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Abstract:  

Background: Neurofilament light (NF-L), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) 

are utilized as biomarkers for Alzheimer’s disease (AD), to monitor axonal damage, astroglial 

activation, and synaptic degeneration, respectively. Here we performed genome-wide association study 

(GWAS) analyses using all three biomarkers as outcome. 

Methods: DNA and cerebrospinal fluid (CSF) samples originated from the European Medical 

Information Framework AD Multimodal Biomarker Discovery (EMIF-AD MBD) study. Overlapping 

genotype/phenotype data were available for n=671 (NF-L), 677 (YKL-40), and 672 (Ng) individuals. 

GWAS analyses applied linear regression models adjusting for relevant covariates.   

Findings: We identify novel genome-wide significant associations with markers in TMEM106B and 

CSF levels of NF-L. Additional novel signals were observed with DNA variants in CPOX and CSF 

levels of YKL-40. Lastly, we confirmed previous work suggesting that YKL-40 levels are regulated by 

cis protein quantitative trait loci (pQTL) in CHI3L1.  

Interpretation: Our study provides important new insights into the genetic architecture underlying 

inter-individual variation in all three tested AD-related CSF biomarkers. In particular, our data shed 

light on the sequence of events regarding the initiation and progression of neuropathological processes 

relevant in AD.  

 

Keywords: Alzheimer’s disease; AD; neurofilament light; NF-L; chitinase-3-like protein 1; YKL-40; 

neurogranin; Ng; cerebrospinal fluid; CSF; genome-wide association study; GWAS; biomarker 
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Background 

Elucidation of the genetic architecture underlying Alzheimer’s disease (AD) susceptibility has recently 

seen substantial progress owing to the application of large-scale analysis approaches in the context of 

genome-wide association studies (GWAS). Based on results from the two most recent and largest 

GWAS in the field 1,2, there are now more than 30 independent loci showing genome-wide significant 

association with AD risk 3. In contrast, the genetic underpinnings determining inter-individual variation 

in levels of molecular AD biomarkers are less well known. Apart from the two “core” proteins, i.e. 

amyloid β 42 (Aβ42) and tau, the aggregation of which represents the neuropathological plaque and 

tangle hallmarks of the disease, there are currently only very few GWAS shedding light on the genetic 

factors determining blood or cerebrospinal fluid (CSF) biomarkers levels in AD. In an effort to close 

this knowledge gap, we combined CSF and genome-wide single-nucleotide polymorphism (SNP) 

genotyping data generated in the European Medical Information Framework AD Multimodal 

Biomarker Discovery study (EMIF-AD MBD) 4 and performed the first bona-fide GWAS on CSF 

levels of neurofilament light chain (NF-L), chitinase-3-like protein 1 (YKL-40), neurogranin (Ng), 

reflecting axonal damage, astroglial activation, and synaptic degeneration, respectively.  

 

NF-L is one type of four different neurofilament subunits which function as structural components of 

the neural cytoskeleton 5 performing essential roles in axon development 6 and synaptic function 6. As 

such, NF-L is considered one of several “core” biomarkers of axonal injury and neurodegeneration 

across neurological diseases 7,8. In addition, other recent data suggest that changes in NF-L serum 

levels can predict disease onset and progression of brain neurodegeneration at very early, pre-

symptomatic stages of familial AD 9. YKL-40 is a glycoprotein produced in several inflammatory 

conditions and cancers 10, and was classified as an “emerging” AD biomarker in a recent meta-analysis 

7. While its precise physiological role remains elusive, it appears that in AD, YKL-40 is predominantly 
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expressed in astrocytes and likely plays a role in the inflammatory response occurring near Aβ plaques 

10,11. Finally, Ng is a neuron-specific protein, mainly expressed in the cortex and hippocampus, where it 

is involved in synaptic long-term potentiation and learning 12–14. In AD, CSF Ng was proposed to 

represent a marker of synaptic degeneration and was recently reported to correlate with cognitive 

decline 15. 

