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ABSTRACT 51 
Rare diseases affect hundreds of millions of people worldwide, and diagnosing their genetic 52 
causes is challenging. The Undiagnosed Diseases Network (UDN) was formed in 2014 to 53 
identify and treat novel rare genetic diseases, and despite many successes, more than half of 54 
UDN patients remain undiagnosed. The central hypothesis of this work is that many unsolved 55 
rare genetic disorders are caused by multiple variants in more than one gene. However, given 56 
the large number of variants in each individual genome, experimentally evaluating even just 57 
pairs of variants for potential to cause disease is currently infeasible. To address this challenge, 58 
we developed DiGePred, a random forest classifier for identifying candidate digenic disease 59 
gene pairs using features derived from biological networks, genomics, evolutionary history, and 60 
functional annotations. We trained the DiGePred classifier using DIDA, the largest available 61 
database of known digenic disease causing gene pairs, and several sets of non-digenic gene 62 
pairs, including variant pairs derived from unaffected relatives of UDN patients. DiGePred 63 
achieved high precision and recall in cross-validation and on a held out test set (PR area under 64 
the curve >77%), and we further demonstrate its utility using novel digenic pairs from the recent 65 
literature. In contrast to other approaches, DiGePred also appropriately controls the number of 66 
false positives when applied in realistic clinical settings like the UDN. Finally, to facilitate the 67 
rapid screening of variant gene pairs for digenic disease potential, we freely provide the 68 
predictions of DiGePred on all human gene pairs. Our work facilitates the discovery of genetic 69 
causes for rare non-monogenic diseases by providing a means to rapidly evaluate variant gene 70 
pairs for the potential to cause digenic disease.  71 
 72 
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INTRODUCTION 77 
Causal genetic variants have been identified for thousands of Mendelian diseases (Ionita-Laza 78 
et al., 2011; Ng et al., 2009, 2010). However, in spite of the advent of cheaper and more 79 
accurate sequencing technologies, causal variants have not been identified for approximately 80 
half (~3000) of known rare genetic diseases (Boycott et al., 2017, 2019; Chong et al., 2015). To 81 
help address this challenge, the Undiagnosed Diseases Network (UDN) was established by the 82 
NIH in 2014. Comprising teams of researchers and clinicians from 12 sites across the United 83 
States, the UDN integrates whole exome/genome sequencing with expert clinical evaluation to 84 
develop diagnoses and treatment plans for patients, who could not be diagnosed by 85 
conventional clinical approaches (Gahl et al., 2015, 2016; Ramoni et al., 2017). Although this 86 
approach has yielded much success, (Bostwick et al., 2017; Chao et al., 2017; Johnston et al., 87 
2018; Küry et al., 2017; Liu et al., 2018; Machol et al., 2018; Marcogliese et al., 2018; Oláhová 88 
et al., 2018b, 2018a; Poli et al., 2018; Pomerantz et al., 2018; Schoch et al., 2017; Tokita et al., 89 
2018) more than half of all UDN cases remain undiagnosed. We hypothesize that many of these 90 
unsolved, rare cases might involve variants in multiple genes that only when combined result in 91 
a disease phenotype complicating diagnosis.  92 

Variants in multiple genes can synergistically lead to disease via many different 93 
mechanisms (Auer et al., 2018; Badano and Katsanis, 2002; van Heyningen and Yeyati, 2004; 94 
Pehlivan et al., 2019). Digenic inheritance was first observed in 1994, when concurrent 95 
mutations in two genes were found to be responsible for causing retinitis pigmentosa.(Kajiwara 96 
et al., 1994) Digenic inheritance is the simplest form of oligogenic inheritance in which variants 97 
in multiple genes lead to disease.(Gazzo et al., 2016; Lupski, 2012; Schäffer, 2013) There are 98 
various classifications of digenic disease,(Deltas, 2018) but in all cases of digenic inheritance 99 
the phenotype results from variants in two genes. In isolation, the individual variants that form a 100 
digenic pair are benign or lead to a simpler phenotype. However, upon simultaneous mutation, 101 
the variants either interact to produce disease or combine to produce a more complex, and 102 
usually more severe, phenotype that cannot be explained by variants in one gene alone.  103 

The Digenic Diseases Database (DIDA) (Gazzo et al., 2016) has chronicled several 104 
hundred cases of digenic disease. Analyses of DIDA have revealed that digenic disease causing 105 
gene pairs are more likely to functionally and/or physically interact with one another than 106 
expected by chance (Gazzo et al., 2016). Machine learning approaches have been developed 107 
to distinguish between different types of digenic disease pairs (Gazzo et al., 2017) and to 108 
identify disease causing variant combinations, (Boudellioua et al., 2018; Papadimitriou et al., 109 
2019) including oligogenic combinations of greater than two genes (Renaux et al., 2019).  110 

We hypothesize that the disease phenotype in some unresolved UDN patients is likely a 111 
result of digenic inheritance and develop DiGePred, a high-throughput machine learning tool for 112 
evaluating the likelihood that dysfunction of gene pairs leads to digenic disease. We focus on 113 
the specific challenge of identifying gene pairs that have functional or phenotypic synergy to 114 
cause a digenic disease when both are disrupted in a patient. Our approach is based on 115 
supervised machine learning using a random forest classifier trained on diverse functional, 116 
network, and evolutionary properties of known digenic gene pairs versus realistic sets of non-117 
digenic gene pairs, including variant pairs from healthy individuals. We demonstrate that 118 
DiGePred is accurate and that, in comparison to recent approaches, it has a low false positive 119 
rate, which is essential for clinical applications. To aid in rapid screening of patients for potential 120 
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digenic disease variants, we provide a classification of the digenic disease potential for all 121 
human gene pairs.  122 

