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Abstract 

The extracellular matrix (ECM) is the central driver of the desmoplastic reaction that fosters cancer 

aggressiveness. Cancer associated fibroblasts (CAFs) are the major source of ECM in tumours, thus 

being the optimal target to limit deposition of pro-tumourigenic ECM to oppose cancer. CAFs are 

metabolically active cells, however, how they support the biosynthetic requirements of producing 

ECM, and whether this can be targeted to influence tumour progression has not been investigated. 

We found that the pyruvate dehydrogenase kinase 2 (PDK2), a major inhibitor of the pyruvate 

dehydrogenase complex (PDC), is highly downregulated in CAFs and in the tumour stroma, when 

compared to normal fibroblasts. As consequence, PDC is more activated and generates acetyl-CoA, 

which elicits an epigenetic reprogramming through the histone acetyl transferase P300/CBP. This 

epigenetic reprogramming drives increased ECM production through increasing transcription of 

collagen genes and proline synthesis. We found that increased proline availability is necessary to 

support the biosynthetic requirements that follow the epigenetic reprogramming, for the translation 

of collagen to make abundant ECM. Targeting the rate-limiting enzyme for proline synthesis, pyrroline-

5-carboxylate reductase 1 (PYCR1), in CAFs was sufficient to limit collagen deposition and hamper 

tumour growth. In conclusion, ECM production in CAFs is under strict metabolic control, and our 

results warrant considering targeting proline synthesis to normalise ECM production in tumours and 

possibly other diseases involving collagen production, such as fibrosis. 
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Introduction 

The extracellular matrix (ECM) actively regulates tumour initiation, growth, metastasis and response 

to therapy 1-4. Cancer-associated fibroblasts (CAFs) are mesenchymal cells abundant in the stroma of 

solid tumours and are the major producers of ECM 5. CAFs can originate from normal resident 

fibroblasts (NFs) that have undergone activation and the production of vast amounts of ECM is a 

hallmark event of their activation 6-8. Pathways that support the biosynthetic requirements for ECM 

production in CAFs may offer opportunities for therapeutic intervention to block the pro-tumorigenic 

signals of the ECM. 

Collagen is the most abundant component of the tumour ECM, and accumulation of collagen-rich ECM 

accompanies the development of solid tumours and is an indicator of a higher risk of invasive cancer 

9 and resistance to therapeutic treatment 10. The tumour ECM promotes cancer cells’ growth, survival 

and invasion, and actively modifies the behaviour of stromal cells, including vascular and immune cells 

1-4. Experimental models have demonstrated that high levels of collagen enhance the formation, 

growth and progression of tumorigenic lesions and increase incidence of metastasis 11-14. A collagen-

rich desmoplastic stroma also contributes to impeding effective delivery of therapeutics, as well as 

intratumoural recruitment of immune cells, because it hampers the growth of a functional tumour 

vasculature 15-19. Moreover, collagens can act as metabolic fuels, because cancer cells can exploit their 

unusually high content of proline residues to survive under nutrient limited conditions 20. It is clear, 

therefore, that collagens have a central role in cancer and that inhibiting their production may have a 

favourable impact on cancer patients.  

Metabolic reprogramming is a hallmark of cancer 21, 22 and, similarly to cancer cells, CAFs have an active 

metabolism. Most of the studies on CAF metabolism have focussed on secreted metabolites and how 

they fuel cancer cell growth and therapy response 23-28, while how specific metabolic pathways affect 

ECM production has been completely overlooked so far. 

Metabolism is tightly intertwined with epigenetics 29, 30. A recent study on ovarian CAFs has shown 

that targeting metabolism to increase methyl group availability promotes gene silencing through 

histone methylation, and that this rewires CAFs to being less pro-tumorigenic and pro-metastatic 31. 

Histone acetylation is also closely linked to cell metabolism via acetyl-CoA, which, in addition to being 

a central metabolic intermediate for the TCA cycle and for lipid synthesis, is a second messenger and 

acetyl donor for the acetylation of proteins, including epigenetic regulators and histones 32, 33. 

Here we show that acetyl-CoA in CAFs is central for coordinating the production of collagens through 

the regulation of the epigenetic regulator histone acetyl transferase P300/CBP, and that proline 
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synthesis through PYCR1 is essential to support the biosynthetic requirements activated by the 

epigenetic reprogramming to produce abundant collagen-rich ECM, as collagens are exceptionally rich 

in proline residues. These data establish a critical role for metabolism to influence hallmarks of CAFs 

important for cancer pathology, and that PYCR1 is a potentially targetable vulnerability of tumour ECM 

production. 

 

Results 

The pyruvate dehydrogenase complex is highly active in mammary CAFs 

To identify pathways that underpin CAF functions acquired upon activation, we used a model of 

immortalised human mammary NFs and CAFs (iCAFs and iNFs), where iNFs had been activated into 

iCAFs by human breast cancer cells in-vivo 34. We and others have shown that iCAFs have a 

myofibroblast-like phenotype, because they express high levels of alpha smooth muscle actin 

(ACTA2/αSMA) and produce abundant ECM (Extended Data Figure 1a,b and 35). Moreover, iCAFs 

promote tumour growth, invasion and angiogenesis 34-36. Computational analysis of mass 

spectrometry (MS)-phosphoproteomic data of iCAFs and iNFs (Supplemental Data S1) predicted 

altered kinase activities in iCAFs, in particular, pyruvate dehydrogenase kinase 2 (PDK2) was predicted 

to be the most de-activated kinase (Figure 1a). Supporting this prediction, the phosphorylation levels 

of the pyruvate dehydrogenase E1 component subunit alpha A1 (PDHA1) at serine 293, which is a 

known substrate of PDK2 37, was strongly reduced in iCAFs and CAFs isolated from breast cancer 

patients (pCAFs) in comparison to their NF counterparts (Figure 1b,c. For iCAF see also Supplemental 

Data S1). Similarly to the iCAFs, the pCAFs showed myofibroblast-like features, because they 

expressed higher levels of αSMA compared to their NF counterpart (Extended Data Figure 1a). The 

phosphorylation of PDHA1 at serine 293 inhibits the activity of the pyruvate dehydrogenase complex 

(PDC), which converts pyruvate to acetyl-CoA. Concordantly, PDC activity was higher in CAFs, as 

measured with an enzymatic assay (Figure 1d), and CAFs had higher levels of intracellular acetyl-CoA 

than NFs (Figure 1e). RT-qPCR analysis showed that CAFs express less PDK2 than NFs (Figure 1f). 

Highlighting the relevance of this finding in patients, gene expression data of microdissected stroma 

from normal breast and triple negative breast cancers 38 showed that PDK2 is downregulated in the 

stroma in patients with advanced disease (Figure 1g). PDK2 was also downregulated in the stroma of 

high grade serous ovarian cancers 39 (Figure 1g), suggesting that this regulation is not unique to breast 

cancer. 

Silencing PDK2 in NFs was sufficient to decrease PDHA1 phosphorylation similarly to the levels 

measured in iCAFs, and overexpression of PDK2 wild type (PDK2WT) in CAFs, but not a mutant 
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enzymatically inactive form 40 (PDK2N255A), increased PDHA1 phosphorylation (Figure 1h and Extended 

Data Figure 1c,d). Showing that PDHA1 phosphorylation levels was an indicator of PDC activity, acetyl-

CoA levels increased upon PDK2 silencing in iNFs while they decreased upon PDK2 overexpressing in 

iCAFs (Figure 1i). Hence, PDK2 is a major regulator of PDC activity in mammary fibroblasts and is 

downregulated in the stroma of breast and ovarian tumours. 
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Figure 1. PDK2 is downregulated in the tumour stroma and increases PDC activity in mammary CAFs 

a. Predicted kinase activity in iCAFs compared to iNFs based on the modelling of MS 
phosphoproteomic data. b. Representative western blots showing the phosphorylation levels of 
PDHA1 regulatory site (Ser 293) in total lysate from NFs and CAFs. Vinculin was used as a loading 
control. c. Quantification of the phosphorylation levels of PDHA1 regulatory site Ser 293 in NFs and 
CAFs. N = 3 or 4 independent experiments. PDHA1 phosphorylation was normalised to total PDHA1 
levels. d. Pyruvate dehydrogenase activity of NFs and CAFs measured as the rate of NAD+ reduction 
in vitro. N ≥ 3 independent experiments. Data was normalised to the average rate of NAD+ reduction 
of the NFs for each pair. e. Total intracellular acetyl-CoA levels in NFs and CAFs measured by MS. N = 
3 independent experiments. f. mRNA levels of PDK2 in NFs and CAFs measured by RT-qPCR. N ≥ 3 
independent experiments. Data was normalised to 18S levels. g. PDK2 gene expression in 
microdissected sections of normal and triple negative breast cancer or high grade serous ovarian 
cancer stroma. Data are from gene expression datasets GSE90505 and GSE40595. h. Representative 
western blot showing PDHA1 phosphorylation levels in total lysate from iNFs transfected with siCtl or 
siPDK2 and iCAFs transfected with pGC-PDK2N255A or pGC-PDK2WT for 48 h. Vinculin was used as a 
loading control. i. Total intracellular acetyl-CoA measured by MS in iNFs transfected with siCtl or 
siPDK2 and iCAFs transfected with pGC-PDK2N255A or pGC-PDK2WT for 48 h. N = 3 independent 
experiments. 
Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. A two-tailed unpaired t-test with 

Welch’s correction was used to determine the p-value.  