 

The results of our GWAS identified novel genome-wide significant associations with markers in the 

established frontotemporal lobe dementia (FTLD) risk gene TMEM106B and CSF levels of NF-L in the 

EMIF-AD MBD dataset. Additional novel signals were observed between DNA variants in CPOX and 

CSF levels of both YKL-40 and Ng. Finally, we detected very strong and highly significant association 

between markers in CHI3L1 and CSF levels of YKL-40, representing the only cis protein quantitative 

trait locus (pQTL) in our analyses.  
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Methods 
 
Sample description  

The ascertainment procedures for the EMIF-AD MBD dataset are described elsewhere 16. In brief, the 

dataset includes 1221 elderly individuals (years of age: mean = 67.9, SD = 8.3) with different cognitive 

diagnoses at baseline (NC = normal cognition; MCI = mild cognitive impairment; AD = AD-type 

dementia) and the clinical follow-up data were available for 759 individuals. Depending on the 

availability of the clinical records, each phenotype has slightly different effective sample sizes. The 

demographic information for the three quantitative CSF phenotypes of the EMIF-AD MBD dataset 

utilized in this study is summarized in Table 1.  

 

DNA extraction, Genotype imputation and quality control 

All participants had provided written consent prior to participation and institutional review board (IRB) 

approvals for the utilization of the DNA samples in the context of EMIF-AD MBD were obtained by 

the sample collection sites. A detailed account of the genotyping procedures and subsequent 

bioinformatic workflows can be found in Hong et al. 17. In brief, a total of 936 DNA samples were sent 

for genome-wide SNP genotyping using the Infinium Global Screening Array (GSA) with Shared 

Custom Content (Illumina Inc.). After extensive QC and imputation, a total of 7,778,465 autosomal 

SNPs with minor allele frequency (MAF) ≥0.01 were retained in 898 individuals of European ancestry 

for the downstream genome-wide association analyses.  

 

CSF biomarkers  

Details of the CSF biomarker measurements can be found in Bos et al. 4. In brief, the CSF specimen 

were collected individually at each of the 11 EMIF-AD MDB participating sites. CSF samples were 

shipped to Department of Psychiatry and Neurochemistry at University of Gothenburg, Sweden. 
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Relevant to the analyses presented here, NF-L levels were measured using a commercial ELISA (NF-

light ELISA, UmanDiagnostics, Umeå, Sweden 18). Ng levels were measured using an in-house 

immunoassay for Ng 19. YKL-40 levels were measured using a human chitinase-3 quantikine ELISA kit 

(R&D systems, Inc, Minneapolis, MN 20). To reduce the skewness of phenotype distributions, data for 

all three CSF variables were log-transformed prior to analysis (Supplementary Figure 1).  

 

GWAS and post-GWAS analyses 

Linear regression (using mach2qtl 21,22) was utilized to perform SNP-based association analyses using 

imputation-derived allele dosages as independent variables and the log-transformed concentrations of 

CSF NF-L, CSF Ng, and CSF YKL-40 as dependent outcome variables. Covariates included into the 

regression models were sex, age at examination, diagnostic groups (coded as AD = 3, MCI = 2, 

controls = 1), and ancestry-specific principal components (PCs; here the first 5 were used). The 

genomic inflation factor was calculated in R using the “GenABEL” package 23. FUMA 

(http://fuma.ctglab.nl/) 24 was used for post-GWAS analyses, including gene annotations and functional 

mappings. This also included performing gene-based GWAS analyses using MAGMA 25 as 

implemented in FUMA. Genome-wide significance was defined as 5E-08 for the SNP-based and 

2.651E-6 for the gene-based analyses (as recommended by FUMA).  

 

Polygenic risk score (PRS) analysis 

Summary statistics of the two largest and most recent AD case-control GWAS 1,2 were utilized for 

calculating PRS for each individual in EMIF-AD MDB. PRS were constructed for 11 different P-value 

thresholds (i.e 5E-08, 5E-06, 1E-04, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 1.00) using PLINK v1.9 26 

after removal of ambiguous SNPs (A/T and C/G), filtering by imputation quality (minimac3 r2 ≤0.8), 

allele frequency (MAF ≤0.01) and linkage disequilibrium (LD) pruning. The resulting PRSs were 
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utilized as independent variables in the regression models adjusting for sex, age, diagnosis, and PC1-5 

as covariates as in the primary GWAS analyses. Variance explained (R2) was derived from comparing 

results from the full model (including PRS and covariates) vs. the null model (linear model with 

covariates only).  