RESULTS 123 
Digenic disease gene pairs have different attributes than non-digenic disease gene pairs 124 
Our goal in this study is to develop a machine learning classifier for identifying gene pairs that 125 
are likely to cause disease when both are disrupted simultaneously, but fail to produce a strong 126 
disease phenotype when disrupted in isolation. To this end, we consider all unique known 127 
digenic disease pairs curated by the DIDA database and contrast them with several sets of non-128 
digenic disease pairs. Since our ultimate application is the detection of potential digenic 129 
diseases in patients, most of our results focus on comparisons of known digenic gene pairs and 130 
gene pairs with variants in 58 “unaffected” parents, siblings, and other relatives of 25 UDN 131 
patients (Figure 1A). However, as we show below, our results are similar using other strategies 132 
for defining non-digenic disease gene pairs. 133 

Pairs of genes harboring mutations known to cause digenic disease have distinct 134 
biological properties when compared with random gene pairs (Gazzo et al., 2016). Previous 135 
work has shown that digenic disease pairs have high protein interaction network connectivity 136 
and proximity. More than 35% of known digenic disease pairs directly interact on a protein-137 
protein interaction (PPI) network, and ~60% of digenic gene pairs are one gene away on the 138 
interaction network. Similarly, ~20% of digenic pairs are in the same biochemical pathway, and 139 
~40% are expressed in the same tissues (Gazzo et al., 2016). 140 

Based on this prior knowledge we devised a list of six “network and functional features” 141 
(NFFs) to use as attributes for distinguishing between digenic and non-digenic gene pairs 142 
(Figure 1B): 1) Pathway Similarity, defined as the Jaccard similarity (Jaccard, 1912) between 143 
the genes’ membership in ~1800 pathways from KEGG (Kanehisa et al., 2017) and Reactome 144 
(Fabregat et al., 2018; Milacic et al., 2012); 2) Phenotype Similarity, the Jaccard similarity 145 
between the ~6000 phenotypes from Human Phenotype Ontology (HPO) (Köhler et al., 2017) 146 
associated with the genes; 3) Co-expression Rank, defined as the rank of the co-expression of 147 
the genes across 23 co-expression platforms compared to other gene pairs from COXPRESdb 148 
(Okamura et al., 2015); 4) PPI Distance, the distance on a global PPI network; 5) Pathway 149 
Distance, the distance on an annotated biochemical pathway network; and 6) Literature 150 
Distance, the distance on a literature-mined interaction network, derived from the UCSC gene 151 
and pathway interaction database (Poon et al., 2014). 152 

We compared the distribution of the NFFs for digenic and non-digenic gene pairs from 153 
unaffected relatives of UDN patients, and as expected from previous work, the distribution of 154 
each NFF was significantly different between digenic and non-digenic pairs (Figure S1; P < 10–155 
20 for each, Mann-Whitney U (MWU) test). This suggests that a machine learning approach may 156 
enable distinguishing digenic from non-digenic disease pairs. 157 
 158 
Random forest classifiers accurately identify digenic pairs using network and functional 159 
features 160 
We trained the random forest machine learning classifier using the six NFFs to distinguish 140 161 
digenic disease gene pairs (positives) from ~8,400 non-digenic gene pairs, derived from genes 162 
with rare variants (allele frequency <1%) in unaffected relatives of UDN patients (negatives). 163 
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The large class imbalance (~1:75) reflects the expectation that only a very small fraction of gene 164 
pairs are likely to produce digenic disease. For example, comprehensive studies of genetic 165 
interactions have found that one in approximately 40 gene pairs interact.(Costanzo et al., 2016) 166 

We divided the available gene pairs into training (64%), validation (16%), and testing 167 
sets (20%). We trained, evaluated, and compared different models using 10-fold cross-168 
validation within the training and validation sets (Figure 2). The testing set was only analyzed 169 
after models had been finalized. We evaluated performance using Receiver Operating 170 
Characteristic (ROC) and Precision-Recall (PR) curves.  171 

The random forest classifier distinguished digenic and non-digenic gene pairs very 172 
accurately using the six NFFs. It achieved an average ROC area under the curve (AUC) of 0.91 173 
and a PR AUC of 0.69 on average over 10 folds of cross-validation (Figure 3). Though the PR 174 
AUC is lower than the ROC AUC, the algorithm retains near perfect precision at recall above 175 
60% (Figure 3B). 176 

 177 
Including additional features improves ability to identify digenic disease genes  178 
The performance of the classifier based on the six NFFs alone was strong; however, there are 179 
many other sources of biological information beyond the NFFs that could potentially inform 180 
either the nature of the relationship between genes or the relative likelihood and risk of a gene 181 
being mutated and causing disease. We tested if additional features in training the classifier 182 
would increase performance and contribute to the robustness of the classifier.  183 

First, we trained classifiers using the six NFFs and five additional evolutionary features 184 
that reflect the evolutionary history and constraint on the genes (Figure S3). These features 185 
were: 1) the evolutionary ages of the genes; 2) their essentiality; 3) their intolerance to loss of 186 
function mutations, 4) the selection pressure acting on them through mammalian evolution 187 
(dN/dS) and 5) their haploinsufficiency scores. Since each of these features applies to a single 188 
gene (rather than a pair), we created two features for each pair. The addition of evolutionary 189 
features substantially improved classifier performance: average ROC AUC of 0.96 and PR AUC 190 
of 0.73 (Figure 3). 191 

Next, we considered additional features derived from network and functional annotations 192 
of the gene pairs (Figure S3). These features were designed to add additional gene-focused 193 
(rather than gene-pair-focused) context and explore the sufficiency of the six NFFs. These 194 
features were: 1) the number of pathways, 2) phenotypes, 3) network neighbors, and 4) genes 195 
co-expressed for each individual gene in a candidate pair. Considering these features also 196 
further improved classifier performance, with an average ROC AUC of 0.99 and PR AUC of 0.77 197 
with all features (Figure 3). 198 

