to having informative
categories. D and R are defined formally as follows:

D ⌘ �E⇡

hX

j

p�(j | x) log p̃✓(x | j)
i

R ⌘ E⇡

h
DKL(p�(j | x) || q✓(j))

i

We suppose there is no restriction on the choice of {q✓(j)}. With unrestricted choice then it is clearly
optimal, regardless of the value of �, to choose � and ✓ such that q✓(j) = p�(j). Under this condition,
(1) reduces to:

D + �R = DKL(p�(j, x) || p̃✓(j, x)) +�E⇡

h
log ⇡(x)

i

| {z }
H

�(1� �)E⇡

hX

j

p�(j | x) log
p�(j | x)
p�(j)

i

| {z }
I

H represents the underlying entropy of the stimuli and is independent of � or ✓. I represents the
Shannon mutual information between the category j and state x in the joint distribution produced by
the recognition model. Thus, when � < 1, this objective assigns an additional bonus to classifications
with higher mutual information between j and x, as desired. The smaller is �, the greater the emphasis
placed on having more informative categories.

2.2 Training Data

We suppose that the parameters of the coding scheme are fit to a finite sample of observations drawn
from the environment. Given a large set of previously observed stimuli, a sampling process selects a
corpus of observations to be used in training the algorithm. We adopt a version of reservoir sampling,
a standard algorithm from stream-processing [27], that provides a guarantee that, after any number of
observations has been drawn, every previously observed stimulus has the same probability of being in
the sample. Crucially, the standard version of reservoir sampling requires no knowledge of the total
number of observations to be drawn and has a memoryless insertion and deletion policy, requiring
only the current observation and the previous sample to be stored in memory at any given point.

We utilize a modification of traditional reservoir sampling, proposed in [1], that places greater
weight on more recent observations over older observations. This temporal bias enables more rapid
adaptation, as it allows for the possibility that the underlying environmental statistics are changing
without requiring that the organism be explicitly aware of this shift. We utilize the version of reservoir
sampling in [1] that results in an exponential bias in the sampling procedure but maintains the same
desirable memoryless insertion and deletion policy. In particular, the algorithm has the property that
the probability that the r-th observation being in the sample after the t-th observation is given by
f(r, t) = e

��(t�r). In this case, � = 1
m where m is the overall memory size. Thus, we introduce a

single additional parameter specifying the memory size m which will implicitly define the degree of
temporal bias.1

1The details of the algorithm are displayed as Algorithm 1 in the supplementary material and the proof of its
correctness is in [1]. Section 2 of the supplementary material further provides exercises demonstrating the nature
of adaptation under this sampling scheme.
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2.3 Parameterization and Learning Process

We illustrate our approach using a parameterization in which the generative model must be a finite
mixture of Gaussians. In particular, we assume that for each j 2 J :

p̃✓(x | j) ⇠ N (µj ,�
2
j )

The parameters ✓ then consist of values {qj , µj ,�j} for each j 2 J , where the qj represent the
mixture coefficients. We further assume that the parametric family of possible recognition rules is
optimally adapted to this family of generative models, in the sense that for any generative model ✓,
there exists a recognition rule � = ✓ that minimizes D + �R (over all possible recognition rules).

Thus our parametric family of recognition rules is given by

p✓(j | x) =
qj exp[� 1

� [log �j +
1
2 (

x�µj

�j
)2]]

P

j̃

qj̃ exp[� 1
� [log �j̃ +

1
2 (

x�µj̃

�j̃
)2]]

where the possible values of � correspond to possible values of ✓. Note that this kind of recognition
rule can be implemented by a competition between J populations of neurons, in which the probability
of a neuron in population j firing first (resulting in classification of the stimulus as of type j) in the
case of stimulus x is proportional to the height of tuning curve j at point x in the stimulus space, and
the tuning curves are Gaussian in shape. With this interpretation, our model makes predictions not
only about the discriminability of different stimuli, but also about the distribution of preferred stimuli
and tuning curve widths in a neural population code.