 

 

Extended Data Figure 1. Modulation of PDK2 expression in mammary CAFs and NFs 

a. Western blot for αSMA to show its levels in the total lysate from CAFs and corresponding NFs. 
Vinculin and β-tubulin were used as loading controls. b. Representative confocal microscope images 
of decellularised ECM generated by iCAFs or iNFs grown for 10 days in culture, which was stained for 
fibronectin. c. PDK2 mRNA expression in iNFs transfected with siCtl or siPDK2, as measured by RT-
qPCR. N = 3 independent experiments. d. Representative RT-qPCR data showing PDK2 expression in 
iCAFs transfected with control vector, pGC-PDK2N255A or pGC-PDK2WT. Data was normalised to 18S 
expression. 
Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. A two-tailed unpaired t-test with 
Welch’s correction was used to determine the p-value.   
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Increased pyruvate dehydrogenase activity does not impact TCA cycle or lipid metabolism 

PDC activity was the major source of acetyl-CoA in CAFs. MS tracing experiments using uniformly 13C-

labelled glucose, glutamine, palmitate or pyruvate showed that over 70% of acetyl-CoA was derived 

from glucose or pyruvate, both of which are converted to acetyl-CoA via PDC (Figure 2a and Extended 

Data Figure Sa). There is evidence that PDC can translocate into the nucleus to synthesise acetyl-CoA 

in loco 41, 42, but we excluded this mechanism in CAFs because we detected the majority of PDHA1 in 

the mitochondria, by immunofluorescence staining of fixed cells and western blot analysis of 

mitochondria (Extended Data Figure 2b,c). Tracing experiments with 13C6-glucose additionally 

indicated that PDC-derived acetyl-CoA was likely to be transported into the cytosol, because only a 

minimal portion of 13C-labelled citrate was funnelled into the TCA cycle (Extended Data Figure 2d,e). 

Moreover, two out of three CAF lines had increased levels of ATP citrate synthase (ACLY) 

phosphorylated at serine 455 (active 43, 44) compared to their NF counterpart (Extended Data Figure 

2f). Next, we asked whether the excess of acetyl-CoA produced by CAFs was exploited to increase lipid 

synthesis. We excluded this possibility, because iCAFs and iNFs in culture had similar levels of 

cholesterol and synthesised only minimal amounts of fatty acids from 13C6-glucose and 13C5-glutamine 

(Extended Data Figure 2g,h). Thus, increased PDC activity in cultured mammary CAFs does not 

increase TCA cycle activity or lipid synthesis. 
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Extended Data Figure 2. Increased PDH activity does not fuel the TCA cycle or lipid synthesis 

a. Fraction of acetyl-CoA labelled by 13C6-glucose, 13C5-glutamine, 13C3-pyruvate or 13C16-palmitate after 
48 h of labelling in iCAFs, as measured by MS. N = 3 independent experiments for each labelling 
condition. b. Representative confocal images of iCAFs stained with MitoTracker (red), PDHA1 (green) 
and DAPI (blue). Scale bar = 50 µm. c. Western blot for PDHA1 in nuclear, cytosolic and mitochondrial 
protein fractions of iCAFs. An organelle antibody cocktail containing markers for each compartment 
was used to show the purity of the fractionation. d. Fraction of 13C6-glucose incorporation into 
metabolites (coloured) involved in glycolysis and the TCA cycle in CAFs and NFs. In black is the 
unlabelled fraction of the metabolite. N = 3 independent experiments. e. Schematic of 13C 
incorporation in metabolites derived from 13C6-glucose and shown in (d). f. Western blots of 
phosphorylated and total ACLY in total lysate from all CAF and NF pairs. Vinculin or β-tubulin was used 
as a loading control. Quantification of phosphorylated ACLY, which was normalised to total ACLY and 
the loading control, is shown below the blot. g. Fraction of 13C6-glucose and 13C5-glutamine 
incorporation into fatty acids in iCAFs and iNFs measured by MS. N = 3 independent experiments. h. 
Total cholesterol in iCAFs and iNFs measured by MS. N = 3 independent experiments. 
Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. A two-tailed unpaired t-test with 
Welch’s correction was used to determine the p-value. 
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PDC activity elicits an epigenetic switch through P300/CBP 

Acetyl-CoA is a known second messenger 32, 33 and increased levels of acetyl-CoA in cancer cells 

promote histone acetylation through the activation of the epigenetic regulator histone acetyl 

transferase P300/CBP 45, 46. Our unbiased MS analysis of global protein acetylation pinpointed higher 

levels of acetylated histones in iCAFs than in iNFs (Figure 2b and Supplemental Data S2). Among 

known regulatory sites, we found hyperacetylation of the histone H3 sites K18, K23 and K27 (Figure 

2c), which are substrates of P300/CBP 47. Western blot analysis confirmed H3K27 hyperacetylation in 

CAFs (Extended Data Figure 3a). We reasoned that PDC-derived acetyl-CoA in CAFs is an epigenetic 

rather than a metabolic regulator. To assess this, we reduced acetyl-CoA levels by treating CAFs with 

the ACLY inhibitor BMS303141 45, 48 and monitored H3K27 acetylation (H3K27ac). BMS303141 

treatment decreased H3K27ac, and this effect was abolished by replenishing the pool of nucleo-

cytosolic acetyl-CoA with exogenous acetate (Figure 2d,e). Similarly, pharmacological inhibition of 

P300/CBP with c646 45, 49 or A-485 50 reduced H3K27ac in iCAFs (Figure 2f-i). H3K27 acetylation relied 

on PDC activity, because overexpression of PDK2 in CAFs to inactivate PDC reduced H3K27ac, and 

exogenous acetate restored acetylation levels (Figure 2j,k). Moreover, silencing PDK2 in NFs to 

increase PDC activity was sufficient to enhance H3K27ac, and this effect was blocked when P300/CBP 

was inhibited pharmacologically with c646 (Figure 2l,m). Hence, increased PDC activity in cultured 

mammary CAFs is an epigenetic regulator. 
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Figure 2. PDH-activity drives an epigenetic regulation that requires P300/CBP 

a. Scheme showing that in CAFs the downregulation of PDK2 induces increased PDC activity (red), 
which in turn produces more acetyl-CoA that could be converted into citrate and either used in the 
TCA cycle or exported and converted back to acetyl-CoA in the cytosol/nucleus by ACLY. b. Volcano 
plot showing the results of a one sample t-test on the SILAC ratios between iCAFs and iNFs of peptides 
carrying lysine acetylation sites. N = 5 independent experiments. c. SILAC ratios between iCAFs and 
iNFs of histone acetylation sites with a known regulatory function (based on PhosphoSitePlus 51) 
identified in (b). N = 2-5 independent experiments. d, e. Representative western blot (d) and 
quantification (e) showing H3K27ac levels in total lysate from CAFs following treatment with 
BMS303141 ± acetate for 48 h. Vinculin was used as loading control. N = 4-6 independent experiments. 
f,g. Representative western blot (f) and quantification (g) showing H3K27ac levels in total lysate from 
iCAFs ± c646 treatment for 48 h. GAPDH was used as loading control. N = 5 independent experiments. 
h,i. Representative western blot (h) and quantification (i) showing H3K27ac levels in total lysate from 
iCAFs ± A-485 treatment for 48 h. β-tubulin was used as loading control. N = 3 independent 
experiments. j,k. Representative western blot (j) and quantification (k) showing H3K27ac levels in total 
lysate from iCAFs transfected with pGC-PDK2N255A or pGC-PDK2WT for 48 h. Vinculin was used as loading 
control. N = 4 independent experiments. l,m. Representative western blot and quantification showing 
H3K27ac in total lysate from iNFs transfected with siCtl or siPDK2 ± c646 for 48 h. Vinculin was used 
as loading control. N = 4 independent experiments. 
Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. For experiments with two 
conditions, a two-tailed unpaired t-test with Welch’s correction was used to determine the p-value.  
For experiments with more than two conditions, a one way ANOVA test with Dunnett’s multiple 
comparison test was used. 

 

 

 

 

 

Extended Data Figure 3. H3K27 is hyperacetylated in mammary CAFs 

a. Representative western blots showing H3K27ac levels in total lysate from all CAF and NF cell lines. 
β-tubulin or vinculin was used as a loading control. 
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The PDC-P300/CBP pathway co-regulates ECM production and proline synthesis 

Histone hyperacetylation is a hallmark of gene expression activation, and the recruitment of P300/CBP 

and hyperacetylation of histone H3 at enhancers of pro-fibrotic genes is a landmark event in fibrosis 

52-54. Upon treatment of CAFs with the P300/CBP inhibitor c646, collagens were the most 

downregulated proteins (Figure 3a and Supplemental Data S3). This result indicates that P300/CBP 

may also be a key regulator of fibrosis in the tumour stroma. Our proteomic analysis also pinpointed 

a strong downregulation of the rate-limiting enzyme for proline synthesis, PYCR1. This was intriguing 

because many of the highly abundant proteins in the iCAF ECM 35, particularly collagens, contain an 

above average number of proline residues (Figure 3b and Supplemental Data S4), and there is no clear 

link described between ECM production and proline metabolism in cancer. Further supporting a 

possible connection between these two mechanisms, CAFs had more intracellular proline than NFs 

(Figure 3c), in addition to producing more ECM 35. Therefore we explored further whether the PDC-

P300/CBP pathway is an upstream regulator of both proline and ECM synthesis. 

RT-qPCR analysis confirmed that the expression of COL1A1 and COL6A1, which were among the most 

abundant components of the iCAF ECM (Figure 3b) and are fundamental regulators of cancer 

progression 4, 55, was reduced upon P300/CBP inhibition (Figure 3d and Extended Data Figure 4a). 