Digenic disease genes can be distinguished from many non-digenic gene sets 199 
To further explore the properties of digenic disease genes and the ability of our classification 200 
approach to recognize them, we defined three additional sets of non-digenic disease gene pairs 201 
(Figure S2). First, we created a “random” set of non-digenic gene pairs by randomly selecting 202 
gene pairs from all possible human genes (excluding known digenic pairs). Second, we 203 
constructed a “permuted” non-digenic set by generating all possible gene pairs from genes 204 
known to be involved in a digenic gene pair, and removing the pairs known to be digenic. Third, 205 
we created a “matched” non-digenic gene pair set that closely matched the NFF distributions of 206 
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the digenic gene pairs (Figure S4). However, we note that we were not able to match the 207 
distribution of all NFFs perfectly given the skewed distribution of the digenic disease pairs. The 208 
matched set enables exploration of how well our classification approach can identify digenic 209 
pairs among non-digenic pairs with similar NFF distributions.  210 
 We used the same training and evaluation approach as described for the unaffected 211 
negative set to train random forest classifiers to distinguish digenic disease gene pairs from 212 
each of these three additional negative sets using all the network, functional, and evolutionary 213 
features. In each case, the classifiers performed very well (Figures 4, S5). As expected, the 214 
classifier trained to distinguish digenic pairs from random pairs performed the best (average 215 
ROC AUC of 0.98 and PR AUC of 0.73). Given the similar attributes between the digenic 216 
disease and the other negative sets, the permuted and matched classifiers performed slightly 217 
less well, but still achieved very strong performance with average ROC AUCs of 0.98 and 0.98 218 
and PR AUCs of 0.59 and 0.61, respectively.  219 
 220 
Feature importance varies for classifiers trained on different non-digenic sets 221 
We estimated the importance of the features to the classifiers using the mean decrease in node 222 
impurity approach (Figure S6). For the classifier trained using variant gene pairs from 223 
unaffected relatives, the number of phenotypes shared between the pair, number of pathways 224 
shared, and the overall number of annotated phenotypes were the most important features 225 
(28%, 9%, and 9% of the weight, respectively). The feature importance values were similar for 226 
the classifiers trained using random gene pairs and permuted digenic gene pairs (Figure S6).  227 

The feature importance values were most different for the matched classifier with 228 
significantly lower feature importance for the NFFs. This was expected, because the differences 229 
between the positive and negative training examples in individual NFFs were minimal for this 230 
classifier. Instead, a range of evolutionary and individual gene-level functional features took on 231 
similar levels of importance (Figure S6). This indicates that information in gene-level features 232 
related to evolution, gene importance, and relevance to physiology contain useful information 233 
about the likelihood of gene pairs interacting to produce digenic disease.  234 
 235 
DiGePred accurately identifies held-out digenic pairs  236 
Based on the previous results, the best performing model was the classifier trained on the 237 
unaffected non-digenic gene pairs using all the features. Furthermore, this classifier most 238 
closely reflects the distribution of gene mutations likely to be seen in real clinical applications. 239 
To obtain an unbiased estimate of its performance, we evaluated it using held-out sets of 240 
digenic and non-digenic pairs. These sets were not used for training or validating the classifier 241 
and maintained the ~1:75 ratio used during training. Since we have a large number of 242 
unaffected gene pairs, we repeated the evaluation 100 times using the same set of digenic pairs 243 
(n=28), but unique sets of unaffected non-digenic gene pairs.  244 

The mean ROC AUC for the evaluation on the held-out sets was 0.994, while the mean 245 
PR AUC was 0.91 (Figure 5). We evaluated the performance of classifiers trained on the other 246 
non-digenic gene pair sets on their corresponding held-out sets, and the ROC AUCs were > 247 
0.97 and PR AUCs were > 0.50 in all cases. (Figure S7) We also trained and evaluated 248 
classifiers on datasets constructed so that no individual genes overlapped between the training 249 
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and testing sets. As expected, this task was more difficult, but performance was still very strong 250 
with ROC AUC of 0.96 and PR AUC of 0.68 (Figure S8). 251 

To establish prediction thresholds on the output of this classifier, we computed 252 
thresholds that maximize the F1 and F0.5 scores. The F1 is maximized at a digenic score of 253 
0.369, and the F0.5 is maximized at a digenic score of 0.534. Since we anticipate that precision 254 
is more important than recall in most applications, we suggest use of the F0.5-based threshold. 255 
At this threshold, the classifier correctly identified 20 of 28 digenic gene pairs in the held-out test 256 
set, with a false positive rate of 0.026% (Figure 5, Supplementary Table 1). We refer to this 257 
model as the DiGenic Predictor (DiGePred). 258 

DiGePred identifies novel digenic pairs from the recent literature 259 
While the test set was not seen by the classifier prior to evaluation, it was still obtained from 260 
DIDA, the source of digenic pairs for training and testing. Thus, we further applied our classifier 261 
to 13 new digenic pairs obtained from recent literature, not included in DIDA (Supplementary 262 
Table 2). We derived three digenic pairs ((CEP290, RPE65), (AHI1,CEP290), (CEP290, CRB1)) 263 
from the validation set used by a recently published digenic classifier (Papadimitriou et al., 264 
2019). The other digenic gene pairs ((CLCNKA, CLCNKB), (TCF3, TNFRSF13B),  (IFNAR1, 265 
IFNGR2), (PCDH15, USH1G), (LAMA4, MYH7), (KCNE2, KCNH2), (CLCNKB, SLC12A3),  266 
(CACNA1C, SCN5A), (FGFR1, KLB), (CLCN7, TCIRG1)) were derived from recently reported 267 
cases of digenic disease, respectively: (Abdallah et al., 2019; Ameratunga et al., 2017; Heida et 268 
al., 2019; Hoyos-Bachiloglu et al., 2017; Kong et al., 2019; Nieto-Marín et al., 2019; Nozu et al., 269 
2008; Schrauwen et al., 2018; Stone et al., 2019; Yang et al., 2018).  270 