The problem of fitting the parameters of our model to a training data set reduces to the familiar
problem of fitting the parameters ✓ of a Gaussian Mixture Model, with the small modification that
we minimize D + �R rather than maximizing the likelihood. We use a training data set that is
generated according to the procedure in subsection 2.2, and utilize an Expectation-Maximization
(E/M) algorithm to fit the parameters of our model. For the implementation of the E/M algorithm we
follow [6], but with modifications to the likelihood function that are required by the inclusion of � in
p�(j | x). Note that when � = 1, our procedures become identical to those described in [6].2

3 Stimulus Encoding in a Stationary Environment

We first consider a stationary environment where the underlying stimulus distribution is fixed, and
consider the results from our model when logX ⇠ N (µ,�2) with µ = 1 and � = 1, though the
qualitative patterns we identify hold for other distributions.3 Furthermore, we set m = 10, 000 and
show the results for this fixed memory size.

3.1 Properties of the Learned Model

In this section we describe the qualitative properties of our neural coding model as we vary � and
J . We first fix J = 10 and document the qualitative differences that result from varying �, and then
proceed to analyze the case when J also varies. The qualitative patterns that emerge when varying
� are robust to variation in J , and lead to significant qualitative differences in the resulting coding
scheme.

We consider the grid of � 2 {0.5, 0.75, 0.99}. The top row of Figure 1 shows the marginal distribution
for x implied by the learned generative model (the VAE’s approximation of ⇡). Note that, as expected,
when � gets closer to 1 the resulting marginal closely approximates the true ⇡. As we lower �,
the resulting marginal is a worse approximation to ⇡. But this is expected, as a lower � leads the

2As noted by [13], poor initializations in the usage of the E/M may lead to convergence to “bad" local
maxima. In order to ensure convergence, we first run the E/M algorithm initializing the µj values utilizing
k-means. Then, we re-run the E/M algorithm with random initializations until the value of the objective function
converges. Our numerical experiments showed that convergence occurs after 200 random initializations for the
reported values of J , so that we utilize this for the results that follow.

3Section 1 of the supplementary material reports similar exercises for different stimulus distributions. In
addition, section 4 of the supplementary material considers alternative values of � and J than those considered
here and shows the robustness of the qualitative patterns we document.
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Figure 1: Marginal Approximation and Encoder / Decoder for J = 10, varying �

Notes: The top row plots the marginal distribution p(x) implied by the generative model. The middle row plots, for each j 2 J , the
recognition probability p�(j | x) across the support of ⇡. The bottom row plots the p✓(x | j) for each j 2 J .

Figure 2: Degree of Stochasticity for J = 10, varying �

Notes: The figure displays a measure of the degree of stochasticity of the encoding. The y axis displays the probability that the encoder will
encode a stimulus x using the category associated with the color. The curve plots maxj p�(j | x) for each x, and the color at each point
indicates argmaxj p�(j | x).

Figure 3: Tuning Curve Widths

Notes: The figure displays how the mean tuning curve width (computed by measuring the range of stimulus values for which the firing rate of
a particular population of neurons is 50 percent or more of its maximum firing rate) decreases as J is increased.
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Figure 4: Discrimination Thresholds for J = 10, 20, varying �

Notes: This figure displays the JND values computed for c = 0.71 and J = 10, 20. The resulting JND value is plotted as long as it exists.
Note that for larger values of x, a JND value does not necessarily exist for a given c.

objective function to place more weight on having meaningful latent representations and less weight
on ensuring a close approximation to the true ⇡.

The middle and bottom rows of Figure 1 trace out p�(j | x) and p✓(x | j), respectively, across all
j 2 J and x 2 supp(⇡). Several qualitative patterns are apparent. The first is that, contrary to
models of neural coding where tuning curves are shifted versions of the same function [20, 24, 30, 31],
in our model this is not generally the case. Instead, our model predicts that in regions of the stimulus
space with high probability density, there is a higher density of neurons with narrower tuning curves
whereas in portions of the stimuli space with lower probability mass there is a lower density of
neurons with wider tuning curves.