Concordantly, there was less collagen in the ECM deposited by CAFs treated with c646 (Figure 3e,f). 

Collagen expression was reliant on PDC activity and downstream signalling. Pharmacological inhibition 

of ACLY in CAFs decreased COL6A1 levels in the ECM, which were rescued with exogenous acetate 

(Figure 3g,h). Moreover, silencing PDK2 in NFs was sufficient to increase COL6A1 and COL1A1 

expression and collagen deposition in the ECM, and this effect was blocked upon P300/CBP inhibition 

(Figure 3i). Conversely, PDK2 overexpression in CAFs reduced COL6A1 and COL1A1 expression and 

collagen deposition in the ECM, and this was rescued by providing exogenous acetate to the cells 

(Figure 3j). Similarly to the collagen, PYCR1 expression and proline levels increased with acetyl-CoA 

availability (Figure 3k,l and Extended Data Figure 4b,c), and PYCR1 expression was reliant on 

P300/CBP and PDC activity (Figure 3d,i,j). Thus, the PDK2-PDC-P300/CBP pathway influences both 

proline and ECM synthesis. 
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Figure 3. Increased PDH-P300/CBP activity enhances expression of collagens and of the rate-limiting 
enzyme for proline synthesis PYCR1 

a. Volcano plot showing the average log2 ratios of proteins quantified in the total proteome of iCAFs 
± c646 for 24 h. P-values highlight regulated proteins. The identified collagens and PYCR1 are 
highlighted in colours. N = 3 independent experiments. b. Dot plot showing the rank of the proteins 
identified in the iCAF ECM by MS proteomic analysis in the x axis 35. Ranking was based on the 
estimated total abundance of each protein, which was calculated by dividing the intensity value of 
each protein by its molecular weight. Proteins are ranked from the most (left) to the least (right) 
abundant. The number of proline residues contained in each protein is indicated on the y axis. c. Total 
intracellular proline levels measured by MS in CAFs and NFs. N = 3 independent experiments. d. mRNA 
expression of COL1A1, COL6A1 and PYCR1 in iCAFs  ± c646 as measured by RT-qPCR. N ≥ 3 independent 
experiments. Data was normalised to TBP2 levels. e, f. Representative images (e) and quantification 
(f) of collagen produced by iCAFs ± c646 treatment for 96 h. Collagen was visualised with the collagen 
binding protein CNA35-mCherry. Nuclei were stained with DAPI. N = 5 independent experiments. g, h. 
Representative western blot (g) and quantification (h) of COL6A1 in decellularised ECM derived from 
iCAFs following treatment with BMS303141 ± acetate for 96 h. COL6A1 levels were normalised to total 
protein content in each lane, which was measured with Ponceau staining. N = 3 independent 
experiments. i. mRNA expression of COL1A1, COL6A1 and PYCR1 in iNFs transfected with siCtl/siPDK2  
± c646 for 48 h, as measured by RT-qPCR. N ≥ 3 independent experiments. Data was normalised to 
TBP2 levels. j. mRNA expression of COL1A1, COL6A1 and PYCR1 in iCAFs transfected with pGC-
PDK2N255A or pGCWT  ± acetate for 48 h, as measured by RT-qPCR. N ≥ 3 independent experiments. Data 
was normalised to TBP2 levels. k. mRNA expression of PYCR1 in iCAFs treated with BMS303141 ± 
acetate for 48 h, as measured by RT-qPCR. N = 3 independent experiments. Data was normalised to 
ACTB levels. l. Total intracellular proline levels measured by MS in iCAFs following treatment with 
BMS303141 ± acetate for 48 h. N = 4 independent experiments. 
Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. Scale bar = 50 µm. For experiments 
with two conditions, a two-tailed unpaired t-test with Welch’s correction was used to determine the 
p-value.  For experiments with more than two conditions, a one way ANOVA test with Dunnett’s 
multiple comparison test was used. 
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Extended Data Figure 4. Nucleocytosolic acetyl-coA and P300/CBP promote collagen and proline 
production 

a. COL1A1, COL6A1 and PYCR1 mRNA expression in pCAF3 ± c646, as measured by RT-qPCR. N = 3 
independent experiments. Data was normalised to TBP2 levels. b. PYCR1 mRNA expression in pCAF2s 
treated with BMS303141 ± acetate, as measured by RT-qPCR. N = 5 independent experiments. Data 
was normalised to ACTB levels. c. Total intracellular proline in pCAF2 treated with BMS303141 ± 
acetate measured by MS and normalised to total protein content. N = 4 independent experiments. 
Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. For experiments with two 
conditions, a two-tailed unpaired t-test with Welch’s correction was used to determine the p-value.  
For experiments with more than two conditions, a one way ANOVA test with Dunnett’s multiple 
comparison test was used. 
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PYCR1-derived proline is necessary to sustain increased ECM production in CAFs 

To further investigate the link between proline synthesis and collagen production, we assessed 

whether CAFs in culture use PYCR1-derived proline to make collagen. This was the case, because when 

CAFs were grown in medium containing 13C5-glutamine, 13C-labelled proline was detected in collagen-

derived peptides by MS-proteomic analysis of their ECM (Figure 4a,b and Supplemental Data S5).  

Next, we inhibited PYCR1 genetically, with siRNA or shRNA (Extended Data Figure 5a-c), or 

pharmacologically with a recently developed small molecule inhibitor (PYCR1i) 56, and found that it 

was sufficient to decrease proline production (Figure 4c-e) and collagen deposition in the ECM, which 

was rescued by providing cells with exogenous proline (Figure 4f-k). Similarly, inhibiting the 

glutaminase enzyme (GLS), which catalyses the conversion of glutamine to glutamate (Figure 4a), the 

first step for proline synthesis from glutamine via PYCR1, with the clinical compound CB-839 57 reduced 

proline synthesis and collagen deposition in the ECM (Extended Data Figure 5d,e). This further 

indicates that the pool of glutamine-derived proline is important for collagen production. In our 

experimental conditions, FBS was the only source of extracellular proline in the culture medium (~4 

µM, not shown) and levels were lower than those found in the blood of human adults (50-200 µM, 

www.serummetabolome.ca). We assessed the impact of physiologically relevant levels of proline on 

collagen production when targeting PYCR1. CAFs treated with PYCR1i or silenced for PYCR1 became 

insensitive to the effects of PYCR1i on collagen production only in the presence of above-physiological 

doses of proline (Extended Data Figure 5f-i), indicating that proline produced by PYCR1 is required for 

collagen synthesis, in addition to exogenous proline. 

To determine whether proline shortage had a direct effect on protein translation, we performed 

differential ribosome codon reading (diricore) analysis 58. This analysis showed that silencing PYCR1 in 

CAFs induced ribosome stalling specifically at proline codons, which was rescued with the addition of 

exogenous proline (Extended Data Figure 5j). Among the genes that were identified and found 

affected by proline levels, there were several collagens, including COL1A1 (Figure 4l). Conversely, 

COL1A1 mRNA levels were not modulated by proline levels (Extended Data Figure 5k). Thus, PYCR1-

derived proline in CAFs is required for the translation of collagen for ECM production. 

Finally, reducing PYCR1 levels in NFs silenced for PDK2 inhibited collagen production induced by PDC 

activation (Figure 4m,n and Extended Data Figure 5l), indicating that PYCR1 is required to support 

collagen production upon PDC activation. 

Hence, proline availability is a limiting factor for the production of collagen-rich ECM and inhibiting 

PYCR1 can overwrite the epigenetic reprogramming induced by the activation of the PDK2-PDC-

P300/CBP pathway to increase collagen genes expression. 
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Figure 4: Increased proline synthesis induced by PDH activity is necessary for the production of 
collagen-rich ECM 

a. Scheme showing how 13C is incorporated into proline from 13C5-glutamine and used to make 
collagen in the ECM. b. Log2 LFQ intensity of 13C-proline-labelled COL1A1 peptides in decellularised 
ECM derived from CAFs cultured in medium with 13C5-glutamine for 48 h and analysed by MS. c-e. 
Intracellular 13C-labelled proline measured by MS in CAFs ± PYCR1i or PYCR1 knockdown for 48 h, 
cultured in medium with 13C5-glutamine. N = 3 independent experiments. f, g. Representative images 
(f) and quantification (g) of collagen produced by shCtl and shPYCR1 pCAFs ± proline. N = 4 
independent experiments. h, i. Representative images (h) and quantification (i)  of collagen produced 
by iCAFs transfected with siCtl or siPYCR1 ± proline. N = 3 independent experiments. j, k. 
Representative images (j) and quantification (k)  of collagen produced by iCAFs treated with PYCR1i ± 
proline. N = 3 independent experiments. l. ECM proteins significantly affected by ribosomal stalling at 
proline codons when PYCR1 is silenced and rescued with exogenous proline. The score indicates the 
normalized density of ribosomes at the A-site of Pro codons and measures the tendency of ribosomes 
to spend more time in that position. Original data were Z-scored. m. Representative western blot (m) 
and quantification (n) of COL6A1 in decellularised ECM derived from iNFs transfected with siCtl, siPDK2 
or siPDK2 + siPYCR1 for 72 h. COL6A1 levels were normalised to total protein levels in each lane, which 
was measured with Ponceau staining. N = 4 independent experiments. 
Collagen was visualised with the collagen binding-protein CNA35-mCherry. Int. density = Integrated 
density. Scale bar = 50 µm. Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001.  For 
experiments with two conditions, a two-tailed unpaired t-test with Welch’s correction was used to 
determine the p-value.  For experiments with more than two conditions, a one way ANOVA test with 
Dunnett’s multiple comparison test was used. 
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Extended Data Figure 5. Increased proline synthesis by PYCR1 is necessary for collagen synthesis 