DiGePred correctly identified 9 of the 13 novel digenic pairs at the F0.5 threshold, with an 271 
expected false positive rate of 0.012% or lower. (Figure 5). Two of the gene pairs missed at the 272 
F0.5 threshold, CACNA1C and SCN5A (Nieto-Marín) and FGFR1 and KLB (Stone) were 273 
identified as digenic at the F1 threshold, at FPRs of 0.034% and 0.056%, respectively. Among 274 
the two other pairs missed, IFNAR1 and IFNGR2 (Hoyos-Bachiloglu) had very low phenotype 275 
coverage, while LAMA4 and MYH7 (Abdallah) was identified as digenic by the matched 276 
classifier (Figure S9). 277 

While searching the recent literature for novel digenic pairs, we also found a case that 278 
did not meet the strict criteria for digenic interaction, but that did have fucntional synergy 279 
between two genes leading to a disease phenotype. The gene pair comes from a solved UDN 280 
case in which variants in FBN1 and TRPS1 were implicated in the patient phenotype, but these 281 
variants did not interact (Zastrow et al., 2017). DiGePred identified this gene pair as non-282 
digenic; nonetheless, it had a higher digenic score than 99% of the non-digenic gene pairs 283 
(Supplementary Table 3), suggesting the potential of the classifier to highlight pairs of 284 
functionally related genes.  285 

DiGePred has a low false positive rate in real-world applications  286 
Individuals often carry hundreds of protein-coding variants of unknown significance, which 287 
results in thousands of potential digenic disease pairs per individual. Thus, when considering 288 
the application of classifiers to individuals’ genomes, it is essential to understand and control the 289 
false positive rate. To this end, we evaluated DiGePred on gene pairs with rare variants 290 
predicted to disrupt protein function in 38 human genomes from unaffected parents and 291 
relatives of UDN patients not used in training the algorithm. These healthy individuals should not 292 
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contain any true digenic disease pairs, so any positive predictions on gene pairs from these 293 
individuals are very likely to be false positives. The gene pairs from these individuals were not 294 
used in the training, testing, or held-out sets.  295 
 At the F0.5 threshold, 13% of unaffected individuals had no predicted candidate digenic 296 
pairs and 50% had only one candidate digenic pair. On average, two digenic pairs were 297 
predicted per individual, and only two individuals had more than five digenic pairs (Figures 6, 298 
S10). Furthermore, no gene pairs with rare variants have scores above 0.9 (Figure S10). This 299 
suggests that users can adjust the score threshold to reflect their tolerance for false positives. In 300 
contrast, we applied the recently published ORVAL (Papadimitriou et al., 2019; Renaux et al., 301 
2019) method for identifying digenic disease pairs to variants from these same individuals. At its 302 
highest confidence threshold, ORVAL predicted that all these healthy individuals have digenic 303 
disease pairs, with an average of 855 highest confidence digenic pairs per individual and more 304 
than a thousand digenic pairs predicted for 28 (~74%) individuals, with all of the individuals 305 
being predicted with > 300 digenic pairs. (Figure 6). This is a significantly larger number of 306 
candidate digenic disease pairs per individual than DiGePred (P = 2.07x10-14, MWU test), and 307 
these are all very likely to be false positives. This difference in number of false positives was 308 
recapitulated for all gene selection criteria and all models of training considered (Figures S11-309 
16). 310 
 311 
Prediction of digenic pairs among all human gene pairs at various confidence thresholds 312 
To aid in the rapid evaluation of digenic disease potential for a pair of genes of interest, we 313 
updated DiGePred by training the method using all digenic pairs from DIDA (to make use of all 314 
known digenic pairs) and variant gene pairs from healthy relatives of UDN patients. We applied 315 
DiGePred to all possible human gene pairs. A gene pair was deemed a candidate digenic pair if 316 
the digenic score met the F0.5 threshold as described above. As expected, the percentage of all 317 
possible gene pairs that were identified as digenic at our most confident threshold was very low 318 
(33,272 out of 155.33 million gene pairs, 0.021%). These predictions and the raw digenic scores 319 
are available in Supplementary Table 4.  320 
 Overall, 4336 genes are involved in at least one predicted digenic pair. This illustrates 321 
that DiGePred is not just prioritizing gene pairs that include a gene in a known digenic pair. In 322 
fact, only 8 of the top 100 genes with the most predicted digenic pairs occur in DIDA. These 323 
genes are enriched for Gene Ontology functional annotations “translational initiation” and 324 
“structural component of ribosome”. For example, the gene ARID1B, which has the highest 325 
number of predicted digenic pairs, with 188, encodes a component of the SWI/SNF chromatin 326 
remodeling complex with broad regulatory functions across the genome. CEP290, a centrosome 327 
protein, with essential roles in centrosome and cilia development in many cell types has the 328 
second most predicted digenic interactions with 186. The genes with the most predicted digenic 329 
pairs were also enriched for several GO metabolic processes. Many of the other genes with 330 
large numbers of predicted digenic partners have roles in translation, RNA metabolism and 331 
cellular transport (Figure S17-19, Supplementary Tables 5-7). The top 100 gene pairs with the 332 
highest average scores were enriched for electron carriers and transcription co-activators. 333 

We found that 8,649 (26%) of predicted digenic gene pairs had at least one recessive 334 
phenotype associated with one of them in OMIM (Amberger et al., 2008, 2015; McKusick, 335 
2007). In more than a quarter of these cases (2241; 25.91%), at least one phenotype was in 336 
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common or with high semantic similarity (Yujian and Bo, 2007) between the two genes. For 337 
most of these gene pairs (2151; 95.98%), there were different OMIM annotation codes, which 338 
suggest novel associations.  339 