There are also notable differences between the coding schemes obtained for different values of �.
As � decreases, the encoding rule is increasingly deterministic, as is clear from Figure 1 and further
apparent in Figure 2. Indeed, for � = 0.5 we find that the encoder is nearly deterministic except
at stimulus values that are near category boundaries. However, for � = 0.99, there is considerable
stochasticity in the optimal encoder.

Finally, we investigate the role that J plays in the resulting coding scheme. Sufficiently low values of
J lead to poor approximations of ⇡, even in the case that � = 1. Furthermore, numerical experiments
confirm that increasing J weakly increases the value of the objective function. A natural question
is how the coding scheme changes as we vary J . One possibility might be that as we increase
J , the standard deviation of the various components does not change, but instead the components
increasingly overlap. However, Figure 3 shows that as we increase J or decrease �, the mean �

and tuning curve width for the resulting models decrease. Thus, rather than having the same width
components tiled across the stimulus space more densely, the components become narrower as J
increases, so that their degree of overlap does not greatly increase.

3.2 Discriminability

In this section we apply our model of neural coding to generate predictions about stimulus discrim-
inability. We characterize the qualitative differences in predictions as we vary � and J . In order to be
qualitatively consistent with existing experimental evidence, our model should predict that the ability
to discriminate between stimuli is inversely proportional to the frequency of occurrence associated
with this stimuli in the environment [12].

In order to study discriminability, we can define a just noticeable differences (JND) for each stimulus
value x:

JND(c, x) = argmin
�

Pr( \(x+�) > x̂) � c, (JND)

where x̂ is the random category to which a stimulus x is assigned, and c > 0.5. Figure 4 displays
the resulting JND values for c = 0.71,4 along with the density function ⇡ for comparison. It is
apparent that regardless of the value of �, the qualitative predictions from the model are in line with
experimental evidence, in that the predicted discrimination thresholds are lower for stimuli that occur
more frequently in the environment.

4We report c = 0.71 in the main text since this is the value of c for which we report the calibration results in
section 4. The supplementary material provides qualitatively similar plots for alternative values of c.
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Figure 5: Discrimination Thresholds and Tuning Widths of Calibrated Model

Notes: The figures show the discrimination thresholds and neural tuning widths implied by the best fit model according to the calibration
exercise (J = 25, � = 0.62). The figures on the left and in the middle display the experimentally observed discrimination thresholds, as
well as the predicted discrimination thresholds of the calibrated model in levels and logs respectively. The figure on the right displays the
predicted tuning widths for the calibrated model.

We observe in Figure 4 that as � increases, the JND values become smoother. Indeed, for lower �
values we find a sawtooth pattern in the JND values, owing to the small overlap between successive
components in this case, as already noted. Differentiation between two different stimuli requires that
they be encoded as belonging to a different category; thus when categories are relatively discrete,
discrimination thresholds are highest at the lower boundary of a category and gradually decrease as
the upper boundary is approached. When the stimuli begin to be mapped into the next category, there
is a jump in the threshold, leading to the sawtooth pattern.5 Increasing � increases the JND curve’s
smoothness because it increases the amount by which the tuning curves overlap. This also reduces
the model’s ability to discriminate between nearby stimuli and thus results in larger JND values.

We also see that JND are decreasing in J for fixed �. Even for � = 0.5, we observe the same
qualitative pattern for both J = 10 and J = 20, but the JND values are lower when J = 20. The
mechanism behind the sawtooth pattern is the same, except that, as shown in Figure 3, the components
are more concentrated as J increases. Increasing J narrows the width of the categories, resulting in
smaller JND values.