a. Representative western blot of PYCR1 in total lysate from shCtl and shPYCR1 CAFs.  β-tubulin was 
used as a loading control. b,c. PYCR1 mRNA expression in iCAFs and pCAF2 transfected with siCtl or 
siPYCR1, as measured by RT-qPCR. N = 3 independent experiments. d. 13C-labelled proline in CAFs ± 
glutaminase inhibitor CB-839 cultured in media with 13C5-glutamine, measured by MS. N = 3 
independent experiments. e. Quantification of collagen, based on fluorescence signal, produced by 
CAFs cultured ± CB-839 for 72 h. f,g. Representative images (f) and quantification (g) of collagen 
produced by CAFs ± PYCR1i and treated with 0-500 µM proline. N = 3 independent experiments. h,i. 
Representative images (h) and quantification (i) of collagen produced by CAFs transfected with siCtl 
or siPYCR1 for 72 h and treated with 0-500 µM proline. N = 3 independent experiments. j. Density 
plots for proline (Pro) codons (all genes) comparing siPYCR1 and siCtl pCAF2. The peak at position 15 
corresponds to the site A of Pro codons. Leucine (Leu) was used as control. k. COL1A1 mRNA 
expression in iCAFs transfected with siCtl/ siPYCR1 for 48 h and pCAF2 expressing shCtl/shPYCR1, as 
measured by RT-qPCR. Data was normalised to TBP2 levels. N = 3 independent experiments. l. PYCR1 
mRNA expression in iNFs transfected with siCtl or siPYCR1 for 48 h, as measured by RT-qPCR. N = 3 
independent experiments. Data was normalised to ACTB levels. 
Collagen was visualised with the fluorescent collagen-binding protein CNA35-mCherry. Scale bar = 50 
µm. Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. A two-tailed unpaired t-test 
with Welch’s correction was used to determine the p-value.  
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The PDC-P300/CBP-PYCR1 pathway supports collagen production in co-cultures 

Next, we assessed the role of the PDC-P300/CBP-PYCR1 pathway in supporting ECM production in a 

more physiological context with pharmacological inhibition of the key components of the pathway. To 

inhibit the pyruvate dehydrogenase complex, we used the clinical compound CPI-613, which is a 

dehydrogenase inhibitor 59 that reduced histone acetylation and expression of collagen and PYCR1, as 

well as deposition of collagen-rich ECM (Extended Data Figure 6a-e), mirroring PDC inhibition by 

overexpression of PDK2 in CAFs. 

CAFs were co-cultured with a primary breast cancer cell line in a 2D or 3D environment. Imaging 

analysis of the 2D co-cultures showed that the majority of the collagen co-localised with CAFs, 

indicating that, similarly to in vivo 5, CAFs are the major source of collagen , while the contribution of 

the cancer cells is marginal (Figure 5a). Collagen production was strongly reduced upon 

pharmacological inhibition of PDC, ACLY, P300/CBP or PYCR1 with the corresponding inhibitors, which 

was rescued by providing exogenous acetate or proline when the cells were treated with ACLYi 

(BMS303141) and PDCi (CPI-613) or PYCR1i, respectively (Figures 5b-i). Notably, each pharmacological 

treatment, except for PDCi, significantly reduced cancer cell proliferation (Figure 5j-m). Similar results 

were obtained when cells were co-cultured in 3D in microfluidic devices, as spheroids, and the effects 

of the treatments were dose-dependent (Figure 5n-r). To determine whether the reduction in cancer 

cell growth was a consequence of reduced collagen in the ECM or a direct effect of the drugs on the 

cancer cells, we measured cancer cell proliferation upon treatment when grown in mono-culture 

(Extended Data Figure 6f). All the treatments reduced cancer cell growth to some extent, but only the 

reduction induced upon CPI-613 and c646 treatment was statistically significant. Conversely, the 

inhibition of cancer cell proliferation induced by BMS303141 and PYCR1i treatment was very 

pronounced only when the cells were co-cultured with CAFs. This indicates that, with those 

treatments, decreased availability of collagen in the ECM may actively contribute to reduce cancer cell 

growth. Thus, targeting the PDC-P300/CBP-PYCR1 pathway is a potent inhibitor of collagen-rich ECM 

production and cancer cell growth. 
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Figure 5: Pharmacological inhibition of the PDH-P300/CBP-PYCR1 pathway in CAF-cancer cell co-
cultures strongly reduces ECM production and cancer cell growth 

a. Quantification of collagen co-localised with iCAFs and Wood primary breast cancer cells respectively 
in 2D co-culture. N = 3 independent experiments. b, c. Representative images (b) and quantification 
(c) of collagen (purple) in 2D co-cultures of iCAFs (green) with Wood primary breast cancer cells ± c646 
treatment for 96 h. Nuclei were visualised with DAPI. N = 3 independent experiments. d,e. 
Representative images (d) and quantification (e) of collagen (purple) in 2D co-cultures of iCAFs with 
Wood primary breast cancer cells treated with BMS303141 ± acetate for 96 h. N = 3 independent 
experiments. f,g. Representative images (f) and quantification (g) of collagen (purple) in 2D co-cultures 
of iCAFs with Wood primary breast cancer cells treated with CPI-613 ± acetate for 96 h. N = 3 
independent experiments. h,i. Representative images (h) and quantification (i) of collagen (purple) in 
2D co-cultures of iCAFs with Wood breast breast cancer cells treated with PYCR1i ± proline for 96 h. N 
= 3 independent experiments. j-m. EdU incorporation in Wood primary breast cancer cells in 2D co-
culture with iCAFs control or treated with the indicated drug.  N = 3 independent experiments. n. 
Quantification of collagen co-localised with iCAFs and Wood primary breast cancer cells respectively 
in 3D spheroid co-cultures in microfluidic devices. N = 3 independent experiments. o. Representative 
images of collagen (red) in 3D spheroid co-cultures of CAFs (blue) and Wood primary breast cancer 
cells treated with c646, PYCR1i ± proline, CPI-613 ± acetate or BMS303141 for 7 days. Images 
represent the lowest dose giving a significant change in collagen quantification (p-r). p. Quantification 
of CAF-derived collagen (purple signal in (o)) in 3D CAF-Wood co-cultures treated with c646 or 
BMS303141. N = 3 independent experiments q. Quantification of CAF-derived collagen (purple signal 
in (o)) in 3D CAF-Wood co-cultures treated with CPI-613 ± acetate. N = 3 independent experiments r. 
Quantification of CAF-derived collagen (purple signal in (o)) in 3D CAF-Wood co-cultures treated with 
PYCR1i ± proline. N = 3 independent experiments. 
Collagen was visualised with the collagen-binding protein CNA35-mCherry. Int. density = Integrated 
density. Scale bar = 200 µm. Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001.  For 
experiments with two conditions, a two-tailed unpaired t-test with Welch’s correction was used to 
determine the p-value.  For experiments with more than two conditions, a one way ANOVA test with 
Dunnett’s multiple comparison test was used. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.30.125237doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.125237
http://creativecommons.org/licenses/by/4.0/


26 
 

Extended Data Figure 6. Inhibition of the PDC-P300/CBP-PYCR1 pathway inhibits cancer cell growth 

a,b. Representative western blot (a) and quantification (b) for H3K27ac in total lysate from iCAFs 
treated with CPI-613. Vinculin was used as loading control. N = 3 independent experiments. c. PYCR1, 
COL1A1, and COL6A1 mRNA expression in iCAFs ± CPI-613, as measured by RT-qPCR. N = 3-5 
independent experiments. Data was normalised to 18S levels. d,e. Representative images (d) and 
quantification (e) of collagen produced by iCAFs ± CPI-613 and treated with 1 mM acetate for 72 h. N 
= 3 independent experiments. f. EdU incorporation in Wood breast cancer cells in monoculture after 
48 h treatment with c646, BMS303141, PYCR1i or CPI-613. N = 3 independent experiments. 
Collagen was visualised with the fluorescent collagen-binding protein CNA35-mCherry. Scale bar = 200 
µm.  Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. For experiments with two 
conditions, a two-tailed unpaired t-test with Welch’s correction was used to determine the p-value.  
For experiments with more than two conditions, a one way ANOVA test with Dunnett’s multiple 
comparison test was used. 
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Targeting PYCR1 in mammary CAFs reduces stromal collagen and tumour growth  

There is increasing evidence that proline metabolism is a tumour-specific vulnerability 20, 58, 60, 61, and 

that targeting PYCR1 in cancer cells or reducing proline availability impedes tumorigenic growth in vivo 

58, 61. Our data prompted us to assess whether targeting PYCR1 is also a stromal vulnerability. As a 

xenograft model we used MCF10DCIS.com breast cancer cells co-transplanted subcutaneously with 

CAFs, because these tumours have a sizable stroma and CAFs accelerate tumour growth 62. 

MCF10DCIS.com cells were co-transplanted subcutaneously with pCAFs expressing normal or reduced 

levels of PYCR1 (Extended Data Figure 5a), and tumours were harvested two weeks after 

transplantation. At this stage, the tumours had started growing and pCAFs had not been fully replaced 

with endogenous murine stroma. Microscopy analysis of the tumours showed a clear decrease in 

collagen deposited around pCAF silenced for PYCR1, while pCAF abundance in the tumours was not 

affected (Figure 6a-c). Notably, reducing stromal PYCR1 reduced tumour growth (Figure 6d). Thus, 

stromal PYCR1 represents a stromal vulnerability for ECM production in vivo and can be targeted to 

hamper tumour growth. 