 

A detailed description of all methods and procedure applied in this study can be found in the 

Supplementary Material. 
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Results 

GWAS analyses using CSF neurofilament light (NF-L) levels 

The GWAS analyses using CSF NF-L as outcome yielded five SNPs showing genome-wide significant 

association (Figure 1A, Table 2, and Supplementary Table 1). These SNPs are located in two distinct 

loci on chromosome 7 (i.e., on chr. 7q36.1 [rs111748411, rs3094407] and 7p15.3 on [rs77589784]), 

while the other two are located on chromosomes 1p36.12 (rs4654961) and 10q26.3 (rs138898705; 

Figure 1A, Supplementary Table 1 and Supplementary Figure 2a-b). MAFs for SNPs in all but the 

7q36.1 locus were around 1% complicating any inferences and functional interpretations of these 

variants given the limited size of our dataset. For the two common SNPs in the chr. 7q36.1 locus (i.e., 

rs111748411, rs3094407), post-GWAS variant annotation in FUMA suggested no obvious functional 

consequences (Supplementary Table 2).  

In contrast to the SNP-based results, the gene-based analyses using MAGMA elicited a third locus on 

chromosome 7 (7p21.3) at transmembrane protein 106B (TMEM106B) showing genome-wide 

significant association with CSF NF-L levels (Figure 1B, Table 2, and Supplementary Table 1). This 

gene, which is an established genetic risk modifier for frontotemporal lobar degeneration (FTLD) 27,28, 

contains 187 SNPs of which the majority (n = 124 SNPs) are in strong LD (r2 >0.6) with the lead 

variant in TMEM106B, i.e., rs1548884 (single SNP P = 2.62E-07, Table 2 and Supplementary Table 1). 

FUMA-based functional annotations show one non-synonymous variant (rs3173615; in nearly perfect 

LD [r2>0.99] with rs1548884, Supplementary Tables 2 & 3) eliciting a Thr185Ser change with a 

CADD score of 21.4, and a predicted “moderate” impact by ENSEMBL’s variant effect predictor (VEP) 

algorithm. In addition to possibly exerting an effect on protein function by directly altering the amino-

acid sequence of TMEM106B, the same variant is also reported as a modest expression quantitative trait 

locus (eQTL) in cortical brain samples of the Genotype Tissue Expression (GTEx, v8) project (P=3.8E-

05; Supplementary Table 3). Interestingly, the lead variant in our CSF NF-L GWAS (rs1548884) is in 
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strong LD (r2=0.98; Supplementary Table 2) with the SNP originally identified and subsequently 

replicated to be associated with FTLD (rs1990622, P=3.12E-07, Supplementary Table 1; Van Deerlin 

VM et al. 27).  

 

GWAS analyses using CSF YKL-40 levels 

The SNP-based GWAS using CSF YKL-40 levels yielded one genome-wide significantly associated 

locus on chromosome 1q32.1. This signal was driven by 3 independent SNPs (i.e., rs7551263, 

rs1417152, and rs10399931; Figure 2A, Table 2, Supplementary Table 4) and also represents the single 

most significant GWAS signal of this study (P=4.79E-11 for rs10399931). Unlike the GWAS results for 

the other two CSF markers analyzed here, the strongest results were observed with relatively common 

variants showing allele frequencies between ~16 and 21% in people of European ancestry 

(Supplementary Table 5a). While FUMA-based gene annotations (Supplementary Table 5b) highlight 

up to 26 different gene symbols in the implicated region, the most obvious candidate of likely 

biological relevance is CHI3L1 (chitinase 3 like 1), i.e., the gene encoding YKL-40 protein. In other 

words, this GWAS results represent a bona fide cis protein QTL (pQTL) result, a finding that is also in 

good agreement with the non-AD literature (see discussion). Furthermore, and corresponding to these 

pQTL results, eQTL annotations summarized by FUMA converge on CHI3L1 as the most strongly and 

most significantly associated gene when using the YKL-40-associated SNPs or their proxies as input. 