4 Calibrating the Model to Experimental Evidence

In this section we compare the predictions of our model to an empirically observed stimulus distribu-
tion, the modulation frequency distribution reported by [12]. This is estimated from a compilation of
animal vocalizations, background sounds, and recordings made while walking around a suburban
university campus. Furthermore, [12] compile empirical evidence from existing studies of neural
tuning widths and discrimination thresholds of organisms in this environment.6

We calibrate � and J to illustrate that the model can rationalize the experimentally observed discrimi-
nation thresholds. We choose � and J to solve the following problem:

argmin
�,J

X

i2I

`(discOBS(i), disc(i,�, J))

Here I denotes the set of experimental stimulus values, discOBS(i) is the measured discrimination
threshold for stimulus value i, and disc(i,�, J) is the predicted discrimination threshold for stimulus
i given parameter values � and J . The loss function ` penalizes discrepancies between the two
values, and we consider three possible specifications.7 Since it is computationally expensive to
train the model for particular values of � and J , we search only over a discrete grid of possible
values. We consider � in 0.01 increments from [0.5, 0.95] and J 2 {10, 15, 20, 25, 30, 35}. We

5Section 4, Figure 7 in the supplementary material provides evidence for this hypothesis.
6The neural tuning width data come from [22] and the data for perceptual discrimination thresholds come

from [10, 29].
7The three loss functions that we consider are: `(x, y) = |x� y|, `(x, y) = (x� y)2, or `(x, y) = |x�y|

x .
These alternatives allow for comparisons based either on the absolute magnitude of the errors or the percentage
deviation; the latter case allows a loss function that is independent of the magnitude of empirical discrimination
thresholds.
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pool the experimental results from the two separate studies in order to form the set I and the values
disc

OBS(i).

The resulting best fitting parameters for all three specifications of ` are � = 0.62 and J = 25. The
observed and predicted discrimination thresholds as well as the underlying stimulus distribution are
displayed in Figure 5. Figure 5 displays the results with the stimulus distribution presented in both
logs and in levels, and shows that the calibrated model provides a reasonable fit to the measured
discrimination thresholds in both experiments.

We further investigate whether the predicted tuning widths of the calibrated model are consistent
with physiological data. While it is difficult to directly compare the predicted tuning widths to the
physiological data, we verify that our model produces predictions that are qualitatively consistent
with the observed data. In particular, we expect that the tuning widths should be approximately
inversely proportional to the probability density at the “preferred stimulus” of the particular tuning
curve. We define the width of the jth tuning curve as the length of the interval of stimulus values
for which the tuning curve amplitude (firing rate) is at least half the amplitude at the peak (see the
supplementary material for details). The resulting predicted tuning widths are displayed in Figure 5
and match these patterns. Overall, the model’s predictions are in line with the experimental data on
both discrimination thresholds and neural tuning widths.

5 Adaptation to a New Stimulus Frequency Distribution

In this section we demonstrate that the model also provides predictions about adaptation of the neural
population code to a new environment. As an illustration, we consider a transition from ⇡1 = logX1,
X1 ⇠ N (µ,�2), to ⇡2 = logX2, X2 ⇠ N (µ+ �,�

2), with µ = 1 and � = 1 as before.

Figure 6: Adaptation of Parameters and Model

Notes: This figure depicts a parameter transition from logX ⇠ N (µ,�2) to logX ⇠ N (µ+2 ·�,�2). The figures on the left and center
show the adaptation of the µj and log(�j) respectively. The figure on the right displays the evolution of the implied marginal distribution as
more samples are drawn.

Figure 6 displays the adaptation of µ, �, and the marginal distribution for x implied by the learned
generative model, where the first 25, 000 samples are drawn from ⇡1, the remaining 105, 000 samples
are drawn from ⇡2. The parameters of the model are eventually fully adapted to ⇡2 within this time
period. The rate of convergence depends crucially on the memory size m, which is set to the same
value as before (m = 10, 000). In the supplementary material, we also present results for m = 1, 000
and show that while the coding scheme adapts more rapidly with this lower memory size, it also
induces additional jitter in the parameter values. Convergence occurs once the empirical distribution
used to train the VAE fully transitions from a sample from ⇡1 to a sample from ⇡2, and this occurs
faster with a lower m; but smaller m also leads to a less precise approximation of the distribution
sampled from.8

A key advantage of our model of adaptation is that at no point does the perceptual system need to
be instructed that the environment has changed. Rather, the sampling method that determines the
training data set is constructed to rapidly adapt to a new environment owing to the temporally biased
sampling. In future work we hope to explore how the quantitative predictions of such a model of
adaptation in a neural population code match empirical evidence.