PDK2, PYCR1 and collagens are co-regulated in many cancer types 

To assess the extent at which PDK2, PYCR1 and collagen expression are simultaneously deregulated in 

tumours, we performed a meta-analysis of 4,000 human tumour samples across ten tumour types 

using data from The Cancer Genome Atlas (TCGA) (Supplemental Data S6). PDK2 downregulation and 

PYCR1 and COL1A1 upregulation co-occurred in a substantial portion of patients in each tumour type 

(26%-84%) (Figure 6e). In addition, PDK2 expression was downregulated (Figure 1g), while the 

expression of genes encoding enzymes for proline synthesis (PYCR1, PYCR2, ALDH18A1, OAT), but not 

those for proline degradation (PRODH), and tumour ECM components (COL1A1, COL6A1 and FN1) was 

significantly upregulated in laser-captured microdissected stroma of triple negative breast cancer and 

high grade serous ovarian tumours compared to their corresponding normal tissues 38, 39 (Figure 6f,g), 

suggesting that this pathway is deregulated in the tumour stromal compartment. These data support 

that pyruvate dehydrogenase, through PDK2 downregulation, and proline synthesis may be master 

metabolic regulators of ECM production across multiple cancer types. 
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Figure 6: Reducing proline synthesis in CAFs is sufficient to reduce collagen production and reduce 
tumour growth 

a,b.  Representative images (a) and quantification (b) of collagen co-localised with GFP+ signal coming 
from shCtl or shPYCR1 pCAF2s in sections of MCF10DCIS.com-CAF co-transplantation xenografts. 
Collagen was detected by SHG. N = 6 mice/group. Data shows average collagen density in each slice 
of 2 z-stack images spanning a 400 µm thick section for each tumour. c. Average GFP+ pCAF2 area in 
sections of tumours from (e). N = 6 tumours/group. d. Volume (before explant) and weight of 
MCF10DCIS.com-CAF tumours, which were explanted 2 weeks after transplantation. N = 6 
tumours/group. e. Violin plots showing the expression levels of PDK2, PYCR1, COL1A1 in normal (n) 
and tumour (t) tissues in the indicated TCGA cohorts. Tissues represented in the plots comprise those 
in which PDK2 was downregulated while PYCR1 and COL1A1 were upregulated. The percentage of 
tumours meeting the selection criteria is indicated at the top left of each plot. f,g. Box plot (minimum 
and maximum limit, line at median, “+” indicates mean) of the expression levels of ECM proteins and 
enzymes of the proline synthesis pathway in laser-capture microdissected sections of normal (n) and 
TNBC (f) or HGS ovarian (g) tumour (t) stroma. h. Schematic of the metabolic pathways involved in 
promoting and sustaining ECM production in CAFs. In red are highlighted the genetic and 
pharmacological approaches used in this work to inhibit key molecules of the pathway. 
Error bars indicate mean ± SEM. *p ≤0.05, **p ≤0.01, ***p ≤0.001. A two-tailed unpaired t-test with 
Welch’s correction was used to determine the p-value.  Scale bar = 100 µm. 

 

 

Discussion 

The ECM is a central guiding force that influences all stages of cancer pathology 1-4. Finding ways to 

reduce ECM production, in particular collagens, is important because it can delay tumour growth, 

reduce metastasis, and improve tumour perfusion for effective drug delivery and recruitment of 

immune cells 15-19. CAFs with myofibroblast-like features extensively populate the stroma of solid 

tumours and make most of the collagen found in the tumour ECM 5. Up to 25% of collagen amino acid 

residues are proline. Notably, proline is an abundant amino acid in the blood circulation 

(www.serummetabolome.ca) to support physiological production of collagen in connective tissues 63. 

In spite of this, we show that the proline synthesised by CAFs through PYCR1 is essential to fulfil the 

biosynthetic needs for collagen production and to support tumour growth. Our study also identified 

PDC as a central enzyme that triggers an epigenetic response to enhance the expression of collagen 

genes, thus showing that cell metabolism is fundamental to coordinate enhanced ECM production in 

CAFs (Figure 6h). 

Pyruvate dehydrogenase is the metabolic gatekeeper that links glycolysis to oxidative phosphorylation 

64. In contrast, in cultured CAFs, we show that PDC is an epigenetic regulator important to maintain 

hallmarks of CAF activation. CAFs had increased PDC activity, which led to an increase in acetyl-CoA. 

However, CAFs did not use the excess of acetyl-CoA for lipid synthesis or TCA cycle. Instead, the 

increased acetyl-CoA functioned as a second messenger of epigenetic regulation triggering a 
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molecular rewiring that required P300/CBP to increase collagen production. Our 13C-tracing data 

showed that CAFs in culture also stored acetyl-CoA as acetyl-carnitine (Extended Data Figure 2d), 

suggesting that under nutrient constriction, they may be able to support both biosynthetic and 

epigenetic pathways. 

Epigenetics facilitates the acquisition and maintenance of tumour phenotypes 30, 65, including 

hallmarks of activated CAFs 31, 66. Because acetylation and methylation both originate from 

metabolites, and because cell metabolism is a targetable driver of cancer, it is important to understand 

how metabolism and epigenetics interact with one another in cancer. Tumour and immune cells have 

been the focus of many studies 29, 30, and only recently has it been shown that targeting metabolism 

in CAFs to influence histone methylation can reduce tumour growth and metastasis 31. Our work has 

identified acetyl-CoA as another epigenetic regulator in CAFs, and showed that targeting PDC to 

reduce acetyl-CoA availability effectively suppresses ECM production in several in vitro models. Thus, 

metabolism is a central regulator of epigenetics in CAFs. It is still an open question whether metabolic 

pathways that control epigenetics through histone acetylation and methylation are working in synergy 

or alone in a context-specific manner. Notably, simply increasing acetyl-CoA availability via activating 

PDC in normal fibroblasts was sufficient to trigger ECM production. Thus, other sources of acetyl-CoA 

in tumours, such as acetate which is converted to acetyl-CoA through ACSS1 and ACSS2, need further 

investigation to understand whether they also contribute to tumour fibrosis. 

Another open question in our study, which we are investigating further, is whether collagens and 

PYCR1 genes are direct targets of P300/CBP. Previous studies using cell lines have shown that 

hyperacetylation of histones, including H3K27 sites, occur at enhancer regions of pro-fibrotic genes, 

including collagen 1 52-54, and, in PDAC models, inhibiting bromodomain-containing proteins, which 

recognise acetylated histone tails and promote transcription by recruiting the transcription factor 

machinery, attenuated fibrosis 67, 68. Instead, PYCR1 expression has been found to be regulated by the 

amino-acid starvation response (AAR/Atf4) 69 and induced by shortage of proline precursors 58. We 

can therefore speculate that in CAFs P300/CBP promotes collagen expression, while PYCR1 expression 

increases following a reduction in proline availability due to enhanced rate of collagen synthesis. 

Proline metabolism in cancer cells has been recently recognised as a tumour vulnerability and 

potential target for therapy 70. Cancer cells with low levels of proline synthesis enzymes or under 

nutrient limiting conditions are vulnerable to proline shortage 58, 61 and proline synthesis is important 

to maintain mitochondrial redox homeostasis in cancer cells with IDH1 oncogenic mutations 71. 

Moreover, proline catabolism is a vulnerability for metastatic cancer cells 60. But what happens to the 

tumour stroma if we target proline metabolism? Recent work correlated decreased levels of PYCR1 
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and proline synthesis with reduced ECM production in a lung adenocarcinoma model. The authors 

showed that kindlin-2 binds to and stabilises PYCR1 to promote proline production, and that deleting 

kindlin-2 reduced PYCR1, proline levels and fibrosis 72. However, the amount of αSMA+ cells (likely to 

be CAFs) also diminished in kindlin-2 KO mice, making it difficult to conclude whether CAFs produced 

less collagen. Interestingly, another recent work showed that the delta-1-pyrroline-5-carboxylate 

synthase (ALDH18A1), which supports the first step of proline synthesis converting glutamate to 

pyrroline-5-carboxylate (Figure 4a), was important for collagen synthesis in TGFβ-activated lung 

fibroblasts 73. By genetic and pharmacological suppression of PYCR1 in CAFs in the presence of 

physiological levels of proline in vitro, and reducing PYCR1 levels in CAFs in vivo, we demonstrated 

that inhibiting proline synthesis is sufficient to effectively reduce ECM production and hamper tumour 

growth. 

In addition to providing proline residues for protein synthesis, proline metabolism is important to 

maintain redox homeostasis between the mitochondria and the cytosol 70. Previous studies have 

shown that silencing ALDH18A1 to reduce proline synthesis in TGFβ-activated fibroblasts or loss of 

PYCR1 in fibroblasts isolated from patients carrying PYCR1 mutations caused mitochondrial damage 

and redox stress 73, 74. Our study did not investigate whether targeting PYCR1 in CAFs induced redox 

stress. However, because silencing PYCR1 specifically affected ribosomal stalling at proline codons of 

several collagens, including the most abundant ECM component COL1A1, and because we could 

rescue collagen translation and ECM production by providing exogenous proline to the cells, we 

propose that a major function of proline metabolism in CAFs is to provide proline residues to maintain 

collagen production to make ECM. 