Manual lookup of the top eQTL SNP (rs10399931, i.e. the same as in our GWAS) on the GTEx portal 

(v8) revealed that this variant functions as a CHI3L1 eQTL in 24 GTEx tissues, including one brain 

area (i.e., “Brain - Frontal Cortex (BA9)”, eQTL P = 1.7E-06; Supplementary Table 6). Interestingly, 

this SNP is also listed as methylation QTL (mQTL) on the mQTL database (http://www.mqtldb.org/) 29, 

a finding corroborated in genome-wide DNA methylation data generated in parallel in the same EMIF-

AD MDB dataset (R. Smith, S. Hong, L. Bertram, K. Lunnon, et al., manuscript in preparation). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.125633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125633


Page 13 
 

However, since the top associated variant (rs10399931) scores relatively low using in silico predictions 

(e.g., CADD = 0.724, RDB = 1f; Supplementary Table 5), it may not represent the functional entity 

underlying the observed GWAS and QTL signals.  

Gene-based GWAS analyses confirmed the association with CHI3L1 (P=2.52E-08; Figure 2B, 

Supplementary Table 4), and revealed a second, independent locus, CPOX (coproporphyrinogen 

oxidase; chromosome 3q11.2-12.1), showing even more significant gene-based association with CSF 

YKL-40 levels (P = 8.75E-09; Figure 2B, Supplementary Table 4). The most significantly associated 

single variant in CPOX was rs58943879 (P = 6.1E-07; Supplementary Table 4). Manual lookup on the 

GTEx portal (v8) revealed no previously observed eQTLs in brain, despite CPOX’s relatively 

pronounced expression in all brain tissues sampled in GTEx (URL: 

https://www.gtexportal.org/home/gene/CPOX).  

 

GWAS analyses using CSF neurogranin (Ng) levels 

Lastly, the GWAS using CSF Ng levels yielded no genome-wide significant association in the SNP-

based analyses (Figure 3A, Table 2, and Supplementary Table 7). The top-ranking SNP-based finding 

was elicited by rs10052776 (P = 1.0E-07, Supplementary Table 7), located in CTNND2 mapping to 

chromosome 5p15.2. Interestingly, SNPs in this gene were previously associated with both late-onset 

AD and cognitive performance by GWAS 30,31 according to the “GWAS catalog” 

(https://www.ebi.ac.uk/gwas/genes/CTNND2). Gene-based association analyses using MAGMA also 

did not reveal any genome-wide significant signals with variants annotated to the 18,862 genes utilized 

in these analyses (Figure 3B). The top-ranking gene-based finding with 21 SNPs was observed with 

KDELR1 (P=2.29E-05) mapping to chromosome 19q13.33, a gene hitherto not associated with the 

traits listed in the “GWAS catalog”. 
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Genetic correlation analyses 

To assess whether and to which degree variation of the three AD CSF biomarkers analyzed in this study 

show association with “AD-related” phenotypes (using summary statistics from two previously 

reported large AD case-control GWAS 1,2), we initially pursued three different analysis paradigms: i) 

linkage disequilibrium (LD) score regression as implemented in LDSC software 32, ii) genetic 

correlation analyses as implemented in GCTA 33, and iii) polygenic risk score (PRS) analysis (see 

methods). Likely due to the comparatively small sample size of our CSF GWAS dataset, neither LDSC 

(recommended n>>5,000) nor GCTA-based (recommended n>3,500) yielded interpretable results. In 

contrast, application of AD-risk GWAS derived PRS as predictors of CSF biomarker variation in 

approach iii) did yield interpretable associations. However, for both datasets the CSF biomarker 

phenotype variance in EMIF-AD MDB explained by AD-PRS was collectively minor, reaching 

nominal significance for some CSF phenotypes and P-value thresholds using Kunkle et al. 2, but none 

from the Jansen et al. 1 data (Supplementary Table 8). This is in contrast to applying AD GWAS-based 