8In the supplementary material we also include an exercise showing how the memory size impacts the speed
of convergence of the empirical distributions.
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Appendix for Adaptive Efficient Coding:
A Variational Auto-encoder Approach

1 Figures for Alternative Stimuli Distributions

In this section we demonstrate that the qualitative insights from Section 3 are robust to the choice
of the stimulus distribution. As an alternative, we here we consider the case ⇡ ⇠ Exp(1.0) and
reproduce the figures in Section 3 in the case of this alternative distribution.

Figure 1: Degree of Stochasticity for J = 10, varying �

Notes: The figure displays a measure of the degree of stochasticity of the encoding. The y axis displays the probability that the encoder will
encode a stimulus x using the category associated with the color. The curve plots maxj p�(j | x) for each x, and the color at each point
indicates argmaxj p�(j | x).

Figure 2: Tuning Curve Widths

Notes: The figure shows how the mean tuning curve width (computed by measuring the range of stimulus values for which the firing rate of a
particular population of neurons is 50 percent or more of its maximum firing rate) decreases as J is increased.

Preprint. Under review.
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Figure 3: Discrimination Thresholds for J = 10, 20, varying �

Notes: This figure displays the JND values computed for c = 0.71 and J = 10, 20. The resulting JND value is plotted as long as it exists.
Note that for larger values of x, a JND value does not necessarily exist for a given c.

Figure 4: Implied Marginal Distribution and Encoder / Decoder for J = 10, varying �

Notes: The top row plots the marginal distribution for x implied by the generative model. The middle row plots, for each j 2 J , p�(j | x)
over the support of ⇡. The bottom row plots instead p✓(x | j) for each j 2 J .

2 Sample Adaptation

In this section we provide more details of the sampling procedure utilized to train the VAE in our
model, and illustrate it via numerical examples. Algorithm 1 describes the details of the sampling
algorithm from [1], a reservoir sampling algorithm with an exponential temporal bias. The algorithm
guarantees that the probability that the r-th observed stimuli value is still present in the sample
after the t-th observation is given by f(r, t) = e��(t�r), where � = 1

m for a fixed memory size m.
We focus on the case of adaptation following a transition from an original distribution ⇡1 to a new
distribution ⇡2.

We first investigate the rate of decay of samples from the original ⇡1 distribution. Figure 5 displays
the fraction of remaining observations from ⇡1 as more samples are drawn from ⇡2. The figure
confirms that there is an exponential decay of samples from ⇡1, and that the rate of decay is faster
for lower memory sizes. In the adaptation exercise in the main text, we use the value m = 10, 000,
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and find that after 40, 000 samples from ⇡2 the samples from ⇡1 have nearly vanished. We further
demonstrate the resulting adaptation of the empirical distribution when ⇡1 = logX ⇠ N (µ,�2) and
⇡2 = logX ⇠ N (µ+ �,�2) as well as ⇡2 = logX ⇠ N (µ+2 · �,�2) with µ = � = 1.0. Figure 6
displays the resulting empirical distribution during the transition between ⇡1 and ⇡2.

Algorithm 1 Temporally Biased Reservoir Sampling
1: function BIASEDRESERVOIRSAMPLING(draws,memory_size)
2: reservoir = list()
3: for item 2 draws do
4: F = length(reservoir)

memory_size
5: if randomFloat(0, 1) < F then
6: replaced_index = randomInteger(1, length(reservoir))
7: reservoir[replaced_index] = item
8: else
9: reservoir.append(item)

10: end if
11: end for
12: return reservoir
13: end function

Figure 5: Rate of Decay of Observations from ⇡1 in Memory

Notes: The figure displays the fraction of observations remaining in memory from ⇡1 after n samples are observed from ⇡2.

