
Supplementary Materials

Example of block structure (DGTs)

Figure 1: Instance of a block from trials 1 to 16 (DGTs). The background of the canvas is
light blue, indicating the influence condition (for half of the subjects this would signify high, and for
the other half, low, influence). The vehicles and goals for the first 16 trials of a block are displayed
as they appear at the start of the trial (vehicle selection phase; the red timer on top denotes time
left to choose, random here) with goals made slightly bigger, for illustrative purposes. The ordering
of the trials is randomized, as is the position of the goals (the angle by which they are rotated).
The labels for each trial type are on top of each screenshot, the number in parentheses being the
order of occurrence of this trial type within the block. Note how on the second occurrence (i.e.
(2)), the vehicles position is swapped. The sixteenth trial (bottom-right) is always a catch trial;
but the ordering of all the other trials is random.
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Model-dependent analyses

Double goal trials We first posited that subjects simply choose according to their preferences for
achievability and reward. Thus, our basic modelling approach combined, additively, the main trial
features driving choice, i.e. distance, guidability and reward. We then incrementally (using model
complexity control) built more sophisticated, and better performing, models, to uncover temporal
dependencies across trials (learning).

In its most basic form, Ut(v, g), the utility of choosing vehicle v to attain goal g at trial t, is
modelled as follows:

Ut(v, g) = −αd · dt(v, g) + αv · 100γt(v) + αr · rt(g) (1)

The expression considers the values, at trial t, of the euclidean distance between vehicle v and
goal g (i.e. dt(v, g); which is obtained by dividing the Manhattan distance by 2 and multiplying
by
√

2), the guidability of v as inferred by trial t (i.e. γt(v); this is multiplied by 100, so that
the guidability values lie in the same range as distances and rewards, and parameter estimates are
comparable), and of the reward connected to g, i.e. rt(g). There are, of course, four possible choices
of vehicle-goal pairs in all DGTs. A subject could in fact choose either vehicle (v1 or v2) and aim
for either goal (g− or g+). The probability of each option is modelled as a generalization of the
softmax function for four options (an ordinary multinomial logistic regression):

P (v, g) =
eUt(v,g)∑

v′∈{v1,v2},g′∈{g−,g+} e
Ut(v′,g′)

(2)

This is our additive model for DGTs (“Additive”), and constitutes the starting structure of all
our models. In turn, these differ according to the ways they refine Ut(v, g), adding extra features.

In the task, distances and rewards are directly observed. However, vehicle guidability (i.e. γt(v))
has to be learned. We consider a Bayesian form of learning for both vehicles, as follows:

γt(v) =
4

3
R− 1

3

where R =

∑t−1
τ=1 ngood(τ)∑t−1

τ=1 ngood(τ) +
∑t−1
τ=1 nbad(τ)

(3)

n{good,bad}(t) gives the number of {good,bad} moves at trial t. R is the perceived probability
that the vehicle will go in exactly the direction we press towards. Note that this can arise both
as a consequence of the vehicle actually following our command, i.e. γt(v), or because the vehicle
randomly went in the direction we asked it to, i.e. 1

4 (1− γt(v)). So to infer γt(v) from the statistic
R we need to solve R = γt(v) + 1

4 (1− γt(v)) , which yields the first line of the equation. At trial
1, when either vehicle is fully unknown, we set ngood = 1 and nbad = 1, yielding a controllability
γ1(v) = 0.33. We also explored the possibility of drawing these initial values from top level priors,
but ultimately kept them fixed, for simplicity.

In sum, our basic model simply treats additively the set of factors driving choice. At first
glance, one might argue that since distance and reward are anti-correlated by design, inference will
face an unidentifiability issue, as sensitivities to distance and reward are confounded (increasing
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sensitivity to reward or diminishing that to distance would yield approximately the same log-
likelihood); however, trial type OG (see e.g. figure 1), which appears twice in DGTs, was conceived
to resolve exactly this issue, as it makes the larger goal closer to both vehicles, thereby breaking
the anti-correlation.

Learning of achievability in DGTs

We added extra model components to account for learning of achievability throughout the task, rea-
soning that we might well observe aspects of model-free learning, on top of value-based choice. We
then decided to keep the additive structure of equation (1) and add a time-dependent component.