In conclusion, we have identified PDC as a novel potent epigenetic regulator of collagen-rich ECM 

production and pinpointed proline metabolism as a critical link between the epigenetic regulation of 

collagen gene expression and protein production. So far, most of the efforts to reduce ECM production 

in tumours have focused on targeting pathways that are well known to trigger CAF activation 75 (e.g. 

TGFβ, hedgehog, PDGF 1-4). However, these factors are pleiotropic and have a direct impact also on 

other cell types, raising the possibility of unexpected effects when targeted in clinical settings. Our 

work offers a new paradigm, whereby CAF metabolism is a major vulnerability of tumour ECM 

production to limit desmoplastic reaction in cancer. This may have important implications for the 

development of strategies to reduce the production of pro-tumourigenic ECM and the formation of 

desmoplastic stroma, and may be relevant to other diseases involving collagen production, such as 

fibrosis. 
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Methods 

Cell culture  

Patient-derived mammary cancer-associated fibroblasts and normal fibroblasts (pCAFs and pNFs) 

were isolated in house from breast cancer patient samples obtained through NHS Greater Glasgow 

and Clyde Biorepository. All participants gave specific consent to use their tissue samples for research. 

The cancer cell-derived, immortalised human mammary CAFs and NFs (iCAFs and iNFs) were kindly 

provided by Professor Akira Orimo (Juntendo University, Tokyo). The fibroblasts and HEK293T cells 

were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine 
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serum, 2mM glutamine and 1% penicillin/streptomycin. MCF10DCIS.com cells were cultured in F12 

medium supplemented with 5% horse serum, 2mM glutamine, 1% penicillin/streptomycin and 0.1% 

fungizone. Wood primary breast cancer cells were purchased from AMS Biotechnology Europe Ltd 

(AMSBIO) and cultured in Renaissance essential tumour medium (RETM, AMSBIO) supplemented with 

5% fetal bovine serum and 1% penicillin/streptomycin. For 2D and 3D co-cultures, CAFs and cancer 

cells were mixed in a 1:1 ratio and cultured in a 1:1 mixture of DMEM and RETM. For SILAC proteomics 

experiments, iCAFs and iNFs were cultured in SILAC DMEM supplemented with 2% FBS, 8% 10 kDa 

dialysed FBS (PAA), 2 mM glutamine and 1% penicillin/streptomycin. SILAC DMEM used for the ‘light’ 

labelled cells contained 84 mg/l L-arginine and 146 mg/l L-lysine (Sigma), whereas the medium for the 

‘heavy’ labelled cells contained 84 mg/l 13C6
15N4 L-arginine and 175 mg/l 13C6

15N2 L-lysine (Cambridge 

Isotope Laboratories). Cells were regularly tested for mycoplasma and MCF10DCIS.com cells 

authenticated.  The following inhibitors were used to treat cells in culture: c646 (Sigma), A485 (Tocris 

Bioscience), BMS303141 (Sigma) and CPI-613 (Sigma). The PYCR1i was made as previously described 

56.  

pCAF and pNF isolation and immortalisation  

pCAFs and pNFs were isolated in house from patient samples using previously described methods 34-

36 . From each patient, pCAFs were isolated from breast tumour tissue and pNFs from normal, tumour 

adjacent tissue. Patient samples were obtained complying with ethical regulations through the 

National Health Service (NHS) Greater Glasgow and Clyde Biorepository. All participants gave specific 

consent to use their tissue samples for research. pCAF/NF2 were from a ER+, PR+, HER2- breast cancer 

patient and pCAF/NF3 were from a triple negative breast cancer patient. The pCAFs and pNFs were 

immortalised using a human telomerase reverse transcriptase (hTERT)-expressing plasmid (pIRES2-

hygro), kindly provided by Dr. Fernando Calvo (IBBTEC, Santander). Lentivirus containing the hTERT 

plasmid was generated in HEK293T cells. Two rounds of viral transduction in fibroblasts were 

performed on consecutive days. Cells were selected using 50 μg/ml hygromycin. 

Western blotting analysis 

Cells were lysed in SDS buffer (2% SDS, 100 mM TrisHCl pH 7.4), incubated at 95 °C for 5 min, sonicated 

using a metal tip (Soniprep 150, MSE) and centrifuged at 16000 x g for 10 min. Protein concentration 

was determined using Optiblot Bradford reagent (Abcam). 20-25 μg of proteins were separated using 

4-12% gradient NuPAGE Novex Bis-Tris gel (Life technologies). Protein transfer was performed on 

methanol-activated PVDF or Nitrocellulose membrane. Membrane was blocked for 1 hr in 3% BSA 

(Sigma) in TBST at RT and incubated with primary antibodies overnight at 4°C. The following primary 

antibodies were used: PDHA1 E1-alpha subunit, phospho S293 (1:2000, abcam ab177461), PDHA1 E1-
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alpha subunit (1:1000, abcam ab110334), PYCR1 (1:1000, Proteintech 22150-1-AP), Histone H3, acetyl 

K27 (1:1000, abcam ab4729), Collagen VI (1:1000, abcam ab182744). Vinculin (1:2000, Sigma V9131), 

GAPDH (1:1000, Santa Cruz, sc48167), β-tubulin (1:1000, abcam ab179513) were used as loading 

controls for the experimental antibodies. The membrane was incubated with HRP-conjugated 

secondary antibodies (1:5000, NEB) for 45 mins at RT. Western blot images were acquired using a 

myECL Imager (Thermo Scientific). 

PDH activity assay 

PDH activity was measured using the Pyruvate dehydrogenase Enzyme Activity Microplate Assay Kit 

(abcam ab109902) according to the manufacturer’s protocol. 

EDU proliferation assay 

Cells were seeded on 13 mm glass coverslips. Following 48 h of drug treatment, cells were incubated 

in 1 µM EDU for 2 h and fixed in 4% PFA. EDU was fluorescently labelled using the Click-iT™ EdU Cell 

Proliferation Kit (Life Technologies) according to the manufacturers’ protocol, and nuclei were 

counterstained with DAPI. Images were acquired using a Zeiss 710 confocal microscope and ImageJ 

was used to count the number of total nuclei and EDU positive nuclei.  

ECM preparation 

Cells were seeded at 100% confluence on 0.2% gelatine, which was crosslinked using 1% 

glutaraldehyde, then were cultured for 3-7 days. The ECM was decellularised with extraction buffer 

(20mM NH4OH, 0.5% Triton X-100 in PBS) until no intact cells were visible but the ECM remained on 

the dish. ECM was washed in PBS with Ca2+ and Mg2+, collected and lysed in SDS buffer (4% SDS, 0.1 

M DTT, Tris-HCl pH 7.4). 

Cell transfection and infection 

For transient expression or siRNA knockdown, 2x106 fibroblasts were harvested and used in each 

transfection with a Nucleofector device (Lonza) according to the manufacturer's protocol using the 

program T-20 and the Amaxa kit R (Lonza). Cells were transfected with 1-3 nM non-targeting siRNA as 

a control (D-001810-10-05, GE Healthcare Dharmacon) or with siRNAs targeting PDK2 and PYCR1 

(Dharmacon, pool of 4), or with 5µg pGCA-PDK2N255A or pGCA-PDK2WT (kindly provided by Prof. Angus 

McQuibban, University of Toronto 47). Cells were used for experiments 48-72h after transfection. 

For stable knock down of PYCR1, shPYCR1 (shPCYR1 #1: CCGGTGAGAAGAA 

GCTGTCAGCGTTCTCGAGAACGCTGACAGCTTCTTCTCATTTTTG, shPYCR1 #2: CCGGCACAGTTTCTGC 

TCTCAGGAACTCGAGTTCCTGAGAGCAGAAACTGTGTTTTTG) and shCTL (Sigma, Mission shRNA) 
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lentivirus was generated in HEK293 cells. Two rounds of viral transduction in pCAF2 were performed 

on consecutive days. Cells were selected using 2 µg/ml puromycin. 

Reverse transcriptase polymerase chain reaction (RT-qPCR) 

Primers for RT-qPCR were designed using Primer Blast (NCBI database): PDK2: 

CGGGGACCACAACCAAAGTC (forward) GCTGGATCCGAAGTCCAGAAA (reverse), PYCR1: 

CCCCGCCTACGCATTCACA (forward) GCGCGTTGGAAGTCCCATCT (reverse), COL1A1: 

TGAAGGGACACAGAGGTTTCAG (forward) GTAGCACCATCATTTCCACGA (reverse), COL6A1: 

AGCAAGTGTGCTGCTCCTTC (forward) CTTCCAGGATCTCCGGCTTC (reverse). mRNA levels were 

normalised to the following housekeeping genes: TBP2: AGTGACCCAGCATCACTGTTT (forward) 

TAAGGTGGCAGGCTGTTGTT (reverse), 18S: AGGAATTGACGGAAGGGCAC (forward) 

GGACATCTAAGGGCATCACA (reverse) or ACTB: GGCATGGGTCAGAAGGATT (forward) 

ACATGATCTGGGTCATCTTCTC (reverse). Total RNA was isolated and treated with DNAse using the 

RNEasy mini kit (Qiagen) according to the manufacturer’s instructions. Complementary DNA (cDNA) 

was synthesised from 1 µg RNA using an iScript kit (BioRad). cDNA was diluted 1:5 and 2 µl was used 

in each RT-qPCR reaction with 10 µl iTAQ Universal SYBR green supermix (BioRad) and 400 nM primers. 

Reactions were performed using a Quant Studio 3 PCR machine (Thermo Scientific). 