PRS to Aβ-related CSF phenotypes in the same EMIF-AD MDB dataset: here, the strongest 

associations explained nearly 6% of the phenotypic variance (P = 9E-09) 17, suggesting that the genetic 

architectures underlying AD risk and variation at CSF NF-L, YKL-40, and Ng in general do not show 

any substantial overlap.  
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Discussion  
 
We performed GWAS analyses for three CSF AD-related biomarkers in the EMIF-AD MDB dataset 

and identified novel genome-wide significant association with genetic markers in the established FTLD 

risk gene TMEM106B and NF-L protein concentrations in the CSF. Additional novel signals were 

observed with DNA variants in CPOX and CSF levels of YKL-40. Finally, we detected very strong and 

genome-wide significant association between markers in CHI3L1 and CSF levels of YKL-40, 

representing the only cis pQTL finding in our analyses. To the best of our knowledge, our study is the 

first bona fide GWAS for all three of these CSF biomarkers with the exception of two small (n = 133 

and n = 265) CSF pQTL GWAS on YKL-40 in people of Asian descent 34 and a GWAS on NF-L in 

non-demented elderly from the the Alzheimer Disease Neuroimaging (ADNI) cohort 35. Of note, the 

former study also identified strong and genome-wide significant cis pQTL effects at the CHI3L1 / 

YKL-40 locus, corroborating our findings. Other noteworthy results from our study include evidence 

for several rare-variant associations with CSF NF-L levels and an overall lack of AD-related genetic 

association signals with the CSF biomarkers analyzed here. This latter point explicitly includes genetic 

variants in or near the apolipoprotein E gene (APOE), the strongest currently known genetic AD risk 

factor 3, which did not show association with any of the CSF biomarkers analyzed here. 

 

Possibly the most noteworthy novel signal observed in our study relates to the association between 

TMEM106B and CSF NF-L. DNA variants in TMEM106B have first been implicated in 

neuropsychiatric research by a GWAS on FTLD with TAR DNA-binding protein (TDP-43) inclusions 

(FTLD-TDP; Van Deerlin VM et al. 27), a finding that was subsequently confirmed in independent 

datasets (see Pottier C et al. 28 for recent GWAS results). Furthermore, a recent meta-analysis revealed 

that CSF NF-L levels are significantly increased in FTLD 8. In addition to FTLD, the “GWAS catalog” 

database lists a number of other, mostly neuropsychiatric (e.g., depression, differential brain aging, 
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neuroticism) but also non-neurological (e.g., leukemia, height, HDL levels) traits showing genome-

wide association with TMEM106B (URL: https://www.ebi.ac.uk/gwas/genes/TMEM106B; Buniello A 

et al. 36). Furthermore, there is a strong cis pQTL GWAS evidence for SNPs in this region (in particular: 

rs10950398) and TMEM106B protein levels in blood 37. In GTEx, this same SNP is also reported to 

correlate with TMEM106B mRNA expression in brain (cortex and cerebellum), albeit at lesser 

significance (https://www.gtexportal.org/home/snp/rs10950398). Of note, this pQTL / eQTL variant 

(rs10950398) is in nearly perfect LD with the lead SNP identified here to show association with CSF 

NF-L levels (i.e., rs1548884, r2 = 0.97; Supplementary Tables 1 &2). In summary, there is now 

convincing evidence converging from multiple lines of independent data that DNA variants in 

TMEM106B not only show association with several neuropsychiatric and non-neurological phenotypes, 

but also cis (TMEM106B, previous work) and trans (CSF NF-L, this study) pQTL associations with 

proteins relevant for neuronal function. In the AD field, NF-L recently (re)gained interest based on data 

suggesting that NF-L protein dynamics in serum may predict progression and brain neurodegeneration 

at early pre-symptomatic stages of familial AD 9, and tracks neurodegeneration in sporadic AD 38. The 

novel results from our GWAS indicate that DNA sequence variants in TMEM106B may be involved in 

regulating CSF NF-L protein levels. Since the same variant(s) are also cis eQTLs / pQTLs of 