Winning model (“Vehicle-dependent RW”). In DGTs, in all but ’Catch’ trials, one vehicle
(vct) is at the center of the canvas, while the other is closer to the less rewarding goal (g−). We
then hypothesized that the main form of learning would be about the success in achieving g+ using
the central vehicle, as subjects are faced with the recurrent question whether g+ will be achievable
with vct (empirically, most attempts to g+ took place utilising the central vehicle, i.e. 92%). Recall
that the distance (36 Manhattan steps, or 18

√
2 euclidean) between the central vehicle and g+ was

always the same, so the main learning factor underlying choice of g+ could only be connected to
the the vehicle itself. This form of achievability is essentially model-free, and only depends on the
experience gathered with the central vehicle.

To include a learning term, and test whether its use is justified, we kept all the “static” aspects
of decision making as per the basic structure in equation 1, simply adding an extra component
Ht(vct) to the expression for Ut(vct , g

+), leaving unchanged the remaining three terms:

Ut(vct , g
+) =− αd · dt(vct , g+) + αv · γt(vct) + αr · rt(g+) + αHHt(vct) (4)

where Ht(vct) ∈ [−1,+1] is the output of a learning rule (see below) that integrates the history
of successes and failure, and αH is a parameter (“learning gain”) that quantifies the effect of this
term. We should also point out that dt(vct , g

+) is simply equal to 18
√

2, a constant, since the
distance between the central vehicle and g+ is fixed throughout.

Of course, many learning processes could be suitable, so there is a question as to how Ht should
be updated given success and failure. The simplest possible learning rule is the Rescorla-Wagner
(RW; delta rule) update, according to which subjects start out on the initial trial of the task with
an initial guess for the achievability of g+ from the center, Ht(vct) (i.e. H1). This would then
evolve on a trial-by-trial basis. On each trial, there are 8 scenarios that this learning rule should
consider: a subject could choose either vehicle, aim for either goal, and face either of two fates.

In the winning model, the notion of success and failure which affect Ht(vc) is as follows. We
regard, as success, only that in gaining the g+ goal (regardless of whether the central or the other
vehicle was chosen), and as failure, any failure both in an attempt to a g− or g+ goal. This is
because g− is invariably easier to reach than g+, so a loss when attempting the easier goal should
rationally imply that g+ is less achievable than we thought. Conversely, succeeding in attaining
g− does not imply that g+ will be more achievable. Note that since we only count successes on g+

goals towards the update of Ht(v), learning from wins is not meaningful in low influence blocks,
where all (but three attempts across all datasets in total) to g+ led to a loss. Thus, as one would
expect, learning of the hopeless achievability of g+ in low influence conditions only happens through
failures. We have of course tried variations of this model which took into account different learning
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speeds for wins and losses faced when attempting g− and g+. While we do not report all of these
here, for brevity, their performance was not as competent as our final formulation.

Thus, in the winning model, the evolution of Ht(v) across trials is:

Ht(v) = Ht−1(v) +


0 if achieved g− using v at t− 1

εw (+1−Ht−1(v)) if achieved g+ using v at t− 1

εl (−1−Ht−1(v)) if lost using v at t− 1

(5)

where t ∈ {1 . . . 16} indicates the current trial, and v identifies the vehicle that was chosen at
trial t− 1. For the vehicle that was not chosen at trial t− 1 the value for Ht is simply copied over,
i.e. if we denote this vehicle as v̄, then we have Ht(v̄) = Ht−1(v̄). εw (εl) are the learning rates for
success (failure). This expression keeps track of a surrogate value for the probability of achieving
g+. As such, it does not distinguish between the amount won or loss in the previous trial.

As we model learning throughout the task, at the end of each block in high/low influence
conditions, the achievability value for each of the two vehicles involved, i.e. Ht(v) is averaged and
used as the starting value for the next block of the same influence conditions.

Other models. Prior to testing our final formulation, we tested several simpler learning schemes.
Aside, of course, from our basic additive model (equation 1) we tested four other ways to refine
this, which we describe below. These models’ out of sample performances as measured by average
leave-one-subject-out likelihoods are reported in the main text.

• Bias. The bias model is simply the basic structure of equation 1, endowed with a free parame-
ter to account for a propensity to choose g+ that is not dependent on any other characteristic
of the trials. Thus, it simply adds a term to only the utility of attaining g+ with the central
vehicle:

Ut(vct , g
+) =αd · dt(vct , g) + αv · γt(vct) + αr · rt(g) + βbias (6)

The term in question is of course βbias.