Many of these predicted novel digenic gene pairs have plausible mechanisms. For 340 
example, a digenic pair comprising STIM1 and ORAI1 had the 17th highest score over all human 341 
gene pairs. It has been previously reported that STIM1 and ORAI1 function together to form 342 
Ca2+ release-activated Ca2+ (CRAC) channels, which are responsible for Ca2+ influx called store-343 
operated Ca2+ entry (SOCE) (Soboloff et al., 2006). The proper functioning of these channels is 344 
necessary for maintaining the normal physiology of several cell types, including T cell receptors 345 
and human lymphocytes (Lewis, 2001; Lioudyno et al., 2008; Partisetis et al., 1994). Missense 346 
variants in STIM1 and ORAI1, individually, cause diseases with a great degree of phenotypic 347 
homogeneity (Lacruz and Feske, 2015). Loss of function variants in STIM1 and ORAI1 have 348 
also been known to cause immunodeficiency, (Feske et al., 2006; McCarl et al., 2009; Picard et 349 
al., 2009; Zhang et al., 2015) under autosomal recessive conditions, as reported by OMIM. 350 
Therefore, it is possible that single loss of variants in both genes occurring simultaneously could 351 
lead to the autosomal recessive immunodeficiency. 352 
 353 

DISCUSSION 354 
In this paper we describe DiGePred, a high-throughput machine-learning approach to identify 355 
gene pairs with the potential to cause digenic disease. We demonstrate the accuracy and 356 
robustness of our approach in several realistic scenarios. We were motivated to create 357 
DiGePred by the challenge of identifying causal variants in patients with rare disease that 358 
cannot be explained by a single variant. It is currently unfeasible to experimentally evaluate all 359 
potentially causal pairs of variants in a patient of interest. Thus, to facilitate the rapid 360 
identification of candidate digenic gene pairs in patients, we provide DiGePred predictions for all 361 
pairs of human genes at several confidence thresholds (Supplementary Tables 4, 8). 362 

The DiGePred classifier trained using the “unaffected” negative set is best suited to the 363 
purpose of identifying digenic pairs in patients with rare disease, because it reflects the baseline 364 
distribution of gene pairs with variants in unaffected individuals related to patients using clinical 365 
sequencing pipelines. It was also our best performing classifier. However, we demonstrated that 366 
our approach preforms well at distinguishing digenic pairs from several different sets of 367 
candidate non-digenic gene pairs and that the features used by these classifiers are similar 368 
unless the prediction problem is explicitly engineered to make them different (Figure S6).  369 

Nonetheless, there is still much to learn about the mechanisms underlying digenic 370 
diseases. The features prioritized by our models support previous work (Gazzo et al., 2017, 371 
2016) in that phenotypic similarity, number of phenotypes, and involvement in the same 372 
molecular pathways are the most important predictors, and they suggest that these may be 373 
more specific predictors of digenic gene pairs than similar co-expression profiles or close 374 
interaction network distance. Our results using negatives that match the network and functional 375 
features between positives and negatives sets indicate that digenic gene pairs also have 376 
differences in their evolutionary attributes. As more digenic disease pairs are identified, we 377 
anticipate that even better predictive models will be developed and that these models will yield 378 
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insight into the genes, pathways, evolutionary histories, and phenotypes associated with digenic 379 
pairs. 380 

Our approach intentionally separates the prediction of variants’ effects on gene function 381 
from the identification of gene pairs that could cause disease when their functions are disrupted 382 
simultaneously. The focus on gene pairs is reflected in our use of gene level and gene-pair level 383 
systems biology, biological network, and evolutionary features that represent genes as a whole. 384 
The question of whether a variant affects gene function has been studied extensively. There are 385 
many methods for interpreting variants of unknown significance,(Adzhubei et al., 2010; 386 
Ashkenazy et al.; Celniker et al.; Glaser et al., 2003; Kircher et al., 2014a; Kumar et al., 2009; 387 
Rentzsch et al., 2019), but there is low concordance between them (Castellana and Mazza; 388 
Dong et al., 2014). The decoupling of these tasks enables users to apply the approaches they 389 
believe to be most appropriate for identifying gene pairs of interest before screening for digenic 390 
disease potential. For example, in our collaboration with the UDN, this includes application of 391 
computational variant effect predictors, study of inheritance patterns, and clinical expertise. Our 392 
classifiers perform similarly well whether trained against gene pairs that have predicted 393 
disruptive variants or on all variant pairs from individuals (Figures S11-16). In the future, it may 394 
be beneficial to incorporate variant-level and gene-level information into a single algorithm, in 395 
particular in cases where there is structural information about the proteins of interest. Indeed, 396 
we have had success incorporating 3D modeling of variants and their interactions with the UDN. 397 
However, as we describe in the next paragraph, improper incorporation of variant information 398 
has potential to cause high false positive rates. 399 

We compared DiGePred to the recently published ORVAL/VarCOPP digenic disease 400 
prediction server. This method was also developed using DIDA as positive training data and is 401 
only available as a web server, so it was not possible to evaluate its performance in our training, 402 
validation, testing framework. Thus, we applied it to variant gene pairs from the 38 held-out 403 
unaffected relatives of UDN patients. This reflects the intended clinical application of the tool. At 404 
its strictest (99%) prediction threshold, we found an average of 855 predicted digenic disease 405 
pairs per individual without disease. This is an unacceptably high false positive rate for clinical 406 
use. In contrast, DiGePred predicts one or fewer digenic pairs for 63% of these individuals and 407 
an average of two digenic pairs per individual overall. Our analysis of the ORVAL method 408 
suggests that if one of the genes in a pair carries a variant that is predicted to be pathogenic by 409 
ORVAL’s variant effect prediction component, then the gene pair is very likely to be predicted to 410 
be digenic. Thus, it does not capture a signal specific to digenic disease. 411 