MS-proteomic analysis 

For the total proteome, cells were lysed in SDS buffer (2% SDS, 100 mM TrisHCl pH 7.4). For the 

proteome with c646 treatment, proteins were precipitated with acetone and redissolved in urea 

buffer (6M urea, 2M thiourea, 10 mM TCEP, 40 mM CAA, 75 mM NaCl, 50 mM Tris-HCl). The proteins 

were then trypsin digested. For SILAC experiments, equal quantities of heavy and light samples were 

mixed. For the total proteome that was used to normalise peptide acetylation levels, lysates were 

either in-gel digested with trypsin or, after trypsin digestion, peptides were fractionated using high pH 

reverse phase fractionation. The proteins were desalted by C18 StageTip 76 prior to MS analysis. 

For phosphorylated peptide enrichment, trypsin-digested peptides were acidified to pH 2.6 and 

acetonitrile (ACN) was added to a final concentration of 30%. The peptides were fractionated using an 

Akta system into 6 equal fractions, using an increasing concentration of KCl in 5 mM KH2PO4 to a final 

concentration of 350 mM KCl. Each fraction was then enriched for phosphorylated peptides by 

incubation with TiO2 beads (GL Sciences) in the presence of 2,5-dihydroxybenzoic acid 77. 

Phosphorylated peptides were eluted with 15% ammonium hydroxide and 40% acetonitrile (ACN), 

and desalted by C18 StageTip. 

For acetylated peptide enrichment, the deacetylase inhibitors nicotinamide (10 mM) and trichostatin 

A (1 µM) were added to the lysis buffer. Different protocols were used to prepare acetylated peptides. 
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i) Cells were lysed in RIPA buffer (50 mM TrisHCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.1% 

sodium deoxycholate). Proteins were precipitated with acetone, redissolved in urea buffer and 

quantified by Bradford assay. Equal quantities of heavy and light labelled proteins were combined and 

trypsin digested. Peptides were desalted by C18 SepPak filtration and resuspended in 

immunoprecipitation (IAP) buffer (50 mM MOPS; pH 7.2, 10 mM Na-phosphate, 50 mM NaCl). 

Acetylated peptides were enriched using anti-acetyllysine antibody (Acetyl Lysine Antibody, Agarose, 

ImmuneChem). Up to three consecutive incubations were performed to maximise peptide recovery. 

Acetylated peptides were eluted with acidified water (0.1% TFA in water). ii) Lysis and protein 

digestion was performed as in i), but the enrichment for acetylated peptides was performed with 

PTMScan Acetyl-Lysine Motif Kit (Cell Signalling Technology #13416) according to the manufacturers’ 

protocol. iii) Subcellular fractionation of the cells was performed (Cell Fractionation Kit, Standard, 

Abcam, ab109719) according to the manufacturers’ protocol. Proteins recovered in the three 

fractions, nuclear, cytosolic and mitochondrial, were digested with trypsin and acetylated peptides 

enriched using anti-acetyllysine antibody (Acetyl Lysine Antibody, Agarose, ImmuneChem). 

For ECM analysis, cell-derived ECM was prepared as above. To analyse glutamine-derived proline 

incorporation into collagen, the cells were cultured in media containing 2 mM 13C5-glutamine for 72 h 

prior to ECM collection. Each sample was separated on 4–12% gradient NuPAGE Novex Bis-Tris gel 

(Life Technologies). The gel was sliced into 3 fractions, and each fraction was in-gel digested with 

trypsin. 

Peptides were resuspended in 1% TFA, 0.2% acetic acid or formic acid buffer and injected on an EASY-

nLC (Thermo Fisher Scientific) coupled online to a mass spectrometer. Peptides were separated on a 

20-cm fused silica emitter (New Objective) packed in-house with reverse-phase Reprosil Pur Basic 1.9 

µm (Dr. Maisch GmbH). Peptides were eluted with a flow of 300 nl/min from 5% to 30% of buffer B 

(80% ACN, 0.1% formic acid) in a 60-min linear gradient. Eluted peptides were injected into an Orbitrap 

Elite, Q-Exactive HF or Orbitrap Fusion Lumos (Thermo Fisher Scientific) via electrospray ionisation. 

MS data were acquired using XCalibur software (Thermo Fisher Scientific).  

MS-proteomic data analysis  

The MS .raw files were processed with MaxQuant software 78 and searched with the Andromeda 

search engine with the following settings: minimal peptide length 7 amino acids, fixed modification 

Carbamidomethyl (C) and variable modifications Acetyl (Protein N-term) and Oxidation (M). For the 

acetylome and phosphoproteome, Acetyl (K) and Phospho (STY) were added as variable modifications 

respectively. For the tracing experiments with 13C5-glutamine, 13C-labelled proline was added as 

variable modification. Specificity for trypsin cleavage was required and maximum 2 missed cleavages 

were allowed. For SILAC experiments, multiplicity was set to 2, where the light labels were Arg0 and 
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Lys0 and the heavy labels were Arg10 and Lys8. For label free (LFQ) experiments, the LFQ setting was 

enabled. The false discovery rates (FDRs) at the protein and peptide level were set to 1%.  

Perseus 79 (version 1.5.0.36 for the phosphoproteome, 1.5.5.1 for the acetylome and corresponding 

proteome, 1.6.2.2 for total proteome) was used for downstream analysis. The data were filtered to 

remove potential contaminants, reverse peptides which match a decoy database, and proteins only 

identified by site. To ensure unambiguous identification, only proteins identified with at least one 

unique peptide were considered. For SILAC experiments, the SILAC ratio was used for the analysis. 

Ratios from the ‘Reverse’ experiment were inverted. Then, SILAC ratios were transformed by log2 and 

intensities by log10. For the acetylome, peptide acetylation levels were normalised by total protein 

abundance (Supplementary Data S2). For 13C5-glutamine tracing experiment only peptides in which 

all the proline was 13C-labelled were considered for analysis. 

Estimation of kinase activities 

KinAct 80, is a computational method used to predict kinase-activity scores from MS-based data. It 

infers an activity score for each protein kinase based on the regulation levels of phosphorylation 

events catalysed by this specific kinase. The method relies on prior knowledge of kinase/phosphatase-

to-substrate (k/p-s) relations and the KSEA (Kinase-Substrate Enrichment Analysis) method 81 for the 

kinase activity estimation. 

Currently, there are multiple freely available databases that collect k/p-s interactions which are 

experimentally verified or manually curated. Some of them are integrated into OmniPath 82, a 

comprehensive collection of signalling resources. There are also resources in which the k/p-s relations 

are inferred based on consensus kinase recognition motifs and other information, such as NetworKIN 

83). The KSEA method integrates the information from such databases with the log2 transformed fold 

changes from mass-spectrometry data to compute enrichment scores for each kinase together with a 

significance value for each score. 

In the KSEA method, the score is equal to the mean of the fold changes of each phospho-measurement 

of the substrate set 𝑚𝑆 of a specific kinase. The significance of the score, on the other hand, is 

calculated from a 𝑧-statistic as: 𝑧 = (𝑚𝑆 − 𝑚𝑃√𝑚)/𝛿, where 𝑚𝑃 is the mean log2 fold-change of the 

complete data-set, 𝑚 is the size of the substrate set 𝑚𝑆 (how many substrates for a kinase) and 𝛿 is 

the standard deviation of the log2 fold-change values for the whole dataset. Significance is then 

estimated from the 𝑧-statistic and the estimated 𝑝-values for each kinase are then adjusted via the 

Benjamini-Hochberg correction method. 

KinAct was applied to the phosphoproteomic SILAC-labelled NF (normal fibroblast) and CAF (cancer-

associated fibroblast) data which was performed in two independent experiments. The log2 ratios of 
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the two experiments were averaged and inputinto the KinAct pipeline. KinAct analysis was performed 

over the OmniPath and NetwroKIN prior knowledge. For the OmniPath prior knowledge, kinase-

substrate relations coming from PhosphoSitePlus 51 and SIGNOR 84 were used. Results from both 

resources yielded similar results where PDK2 was observed to be significantly downregulated in both 

cases. Codes of the analysis together with usage documentation are made available in 

https://github.com/saezlab/iCAF_KinAct. 

Metabolites extraction and LC-MS analysis 

For tracing experiments, cells were labelled for 24h with 13C6-glucose, 13C5-glutamine, 13C3-pyruvate or 

13C16-palmitate. Cells were washed with ice-cold PBS and intracellular metabolites were extracted with 

an aqueous solution of 50% methanol and 30% acetonitrile. Cellular extracts were centrifuged at 

16,000 x g for 5mins, and the supernatant was analysed using a Q-Exactive Orbitrap mass 

spectrometer (Thermo Scientific) in combination with a Thermo Ultimate 3000 HPLC system. 5 μl of 

cell extract was injected and the metabolites were separated over a 15 min mobile phase gradient 

from an initial ACN content of 80% ACN with 20% ammonium bicarbonate (pH 9.2) decreasing to 20% 

ACN with a flow rate of 200 μL/min. The metabolites were detected over a period of 25 min using the 

Q-Exactive mass spectrometer across a mass range of 75-1000 m/z and at a resolution of 35,000 (at 

200 m/z). To detect acetyl-coA, a single ion monitoring (SIM) method was employed. The Q-Exactive 

mass spectrometer was used to monitor the three masses for acetyl-coA labelled +0, +1 or +2 

(810.1331, 811.1364 and 812.13976 m/z) with an isolation window of 0.7 m/z for each isotope. Peak 

identification and area quantification were carried out using TraceFinder software by comparison of 

the retention time and exact ion mass to that of authentic standards. 