• Temporally evolving bias. This model allows for temporal evolution of choice throughout the
task, but does so without considering information about success and failure. Thus, we have
here the same formulation as in equation 4, yet Ht(vct) becomes a term Ht, where:

Ht = Ht−1 + α (+1−Ht−1) + (1− α) (−1−Ht−1) (7)

Note that there is no dependency of Ht on vehicles. This is simply a version of the Bias model
where bias is time varying, as described by α, rather than constant. The subjects’ tendency
to see g+ as more (less) achievable as the task unfolds depends on α being greater (lower)
than 0.5. Testing this model allows us to discern whether the tendency to choose g+ from
center depends on the history of success and failure, or on some task-independent feature (e.g.
progressive disengagement from the task, or fatigue).
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• WSLS. The Win-stay Lose-shift formulation only has a 1-trial memory to (de)incentivate
choice of g+ with a vehicle. In this case Ht(vct) evolves as:

Ht(vct) =

{
εw if achieved g+ using vct at t− 1

εl if lost using vct at t− 1
(8)

Of course, εw > 0 and εl < 0.

• Vehicle-independent RW. The last alterantive, which is perhaps closest to the winning model
is a Rescorla-Wagner rule that does not keep separate records for the two vehicles available
inside a block. Here, achieving g+ with a vehicle will simply increase the value for choosing g+

regardless of which vehicle is used. That this model performs worse than our winning model
means that subjects must be using the different vehicles’ histories of achievements to make
their decisions, and are not simply being motivated by success and failure to try again (or
quit trying) to achieve g+. Here, the Ht term drops the dependency on vehicles, so equation
5 becomes:

Ht = Ht−1 +

{
εw (+1−Ht−1) if achieved g+ at t− 1

εl (−1−Ht−1) if lost at t− 1
(9)

Single goal trials. In SGTs, the expression for U (i.e. equation 1) omits the term concerning
reward, since only one goal is available. Further, because of the large number of preceeding DGTs,
we make the assumption that γt(v) has fully converged to the true controllability value of the
vehicle. Equation 1 then becomes:

U(v) = αddt(v) + αv100γ(v) (10)

here γ(v) is the true value for the controllability of the vehicle, that is, one of 0.28,0.36,0.43.
Our interaction model (the winning model for SGTs) posits a further term:

U(v) = αddt(v) + αv100γ(v) + αintγ(v) · dt(v) (11)

γ(v) · dt(v) is an interaction term of guidability and distance.
Finally, we have the probability (P) model, which only used sheer probability as a predictor.

Here, the expression for U is simply U(v) = αpω(γ(v); d; f). In this expression, ω denotes the
probability of reaching the goal when choosing vehicle v and pressing in an optimal manner. This
term, whose approximation we also describe in SMs, depends on the distance from the goal (d), the
controllability of the vehicle γ(v), and the frequency of pressing that the subject expects to exert
over the vehicle. We allowed for subjects’ frequencies to vary, so that the f that ω depends on is
indeed a free parameter which depends on subject and condition. In high (low) influence conditions
individual f parameters were drawn from fixed, top-level normal distributions with mean 8 (4) and
standard deviations of 1.
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Details of modelling results

Figure 2: Winning model (“Vehicle dep. RW”): recovered parameter distributions.
Here, we show the recovered parameter fits for our winning model, obtained via stan. Learning
from success (εw) is inherently only defined in high influence conditions. All values are on average
lower in low influence conditions, possibly due to the greater stochasticity in decision making (this
is equivalent to having a lower inverse temperature). H1 values in low influence conditions are
slightly higher, possibly compensating for the incapability of the model to describe higher, initial
tendencies to choose the riskier goal through other trial-based features. Although learning from
failure (εl) parameter fits are lower on average in low compared to high influence conditions, recall
that this is the only learning feedback we posit for low influence conditions. Thus, the resulting Ht

values will, in time, quickly fall below those reached in high influence conditions, as they can only
monotonically decrease.
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Trial-wise model comparisons

Figure 3: Trial-wise, out-of-sample performance comparisons. This matrix of smoothed
histograms shows the distributions of differences in log-likelihoods when fitting the data to subjects
as they are left out of training. The first row shows the difference across models 1 and all models
through to 6 (i.e. 1-2 through to 1-6). The same applies to rows 2 to 5. All differences are strongly
significant (p < 0.001, due to the high power of considering all trials for all subjects) - except for
the non-significant difference between models 3 and 5 (p = 0.10), and the significant one between
models 2 and 4 (p = 0.01). The models are reported with the same numbering as that in which they
appear in the main text, that is: 1 = “Additive”, 2 = “g+ bias”, 3 = “temp.evolv.bias”, 4 = “Win
stay, Lose shift”, 5 = “Vehicle indep. RW”, and 6 = “Vehicle dep. RW”. The blue sign, top-right
of each plot, reports the prevalent sign of the difference between the out-of-sample log-likelihoods.
All models performed worse than n.6.
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Account of summary data statistics in DGTs