Going forward, there is still much work needed to fully understand and accurately identify 412 
novel cases of digenic disease. Most importantly, more characterized examples of digenic 413 
diseases and their causal molecular mechanisms are needed. Our analyses are based on the  414 
examples available in DIDA, but there are likely hundreds or even thousands of undiscovered 415 
cases. We anticipate that our algorithms will further improve with more data. We also believe 416 
that there is the potential to integrate information from large-scale screens of genetic and 417 
synthetic lethal interactions in human cell lines and model organisms (Gong et al., 2018; Guo et 418 
al., 2015; Li et al., 2014; Nijman, 2011; O’Neil et al., 2017; Srivas et al., 2016).  419 

In summary, we have developed DiGePred, a method for identifying gene pairs with 420 
digenic disease potential, and generated predictions for all pairs of human genes. Our use of 421 
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this tool with the UDN illustrates its potential to provide insight in real-world settings, and we 422 
anticipate that it will have broad utility in clinical genome interpretation. 423 

 424 

METHODS 425 
Digenic gene pairs 426 
We obtained known digenic disease gene pairs from the DIgenic Diseases Database (DIDA) 427 
(Gazzo et al., 2016). There were 140 unique gene pairs in DIDA. These pairs served as the 428 
“positive” training data for the machine learning classifier and were termed the digenic set of 429 
gene pairs. DIDA provides information about the genes mutated together in cases of digenic 430 
disease, the variants in the genes, the number of variants on both alleles, as well as information 431 
concerning the connectivity of the genes forming a gene pair such as distance on PPI network, 432 
whether expressed in same tissue, whether members of the same biochemical pathway, and 433 
whether annotated to have the same function. The additional list of digenic pairs discussed in a 434 
follow up paper by the group that produced DIDA (Gazzo et al., 2017) were not used for 435 
training. 436 
 437 
Non-digenic gene pairs 438 
We generated several sets of putative non-digenic gene pairs that served as the “negative” data 439 
in training different classifiers. The unaffected non-digenic set was created from genes with 440 
variants in the sequenced exomes or genomes of relatives of UDN patients deemed unaffected 441 
by the UDN. Thus, we consider any combination of genes observed to be mutated 442 
simultaneously in any one “unaffected” individual to be non-digenic. Combining gene pairs from 443 
55 individuals, the unaffected set contains 1.8 million gene pairs. The random non-digenic set 444 
was created by selecting random pairs from the list of all human genes. The permuted non-445 
digenic set was created by generating all possible pairs of two genes from the DIDA genes 446 
excluding actual DIDA pairs; this resulted in 13,390 permuted gene pairs. We created the 447 
matched non-digenic gene pair set from the random gene pairs by selecting gene pairs such 448 
that the distribution of the six NFFs match those of the digenic set. The digenic gene pairs were 449 
binned by dividing the distribution of features into equal sized intervals, such that every feature 450 
value data interval had an equal number of gene pairs. We selected random gene pairs for the 451 
matched set such that the distributions of feature values for all the selected pairs recapitulated 452 
the overall distribution for all features of the digenic set, simultaneously.  453 
 454 
Six Network and Functional Features  455 
 456 
Pathway similarity 457 
The pathway annotations for the genes were derived from KEGG (Kanehisa et al., 2017) and 458 
Reactome (Fabregat et al., 2018). The Jaccard similarity metric (Jaccard, 1912) was used to 459 
calculate the proportion of pathway overlap between the two genes. The Jaccard similarity is 460 
measured by the ratio between the intersection of two sets and the union of two sets. In this 461 
case, the pathway similarity was calculated by taking the ratio of pathways annotations in 462 
common with both genes and pathway annotations associated with either. If both genes did not 463 
have pathway annotation, the similarity value was 0. 464 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.125716doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125716