Cholesterol extraction and GC-MS analysis 

Cells were washed with ice-cold PBS and metabolites were extracted with 1:9 (v/v) water: methanol 

buffer and 20 µl lathosterol (100 ng/µl) was added as an internal standard. Saponification to obtain 

the total cholesterol pool and subsequent GC-MS analysis was carried out as in McGregor et al. 85.  

Trans-fatty acid extraction and LC-MS analysis 

Cells were washed with ice-cold PBS and metabolites were extracted with 1:1 (v/v) PBS: methanol 

buffer. SPLASH lipidomix internal standard mix (Avanti Polar Lipids) was added at 1 µl/105 cells. 

Subsequent chloroform extraction of lipids and LC-MS analysis were carried out as in McGregor et al. 

85. 

Ribosome profiling and diricore analysis 
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30x106 cells were treated with cycloheximide (100 μg/ml) for 5 minutes and lysed in buffer A (20 mM 

Tris-HCl, pH 7.8, 100 mM KCl, 10 mM MgCl2, 1% Triton X-100, 2 mM DTT, 100 μg/ml cycloheximide, 1X 

complete protease inhibitor). Lysates were treated with 2 U/μl of RNase I (Ambion) for 45 min at room 

temperature. Lysates were fractionated on a linear sucrose gradient and the fractions enriched in 

monosomes were pooled. Ribosome protected fragments (RPFs) were purified using Trizol reagent 

(Invitrogen). Library preparation and differential ribosome codon reading (diricore) analysis were 

performed according to the method previously described 58. 

Collagen quantification in mono culture and 2D co-cultures 

Cells were seeded at 100% confluence on glass coverslips, either as a CAF monoculture or as a 1:1 

coculture of CAFs and Wood primary breast cancer cells. The cells were cultured for 4-7 days to allow 

accumulation of matrix. Cells were incubated with 1 µM of the native collagen binding protein CNA35 

labelled with fluorescent dye mCherry (CNA35-mCherry) 86 for 1 hr to label collagen, then fixed in 4% 

PFA and counterstained with DAPI. Images were taken on the Zeiss 710 confocal microscope. Regions 

of CAFs were defined and collagen staining was quantified using ImageJ software. Cell number for 

normalisation of collagen quantification was calculated by counting the number of DAPI positive nuclei 

using ImageJ software. 

Microfluidic device design and preparation 

Microfluidic devices were fabricated using previously established soft lithography methods and used 

to culture spheroids 87. Multilayer devices were composed of arrays of microfluidic channels, each of 

which was connected by two open wells. Within each channel, an array of microwells of dimension 

150x150x150 µm3 were situated below the channel level 87. In short, polydimethylsiloxane (PDMS) 

prepolymer (Sylgard 184, Dow Corning) and curing agent were combined in a 1:10 ratio and poured 

onto patterned silicon wafers. Wafers were placed inside a desiccator for degassing, prior to 

incubation at 85°C for a minimum duration of 3 hours. Once cured, the PDMS was removed from the 

wafers and open wells created using a 4mm surgical biopsy punch (Miltex). Devices were cleaned and 

exposed to an oxygen plasma (Pico plasma cleaner, Diener electronic) to permanently bond the upper 

and lower PDMS layers together. Devices were incubated with a solution of 1% Synperonic F108 

solution (Sigma Aldrich) to achieve ultra-low adhesion conditions. 

3D co-culture in microfluidic devices 

Cells were seeded at a 1:1 ratio of Wood primary breast cancer cells:CAFs into devices at a 

concentration of 7×106 cells/ml to form spheroids, with each microfluidic channel containing at least 

32 spheroids of similar dimension (~80 µm diameter) for analysis. A cell suspension was injected in 
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the open wells, which flowed into the microfluidic channels until they remained trapped into the 

microwells, as previously described 87. Spheroids were formed within 24-48 hours. Cells that were not 

trapped into the microwells were removed from the device. Cells were cultured in a 1:1 mix of the 

supplier recommended complete culture media for the two cell types: RETM for the primary breast 

cancer cells and DMEM for the CAF. Media with and without enzyme inhibitors and rescue agents was 

exchanged every 48 hours. 

Enzyme inhibitor treatment in microfluidic devices 

Spheroids were treated with BMS303141 (Concentrations: 25 µM, 50 µM and 100 µM), c646 

(Concentrations: 25 µM, 50 µM and 100 µM), PYCR1i (Concentrations: 50 µM, 100 µM and 150 µM) 

or CPI-613 (Concentrations: 50 µM, 100 µM and 200 µM). Inhibitor action on cells was mitigated with 

administration of either 1 mM acetate or 500 µM proline, used as rescue agents and applied together 

with the enzyme inhibitor treatment. Inhibitor treatment was administered every second day for one 

week beginning 24 hours after cell seeding. Control experiments were performed for each 

experimental setup. All experiments were performed in triplicates, with each experiments performed 

on at least 32 spheroids. 

Collagen quantification in 3D co-cultures 

For visualisation of total collagen, 1 µM CNA35-mCherry was incubated with the cells for a 2-hour 

period. After this, cells were washed twice with PBS to ensure removal of any residual staining 

solution. PBS was then added again prior to imaging the devices. 

An inverted microscope (Observer A1, Zeiss) connected to an Orca Flash 4.0 camera (Hamamatsu) was 

used to acquire bright field images of spheroids every 24–48 hours. Epifluorescence microscopy was 

performed immediately after cell staining and image analysis carried out using ZEN Blue and Fiji. czi 

files from ZEN Blue were split into separate channels and converted into TIFF files  in Fiji. Images from 

each channel were normalized to the same threshold range. Due to the distinct dissociation of the 

two cell types after 7 days of co-culture, it was possible to quantify the spheroid areas and perimeters 

of both CAFs (expressing green fluorescent protein) and the cancer cells (from bright field images). 

Collagen deposition was estimated from fluorescent images (mCherry) and was plotted as a ratio of 

collagen area vs CAF spheroid area. Signal intensity was measured in these regions correcting for 

background signal. 

MCF10DCIS.com-CAF xenograft 
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All mouse procedures were in accordance with ethical approval from University of Glasgow under the 

revised Animal (Scientific Procedures) Act 1986 and the EU Directive 2010/63/EU authorised through 

Home Office Approval (Project licence number 70/8645). 

1.5x106 pCAF2s expressing shCtl or shPYCR1 and 5x105 MCF10DCIS.com in 200 µl 50% growth factor 

reduced phenol red free Matrigel (BD Biosciences) in PBS were injected subcutaneously into the flank 

of 8 week old female BALB/c nude mice (Charles River). Six mice per group were transplanted. Mice 

were randomly allocated to the two groups. The mice were sacrificed 14 days after inoculation and 

the tumours were excised, weighed and fixed in 4% PFA. The tumours were sliced into 400 µm sections 

and Z-stacks of each section were captured. The collagen was imaged using second harmonic 

generation (SHG) microscopy in combination with confocal microscopy to detect GFP-expressing 

fibroblasts. Using an ImageJ macro, regions of human CAFs were defined for each slice of the Z-stack 

and the area of collagen surrounding the CAFs was quantified. 

Gene expression analysis 

The breast cancer (GSE90505) and high grade serous ovarian cancer (GSE40595) microarray datasets 

were downloaded from the Gene Expression Omnibus (GEO) using the R statistical environment, 

version 3.5.0, and the Bioconductor package GEOquery, version 2.40.0 88.  Differential gene probe 

expression analysis was done using the linear models and differential expression for microarray data 

(Limma) package version 3.29.8 89. 

TCGA data analysis 

Harmonised RNA Sequencing Data for breast invasive carcinoma (BRCA), pancreatic adenocarcinoma 

(PAAD), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell 

carcinoma (LUSC), rectum adenocarcinoma (READ), colon adenocarcinoma (COAD), prostate 

adenocarcinoma (PRAD), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC) was 

obtained from The Cancer Genome Atlas (TCGA) Research Network:  https://www.cancer.gov/tcga. 

Each cancer type was separately analysed using the R programming environment 90 with RStudio 91and 

the data were normalised using Limma 89.  Mean PDK2, PYCR1 and COL1A1 expression was calculated 

for the normal tissue samples in each tumour type, and patients stratified according to the expression 

level of these genes in the tumour samples relative to the normal sample means. Samples plotted in 

Figure 6 correspond to those in which PYCR1 and COL1A1 exceeded the normal-tissue mean, while 

PDK2 was below their respective normal-tissue means. Data were visualised using the Tidyverse 

package 92. 

Statistical analysis 
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GraphPad Prism version 7.0 was used for statistical analysis. For experiments with two conditions, a 

two-tailed unpaired t-test with Welch’s correction was used to determine the P value.  For 

experiments with more than two conditions, a one way ANOVA test with Dunnett’s multiple 

comparison test was used. P ≤ 0.05 was considered significant. All graphs show the mean ± SEM of at 

least 3 biological replicates (independent experiments) unless otherwise stated. For MS-proteomic 

analysis, Perseus software was used for statistical analysis. A one-sample t-test for SILAC experiments 

or a 2-sample t-test for LFQ experiments was used to determine significantly regulated proteins and 

enable data visualisation as a volcano plot. 

Data availability 

The .raw MS files and search/identification files obtained with MaxQuant have been deposited to the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org/cgi/GetDataset) via 

the PRIDE partner repository 93 with dataset identifier PXD018343. .raw data are associated to Figure 

1a, Figure 2b,c and Figure 3a. All unique materials used are readily available from the authors. 
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