Figure 6: Empirical Distribution of Transition for m = 10, 000

Notes: The figures show the empirical distribution in the training dataset following a change in the distribution ⇡ from which samples are
drawn. The original distribution is logX ⇠ N (1.0, 1.0), and in the figure on the left it transitions to logX ⇠ N (2.0, 1.0); on the right
it transitions to logX ⇠ N (3.0, 1.0). The sampling procedure is as described in Algorithm 1.
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3 Neural Tuning Curve Computation

In this section we provide additional details on the definition of neural tuning curves in the context of
our model and provide a closed form calculation for the resulting neural tuning curve widths that are
described in the main text.

3.1 Parametric families of functions used

We consider a finitely parameterized family of possible generative models,

p̃✓(j, x) = qj · p̃✓(x|j),

where the {qj} are also part of the vector ✓. For any such generative model, the recognition model �
that will minimize D + �R (allowing for a completely flexible recognition model) will be one such
that

p✓(j|x) ⇠ qj(p̃✓(x|j))
1
� ,

where we use the notation � = ✓ since the parameters of this model are same as those of the generative
model for which the recognition model has been optimized. Note that if � = 1, the recognition model
assigns conditional probabilities p✓(j|x) that are equal to the conditional probability of a stimulus x
having been produced as a draw from category j of the generative model, in the way that generative
models are commonly used in Bayesian models of perception. However, when � 6= 1, this is no
longer exactly the case.

In the case that the family of generative models considered is the family of finite mixtures of
Gaussians, then the parameters are ✓ = {qj , µj ,�j}, and we have

p̃✓(x|j) ⇠ 1

�j
exp[�1

2
(
x� µj

�j
)2],

p✓(j|x) ⇠ qj exp[�
1

�
[log �j +

1

2
(
x� µj

�j
)2]],

where in each case we have suppressed the common multiplicative factor required to make the
conditional probabilities sum (or integrate) to 1.

3.2 A Neural Coding Interpretation

The recognition model p�(j|x) can be implemented by competition between pools of neurons in the
following way. Suppose that there are J pools of neurons, with nj neurons of each type j, and let x
be a number on the real line indicating the physical magnitude of some stimulus feature. When a
stimulus x is presented, each neuron of type j spikes at a Poisson rate proportional to gj(x), where
the non-negative function gj(x) is the “tuning curve” for neurons of type j. We suppose that the
stimulus is categorized as belonging to category j (i.e., is encoded by j) if the first spike is produced
by a neuron of type j. Thus the recognition model implemented by the neural population is of the
form

p�(j|x) =
njgj(x)P
j̃ nj̃gj̃(x)

.

The parametric family of recognition models that we assume in our version of a �-VAE are of this
form, where

njgj(x) ⇠ qj(p̃✓(X|j))
1
� ,

and ✓ indicates the generative model for which the recognition model has been optimized. In the case
that the generative model ✓ is a mixture of Gaussians parameterized by {qj , µj ,�j}, we have

njgj(x) ⇠ qj exp[�
1

�
[log �j +

1

2
(
x� µj

�j
)2]],

so that the tuning curve gj(x) must itself have a Gaussian shape (with standard deviation �1/2�j) for
each j. If we define the tuning curve width as the length of the interval of values [xj , x̄j ] over which
gj(x) � (1/2)maxx̃ gj(x̃), then the tuning curve width for population j will equal 2

p
2� ln 2 · �j .
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4 Additional Figures for Section 3

In this section we provide additional figures to complement the main analysis in section 3. Each
figure is computed using the same stimulus distribution (logX ⇠ N (1.0, 1.0)) and memory size as
in section 3. First, Figure 7 displays the relationship between the discrimination thresholds and the
degree of stochasticity. Figure 7 validates the claim that the sudden increases in the discrimination
thresholds align with transitions between adjacent categories, especially for lower values of �.

Figure 8 displays the resulting marginal approximation and corresponding encoder and decoder for the
log normal distribution considered in the main text and with J = 10, but considers alternative � values
to those considered in the main text. Figure 9 and Figure 10 display the marginal approximation and
corresponding encoder and decoder for the same � values considered in the main text {0.5, 0.75, 0.99}
but for J = 15 and J = 20 respectively. Overall, these figures further validate the qualitative patterns
described in the main text.