 12 

Phenotype similarity 465 
The phenotype annotations from the Human Phenotype Ontology (HPO) (Köhler et al., 2017) for 466 
the genes were used as features. The phenotypic overlap between the two genes was 467 
calculated similarly, as above, using the Jaccard similarity metric. The value for missing 468 
phenotype annotations was 0. 469 
Co-expression 470 
The co-expession data was derived from the COXPRESdb web server version 7.3 (Okamura et 471 
al., 2015). The data is in the form of a mutual co-expression rank, which indicated how likely it 472 
was for a pair of genes to be co-expressed in the same tissue and the same level compared to 473 
other gene pairs. A lower rank indicated high co-expression. The inverse of the rank was used 474 
as the feature and if either gene was not found in the co-expression database, the value used 475 
was 0. 476 
The network data was downloaded from the UCSC gene and pathway interaction browser 477 
(Poon et al., 2014), which in turn was derived from other sources of data, such as protein-478 
protein interaction (PPI) databases (Ruepp et al., 2007, 2010; Szklarczyk et al., 2017; Turner et 479 
al., 2010), functional annotation databases (Nédélec et al., 2016) and others. 480 
PPI distance 481 
The PPI network was based on experimental data regarding protein interactions. The inverse of 482 
the shortest path between a pair of genes on this network was used as the PPI distance feature.  483 
Pathway distance 484 
The pathways interaction network was based on interactions between the various curated 485 
biochemical pathways. The inverse of the shortest path between a pair of genes on this network 486 
was used as the pathway distance feature.  487 
Literature distance 488 
The literature mined interaction network was made up of interactions derived from reported 489 
interactions or predicted associations in published biomedical literature. The inverse of the 490 
shortest path between a pair of genes on this network was used as the literature distance 491 
feature.  492 
 493 
Five Evolutionary Features  494 
Evolutionary age  495 
We obtained the evolutionary ages of the proteins coded by the genes using ProteinHistorian 496 
(Capra et al., 2012). This conveyed the idea of how long ago did they first evolve and in which 497 
organisms. Older genes are usually more conserved and dysfunction of these genes could have 498 
a considerable impact on normal physiology. The scores for both genes were used. 499 
Gene essentiality  500 
The gene essentiality scores provide a rank of how important and vital a gene is for normal 501 
physiology, viability and survival. They were derived from the OGEE webserver (Chen et al., 502 
2012, 2017). The essentiality scores are based on knockout (KO) experiments in model 503 
organisms and cell based assays. The scores for both genes were used. 504 
Loss of function intolerance (pLI) 505 
We added the loss of function intolerance (pLI) scores (Fadista et al., 2016), obtained from the 506 
EXAC consortium. These scores were based on the difference between actual mutation 507 
incidence and expected mutation frequency. A depletion of mutation incidence, compared to 508 
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expected frequency, could mean the inability of the organism to survive if the gene was 509 
mutated. The scores for both genes were used. 510 
Selection pressure (dN/dS) 511 
We used measures of selection pressure in the form of dN/dS scores for the genes. These were 512 
derived from the EVOLA web server (Matsuya et al., 2007). dN/dS ratios give a measure of the 513 
ratio between the non-synonymous mutations and synonymous mutations during evolution. This 514 
ratio tells us whether the gene has been evolving under strong positive, negative or neutral 515 
selection. The scores for both genes were used. 516 
Haploinsufficiency 517 
We used the Haploinsufficiency scores (Huang et al., 2010) which were in the form of 518 
predictions of which genes were haploinsufficient, based on observed mutations. The scores for 519 
both genes were used. 520 
 521 
Gene-focused network and functional features 522 
Number of pathways 523 
The features used for the classifier were the number of pathways associated with gene A and 524 
the number of pathways associated with gene B  525 
Number of phenotypes 526 
Similar to the pathways, the features used for the classifier were number of phenotypes 527 
associated with gene A and with gene B, individually. 528 
Network neighbors 529 
The features used were number of genes in the network, directly connected to gene A and to 530 
gene B, individually. Additionally, the number of shared network neighbors was also used which 531 
was defined as the number of genes directly connected to both gene A and B . These metrics 532 
were defined for all three types of interaction networks. 533 
Number co-expressed 534 
The features used in the classifier were number of genes highly co-expressed with gene A and 535 
the number of genes highly co-expressed with gene B, individually. Additionally, the number of 536 
genes highly co-expressed with both gene A and gene B, was used. Highly co-expressed genes 537 
were defined using a mutual co-expression rank of 500 (out of possible 20,000). 538 
 539 
Performance Quantification 540 
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves were computed to 541 
evaluate the performance of the classifiers. The ROC curve plots the False Positive Rate (FPR) 542 
on the x-axis and the True Positive Rate (TPR) on the y-axis. The area under each curve (AUC) 543 
was used to summarize performance. 544 
 545 
Training and Testing the DiGePred Random Forest Models 546 
We trained several random forest (RF) classifiers to distinguish digenic and non-digenic gene 547 
pairs. We selected RFs because they can integrate diverse features, perform well on 548 
unbalanced positive and negative sets, and provide interpretable models. The sci-kit learn 549 
(sklearn) python module was used for all training, evaluation, and prediction (Pedregosa et al., 550 
2011). Hyper-parameters were selected by nested cross validation on 80% of the labeled gene 551 
pairs. A stratified shuffle split was used for 10-fold cross validation. This method involved 552 
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splitting the data into 10 equal parts, with each part of the data containing approximately the 553 
same ratio of positives and negatives as the other parts. The optimum number of trees was 554 
found to be 500 and the maximum depth was found to be 15. Based on these analyses, we 555 
selected the classifier trained with the unaffected negative pairs and all features as the best 556 
model, and we refer to this as the DiGePred classifier. 557 

The remaining 20% of the combined labeled data was held out for final performance 558 
validation of this best model from the cross-validation. These pairs had not been previously 559 
evaluated by the classifier. In addition to the held-out positive digenic pairs, we generated 100 560 
sets of held-out non-digenic pairs for evaluation. This enabled us to evaluate the best classifier 561 
100 fold, with the same positive digenic pairs used in every iteration, but a unique non-562 
overlapping set of held-out non-digenic pairs in every iteration.  563 
 564 
Evaluation using additional digenic pairs not in DIDA 565 
The classifier was further evaluated using an external set, made up of gene pairs considered to 566 
be digenic that were reported after DIDA was compiled. The external evaluation set was used in 567 
the previously published variant combination pathogenicity predictor (VarCOPP/ ORVAL) 568 
(Papadimitriou et al., 2019; Renaux et al., 2019). This set had three unique gene pairs, which 569 
did not overlap with DIDA pairs. These gene pairs (AHI1, CEP290), (CEP290, CRB1) and 570 
(CEP290, RPE65) was labeled Papadimitrou et al., 19 validation set. We included recently 571 
discovered novel digenic inheritance of profound non-syndromic hearing impairment caused by 572 
(PCDH15, USH1G) (Schrauwen et al., 2018). In addition, three recently reported cases of 573 
digenic inheritance in immune disorders were used. Ameratunga et al., 17 identified epistatic 574 
interactions between TACI and TCF3 (or TNFRSF13B) resulting in severe primary 575 
immunodeficiency disorder and systemic lupus erythematosus (Ameratunga et al., 2017). 576 
Hoyos-Bachiloglu et al., 17 discussed how human immunodeficiency was caused by mutations 577 
in IFNAR1 and IFNGR2 (Hoyos-Bachiloglu et al., 2017). More recent digenic findings such as 578 
(LAMA4, MYH7) linked to infantile dilated cardiomyopathy (Abdallah et al., 2019) from Abdallah 579 
et al., 19; (KCNE2, KCNH2) linked to long QT syndrome types 2 and 6 (Heida et al., 2019) from 580 
Heida et al., 2019; (CLCNKB, SLC12A3) linked to Gitelman syndrome (Kong et al., 2019) from 581 
Kong et al., 2019; (CACNA1C, SCN5A) linked to Long QT phenotype (Nieto-Marín et al., 2019) 582 
from Nieto-Marín et al., 2019; (FGFR1, KLB) linked to insulin resistance (Stone et al., 2019) and 583 
diabetes from Stone et al., 2019; (CLCNKA, CLCNKB) linked to Bartter syndrome with 584 
sensorineural deafness (Nozu et al., 2008) from Nozu et al., 2008; and (CLCN7, TCIRG1) linked 585 
to osteoporosis (Yang et al., 2018) from Yang et al., 2018 were used to assess the classifier as 586 
well.  587 