TMEM106B mRNA / protein levels, it is tempting to speculate that the observed effect on CSF NF-L 

may be mediated by TMEM106B mRNA or protein. In line with this hypothesis is the observation that 

the lead genetic variant in TMEM106B highlighted in our analyses (rs1548884) shows some, albeit sub 

genome-wide, evidence for association with AD risk in the two largest and most recent GWAS in the 

field, i.e., P = 0.00005 and P=0.005 in Jansen et al. 1 and Kunkle et al. 2, respectively. In conclusion, 

our novel data now provide the genetic foundation for future work aimed at elucidating whether the 

observed increase in CSF NF-L levels represents a “cause” or “effect” of the neurodegenerative 

processes underlying symptomatic and pre-symptomatic AD. The observation that the same 

TMEM106B variants show association with both AD risk and CSF NF-L levels in independent datasets 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.125633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125633


Page 17 
 

provide a first indication that the recently proposed change in “NF-L dynamics” 9 may, indeed, 

contribute to AD neuropathology rather than simply reflecting an effect of the same. However, 

additional work is needed, e.g. replication of the original NF-L dynamics result and approaches 

applying Mendelian Randomization, to address this question more formally. Interestingly, across the 

neurodegenerative dementias, FTLD is among the diseases with the highest CSF NF-L concentrations 8.  

 

To our knowledge, the only other GWAS investigating CSF NF-L was performed on 265 non-demented 

individuals from the ADNI cohort 35. These authors highlighted two SNPs (i.e. rs465401 and rs460420) 

in ADAMTS1 to show genome-wide significant association with CSF NF-L. However, these results 

were not replicated in the EMIF-AD MBD dataset, where these SNPs showed P-values of 0.5485, and 

0.5391, respectively. Conversely, variants in TMEM106B were not highlighted as “peak results” in that 

study. However, apart from the difference in sample size, there were several additional noteworthy 

differences in the analysis approach used by us and Niu et al. 35 (e.g. they did not use genotype 

imputations to increase their coverage of untyped portions of the genome; in addition to sex and genetic 

ancestry, they also included age, education years, and APOE e4 status as covariates in the primary 

GWAS analyses). Future work in more individuals needs to determine whether the association between 

TMEM106B and CSF NF-L observed here will prove genuine. 

 

The second novel result emerging from our analyses imply that variants in CPOX (encoding 

coproporphyrinogen oxidase) are associated with YKL-40 levels in CSF. CPOX is ubiquitously 

expressed (based on GTEx release [v8]) and encodes an enzyme involved in the heme biosynthetic 

pathway. Intracellularly, it localizes to the mitochondria and catalyzes the 2-step oxidative 

decarboxylation of the heme precursor coproporphyrinogen III to protoporphyrinogen IX 

(https://omim.org/entry/612732). While common variants in this gene have hitherto not been associated 

with any human trait recorded in the “GWAS catalog”, rare mutations in CPOX can cause 
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coproporphyria and harderoporphyria (OMIM phenotype ID # 121300), hereditary forms of porphyrias 

characterized by enzyme deficiencies in the heme biosynthetic pathway. Previous work has suggested 

that heme has a strong affinity for binding Aβ-42 peptide in vitro 39, , leading to speculations that 

porphyrias – through mechanisms involved in the inherent intracellular heme deficiency caused by 

these diseases – could potentially alter the risk and / or course of AD 40. However, these potential links 

have not hitherto been directly proven in experimental or other work and must be considered 

“speculative”. Likewise, it remains unclear how variation in CPOX mRNA or protein expression 

should impact levels of YKL-40 in the CSF.  