Figure 4: Calibration of goal and vehicle choice frequencies. These plots show that the
winning model (“Vehicle dep. RW”) generated frequencies of g+ choices (left) and more controllable
vehicle v1 (right) are well calibrated to the data. Each dot is a subject’s statistic as computed in a
particular influence condition (gray: high; blue: low). The variance explained by the model is high
for both measures (g+ and v1 choice frequency) and influence conditions (high and low): (i) g+: high
influence, r2 = 0.96, low: r2 = 0.84, (ii) v1: high influence, r2 = 0.69, low: r2 = 0.49. Low influence
statistics are less faithfully recapitulated than high influence statistics, possibly on account of
subjects inherently attempting to randomise their decision making to obtain more success. Finally,
vehicular choice is less faithfully recapitulated in both influence conditions – this is expected, since
subjects only have a noisy notion of which vehicle is most controllable.

Computation of Probabilities

In our task, the probability of reaching a goal with a certain vehicle can be computed in two ways.
In our model agnostic analyses, and when fine tuning the task (e.g. to choose the guidability levels
of the vehicles), we used synthetically derived proportions of successful attempts. We obtain these
by simulating episodes in which artificial subjects press at a uniform frequency throughout the
trial (8Hz for high, 4Hz for low, influence conditions), taking into account the specific guidability
of the vehicle and the distance separating it from the goal. We then simply count the number
of times (and divide by the number of simulated episodes, i.e. 1000) that the vehicle made it to
the goal in time. In our model-based analyses of SGTs, however, we wanted to take into account
possible, subtle variations in the way subjects might have perceived their pressing frequency to be
higher or lower than that allowed. This “subjective prospective frequency” is then a free parameter,
which we allow to vary across subjects. While models using pure probability did not account for
the data most competently (and where thus discarded for DGTs analyses), for completeness (and
replicability), we report our procedure to find a model-based closed form for the probability, which
a sampling algorithm such as that implemented in stan can use to compute probabilities on the fly.

Thus, in SGTs, models using probability of success as a predictor generate decisions based on
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the estimated probability of achieving the goal. Let us call this probability ω(γ(v); d; f), where
γ(v) ∈ {0.28, 0.36, 0.43} is vehicle v’s guidability, that is, the probability that it will move in the
intended direction vs. uniformly at random (we assume this value to be fully known by the time
SGTs are faced); d is the distance between the vehicle and its goal, and f is the prospective
frequency individual to each subject and influence condition.

In order to be able to make inferences about f in our hierarchical Bayesian model, we built
a closed form expression or approximation for the way that pressing frequency determines these
probabilities (assuming optimal choices). We obtained this using the following procedure:

1. We simulated synthetic trials in which an artificial subject made optimal pressing choices
at each frequency in the range [1 : 0.1 : 10] (1 to 10 in steps of 0.1Hz ), with vehicle-goal
distances in the range [4 : 1 : 36] Manhattan steps, and vehicle controllabilities in the range
[0.1 : 0.025 : 0.5].

2. We computed the empirical probabilities for each combination of these parameters to reach
the goal by running 5000 simulated trials from each.

3. Now that we have the empirical correspondences between distance, guidability, frequency of
pressing, and probability of success, we can build a simple model to predict this latter as
precisely as possible. We then (over)fitted a third degree multivariable polynomial (the out-
come of which then goes through a logit function), to the empirical outcome probabilities; this
included all three variables of vehicular controllability, distance and frequency as covariates.
Thus, if for brevity we call γ := γ(v) , and f := fs;c,we have K(γ; d; f) as our polynomial:

K(γ; d; f) = a0 + a1γ + a2d+ a3f + a4γd+ a5γf + a6df · · ·+ a16γ
3 + a17d

3 + a18f
3 (12)

The polynomial includes 19 terms in total. The probability is then computed as: ω(γ; d; f) =
σ (K(γ; d; f)) where σ is the logistic sigmoid function.
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