Figure 7: Discrimination Thresholds and Degree of Stochasticity, J = 10

Notes: This figure displays the JND values paired with the degree of stochasticity measure for logX ⇠ N(1.0, 1.0) and for J = 10.

Figure 8: Marginal Approximation and Encoder / Decoder for J = 10, varying �

Notes: The top row plots the marginal approximation of ⇡ implied by the resulting model. The middle row plots, for each j 2 J , p(j | x)
across the support of ⇡. The bottom row plots the p(x | j) for each j 2 J .
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Figure 9: Marginal Approximation and Encoder / Decoder for J = 15, varying �

Notes: The top row plots the marginal approximation of ⇡ implied by the resulting model. The middle row plots, for each j 2 J , p�(j | x)
across the support of ⇡. The bottom row plots the p✓(x | j) for each j 2 J .
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Figure 10: Marginal Approximation and Encoder / Decoder for J = 20, varying �

Notes: The top row plots the marginal approximation of ⇡ implied by the resulting model. The middle row plots, for each j 2 J , p�(j | x)
across the support of ⇡. The bottom row plots the p✓(x | j) for each j 2 J .
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Figure 11: JND Plots for c = 0.75, 0.8, 0.9 and J = 10, 20, varying �

Notes: Each row plots the JND for J = 10, 20 and � 2 {0.5, 0.75, 0.99}. The top row plots these values for c = 0.75, the middle row
plots c = 0.8, and the last row plots c = 0.9.

18

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.29.124453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.124453
http://creativecommons.org/licenses/by-nd/4.0/


5 Additional Figures for Section 4

In this section we provide additional figures for the calibration section. Figure 12 displays the resulting
encoder, decoder, and implied marginal distribution for the calibrated parameters (� = 0.62, J = 25).

Figure 12: Encoding and Decoding Distribution Plots for Calibrated Discrimination Thresholds

Notes: The figure displays the implied marginal distribution (right), encoder (left), and decoder (middle) for the calibrated coding scheme
discussed in Section 4.
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6 Additional Figures for Section 5

In this section we provide additional figures for the adaptation section. Figure 13 shows adaptation
from ⇡1 = logX ⇠ N (µ,�2) to ⇡2 = logX ⇠ N (µ + 2 · �,�2) for � = 0.75. Figure 15 shows
adaptation from ⇡1 = logX ⇠ N (µ,�2) to ⇡2 = logX ⇠ N (µ + �,�2) for � 2 {0.5, 0.75} and
further illustrates rapid adaptation to ⇡2. Finally, Figure 14 shows adaptation from ⇡1 = logX ⇠
N (µ,�2) to ⇡2 = logX ⇠ N (µ+�,�2) for a significantly smaller memory size. Adaptation occurs
more rapidly, but the resulting parameter estimates are considerably more noisy.

Figure 13: Adaptation of Parameters and Model, logX ⇠ N (µ+ 2 · �,�2), m = 10, 000

Notes: The figure shows adaptation of µj and �j as additional samples are drawn. The distribution shifts from ⇡1 = logX ⇠ N (µ,�2)
to ⇡2 = logX ⇠ N (µ + 2 · �,�2) after 25,000 samples.

Figure 14: Adaptation of Parameters and Model, logX ⇠ N (µ+ �,�2), m = 1, 000

Notes: The figure shows adaptation of µj and �j as additional samples are drawn. The distribution shifts from ⇡1 = logX ⇠ N (µ,�2)
to ⇡2 = logX ⇠ N (µ + �,�2) after 10,000 samples.

Figure 15: Adaptation of Parameters and Model, logX ⇠ N (µ+ �,�2), m = 10, 000

Notes: The figure shows adaptation of µj and �j as additional samples are drawn. The distribution shifts from logX ⇠ N (µ,�2) to
logX ⇠ N (µ + �,�2) after 25,000 samples.
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