 

Finally, the third main finding worth discussing is the cis pQTL result linking markers in CHI3L1 to 

CSF levels of YKL-40, which represents the strongest and most significant of all association signals in 

our GWAS. Several prior publications have implicated genetic variants in CHI3L1 to represent cis 

pQTLs of YKL-40 levels in blood 37,41–43 (for more details see: 

https://www.ebi.ac.uk/gwas/genes/CHI3L1). However, to the best of our knowledge, only one prior 

study has investigated YKL-40 levels in the human CSF 34. Notwithstanding that study’s relatively 

small sample size (n=133) and different ethnicity (Japanese), this GWAS, too, reported very 

pronounced cis pQTL effects of genetic variants in CHI3L1. Taken together, there is now compelling 

converging evidence that expression of YKL-40 in both blood and CSF is regulated by DNA sequence 

variants located in the very gene encoding this protein. These same variants are also found as eQTL and 

mQTLs in independent datasets. However, unlike the situation observed for our GWAS results for NF-

L, the YKL-40 regulatory SNPs do not show any evidence of association with AD risk in the GWAS by 

Jansen et al. 1 and Kunkle et al. 2. Thus, owing to this general absence of genetic association with AD 

risk it appears that the observed association between CSF YKL-40 and AD status 7 probably lies 

downstream of the initiation of AD neuropathology.  
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While our data highlights some important new insights into the genetic architecture underlying three 

CSF AD biomarkers and, hence, into the mechanisms underlying AD neuropathogenesis, our study is 

subject to some limitations. First and foremost, owing to the lack of appropriate datasets with both 

genome-wide SNP genotype and CSF data of the three biomarkers in question, we were unable to 

independently validate our association signals. For several other variables collected in EMIF-AD MDB, 

data from ADNI project has served as valuable independent reference, including some analyzed by 

GWAS (e.g. Hong S et al. 17). While ADNI investigators are in the process of collecting CSF data for 

NF-L, YKL-40, and Ng, data available with genetic information at the time of this study only ranged 

from n=82 to 125 in the whole-genome sequencing (WGS) subset of ADNI, precluding any meaningful 

GWAS analysis in this setting. Second, although our dataset is the first and / or largest to allow GWAS 

analyses on all three CSF variables covered, the sample size available for analysis is still relatively 

modest (range: 671 to 677), limiting our power to detect genetic variants of moderate to small effects. 

Thus, the results of our GWAS likely only represent the “lowest hanging fruit” of the genetic factors 

underlying the analyzed traits. Third, we note that while both the genome-wide SNP genotypes as well 

as CSF biomarker concentrations were generated in one run of consecutive experiments in two 

dedicated laboratories (one for genotyping, one for CSF markers; likely reducing the possibility of 

batch effects), the CSF specimen were collected individually at each of the 11 EMIF-AD MDB 

participating sites, sometimes using different collection procedures and CSF storage tubes. While this 

sampling heterogeneity could have affected all or some of our results (although YKL-40 and Ng were 

recently shown to be quite stable across a range of conditions 44, we note that CSF drawing was 

performed independent of genotype, so any batch effect in this particular setting should be minimal if 

present at all. Finally, we note that the EMIF-AD MBD dataset was not designed to be “representative” 

of the general population but was assembled with the aim to achieve approximately equal proportions 

of “amyloid+” vs. “amyloid-“ individuals across in individuals with normal cognition and MCI 

although this was only achieved for MCI (see Methods and Bos I et al. 16). While this ascertainment 
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strategy does not invalidate our GWAS results, they may not be generalizable to the population as a 

whole. However, this limitation can affect any study with clinically ascertained participants and, thus, 

applies to most previously published GWAS in the field, including those performed in ADNI.  

 

In conclusion, our GWAS on CSF NF-L, YKL-40 and Ng levels provides important new insights into 

the genetic architecture underlying inter-individual variation in these traits. Together with recent 

GWAS results on AD risk from case-control studies, they shed important new light on the sequence of 

events in relation to the initiation and progression of neuropathological processes relevant in AD. 

Additional work is needed to set our results onto a broader evidence-based foundation and to clarify the 

molecular mechanisms underlying the observed associations.  
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Legends to Figures and Tables 

Figure 1. Manhattan plots of 1A) SNP level and 1B) gene-level genome-wide association results using 

log-transformed CSF NF-L levels as outcome trait (n = 671). Gene assignments are according to 

FUMA 24. Dotted red lines represent the threshold for genome-wide significance, i.e. α = 5.0E-08 for 

SNP-based (1A) and α = 2.651E-6 for gene-based (1B) analyses (see Methods). 

Figure 2. Manhattan plots of 2A) SNP level and 2B) gene-level genome-wide association results using 

log-transformed CSF YKL-40 levels as outcome trait (n = 677). Gene assignments are according to 

FUMA 24. Dotted red lines represent the threshold for genome-wide significance, i.e., α = 5.0E-08 for 

SNP-based (2A) and α = 2.651E-6 for gene-based (2B) analyses (see Methods). 

Figure 3. Manhattan plots of 3A) SNP level and 3B) gene-level genome-wide association results using 

log-transformed CSF Ng levels as outcome trait (n = 672). Gene assignments are according to FUMA 

24. Dotted red lines represent the threshold for genome-wide significance, i.e., α = 5.0E-08 for SNP-

based (3A) and α = 2.651E-6 for gene-based (3B) analyses (see Methods). 

Table 1. Demographic information and summary of CSF traits used in GWAS analyses.   

Table 2. Top results from GWAS analyses of three CSF traits measured in the EMIF-AD MBD dataset. 
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CSF biomarker CSF biomarker description Detection method N

N male /

female Mean age ± SD (range) N Controls N MCI N AD

NF-L Neurofilament light ELISA (UmanDiagnostics) 671 319/352 69.49±8.35(45.94-92.29) 122 395 154

YKL-40 Chitinase-3-like protein 1 ELISA (R&D systems) 677 323/354 69.42±8.31(45.94-92.29) 122 401 154

Ng Neurogranin Immunoassay (in-house) 672 319/353 69.50±8.34(45.94-92.29) 122 398 152

Table 1. Demographic information and summary of CSF traits used in GWAS analyses.
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Trait ID Chr Pos Alleles MAF Beta Chi sq. P (SNP) N Method Nearest gene Annotation P (Gene)

CSF NF-L rs4654961 1p36.12 21865495 A/G 0.01 -0.359 30.6172 3.143E-08 671 Imputed ALPL intronic 0.20497

rs77589784 7p15.3 25481515 G/A 0.0118 -0.367 31.8765 1.643E-08 671 Imputed n.a. n.a. n.a.

rs1548884 7p21.3 12279761 C/A 0.4283 0.067 26.5102 2.622E-07 671 Imputed TMEM106B UTR3 2.6072E-07

rs111748411 7q36.1 152254171 A/C 0.0167 -0.403 35.7142 2.285E-09 671 Imputed AC104843.4 intergenic n.a.

rs3094407 7q36.1 152373705 T/G 0.027 0.236 30.1156 4.071E-08 671 Imputed XRCC2 upstream 0.21394

rs138898705 10q26.3 132563077 T/C 0.0106 -0.389 34.0991 5.238E-09 671 Imputed n.a. n.a. n.a.

CSF YKL40 rs7551263 1q32.1 203150756 C/T 0.1726 -0.166 40.9428 1.567E-10 677 Imputed CHI3L1 intronic 2.5151E-08

rs10399931 1q32.1 203156080 C/T 0.2381 -0.143 43.2614 4.789E-11 677 Imputed CHI3L1 upstream 2.5151E-08

rs58943879 3q11.2-12.1 98280429 C/T 0.4967 0.096 24.8797 6.102E-07 677 Imputed CPOX intronic 8.7456E-09

CSF Ng rs10052776 5p15.2 11178648 T/C 0.393 0.157 28.3327 1.022E-07 672 Imputed CTNND2 intronic 0.041368

rs8111341 19q13.33 48889558 G/A 0.156 -0.167 19.2079 1.17E-05 672 Imputed KDELR1 intronic 2.29E-05

Bold font indicates genome-wide significant (on SNP- or gene-level) results (see Methods for details).

Chr and Pos according to GRCh37/hg19.

Top results from these GWAS analyses can be found in the supplementary tables (except for KDELR1 ).

Table 2. Top results from GWAS analyses of three CSF traits measured in the EMIF-AD MBD dataset. 
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