We also included gene pairs not characterized as digenic, but displaying functional 588 
synergy associated with disease or adverse phenotypes. We derived the gene pair from the 589 
previously reported UDN study that found mutations in TRPS1 and FBN1 to be responsible for 590 
the patient phenotype and it was labeled Zastrow et al., 17 (UDN)) (Zastrow et al., 2017).  591 

 592 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.125716doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125716


 15 

Feature Importance 593 
To identify the most indicative features we used the inbuilt classifier feature importance function 594 
in sklearn, which uses the Gini impurity approach to quantify the relative feature importance for 595 
all features. 596 
 597 
Prediction Score Thresholds 598 
We determined a digenic score threshold for the DiGePred classifier for classifying gene pairs 599 
digenic based on the F0.5 metric. This is a modification of the F1 statistic, designed to attenuate 600 
the effect of false negatives. It is calculated as Fß = (1 + ß2) x TP / (1 + ß2 x TP + ß2 x FP + 601 
FP), where ß=0.5, TP=true positives, FP=false positives. The score that yielded the highest F0.5 602 
value was 0.534. 603 
 604 
Estimating the False Positive Rate at various score thresholds 605 
We evaluated the DiGePred classifier with an external set of non-digenic gene pairs as well. 606 
These gene pairs were obtained from 38 unaffected relatives of UDN patients. The genes were 607 
preliminarily selected if the variant in the gene had an ExAC (Lek et al., 2016; 2016) minor allele 608 
frequency of < 1%. A gene was further selected if it received a pathogenicity score of ‘D’ 609 
(“probably damaging”) from Polyphen2 (Kircher et al., 2014) Only genes passing this Polyphen2 610 
filter were selected to limit the predictions to pairs of genes with variants that likely affected 611 
molecular function.  612 

Additionally, genes with rare variants were selected based on a consensus pathogenicity 613 
approach if at least two out of Polyphen2, SIFT (Sim et al., 2012; Vaser et al., 2015), CADD 614 
(Kircher et al., 2014; Rentzsch et al., 2019), Omicia (Coonrod et al., 2013) and PhyloP (Pollard 615 
et al., 2010) agreed that the variant(s) in the gene was pathogenic. A Polyphen 2 selection 616 
criteria was similar to before. A variant was deemed pathogenic by SIFT if the score was 617 
<=0.05. a CADD score >= 30 was considered pathogenic, while a PhyloP score of <= –10 or an 618 
Omicia score >= 0.93 for a variant deemed it pathogenic. All possible gene pairs were used as 619 
the consensus pathogenic gene pairs for an individual.  620 
 621 
Comparison with ORVAL 622 
We submitted the list of gene pairs for all the unaffected individuals to the ORVAL(Papadimitriou 623 
et al., 2019; Renaux et al., 2019) server. We compared the number of pairs predicted to be 624 
digenic by ORVAL, according to its highest confidence threshold, to the number predicted by 625 
our method to be digenic at the F0.5 threshold. We obtained the list of genes for each unaffected 626 
individual as mentioned in the previous section. We evaluated the statistical significance of the 627 
number of digenic pairs predicted as false positives per individual between DiGePred and 628 
ORVAL using a MWU test.  629 

Furthermore, 20% of all genes with rare variants in the individual were chosen at 630 
random. All possible gene pairs were generated to constitute the random set of gene pairs for 631 
each individual. We calculated the number of digenic pairs predicted per individual at different 632 
score thresholds. This was done to compare the number of false positives between ORVAL and 633 
DiGePred fairly. As ORVAL includes variant effects as a feature, selecting for genes with 634 
variants that were predicted pathogenic by Polyphen2 or by a consensus of several predictors 635 
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of variant effect could bias against ORVAL, though it reflects common clinical practice. 636 
Therefore, we also compared DiGePred and ORVAL on pairs of genes selected at random. 637 
 638 
Gene ontology (GO) enrichment 639 
The GO enrichment was computed using a web resource WebGestalt (WEB-based GEne SeT 640 
AnaLysis Toolkit) (Liao et al., 2019). A list of genes was prepared for each selected set of 641 
predicted digenic pairs based on highest score, highest average score or most predicted pairs. 642 
This list of genes was ranked based on the selection criteria and the GO enrichment for 643 
biological process, cellular component and molecular function categories. 644 
 645 
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FIGURES  949 
 950 

 951 
FIGURE 1: Training sets and features used for random-forest-based identification of 952 
digenic disease gene pairs  953 
(A). The digenic gene pairs (positives) were derived from the Digenic Diseases Database 954 
(DIDA). Unique gene pair combinations (n=140) were used for training and testing. The likely 955 
non-digenic gene pairs (negatives) were derived from unaffected relatives of UDN patients. 956 
Genes with rare variants in the same individual were used as an unaffected non-digenic gene 957 
pair. We also considered several others of negative training examples (Figure S2). (B). We 958 
considered six network and functional features (NFFs) for training the first digenic disease 959 
classifier: i) pathway similarity: Jaccard similarity of pathway annotations from KEGG and 960 
Reactome for both genes; ii) phenotype similarity: Jaccard similarity of phenotype annotations 961 
from HPO for both genes, iii) co-expression rank: co-expression rank of gene pair compared to 962 
all other gene pairs across multiple tissues from COXPRESdb; iv-vi) network distances between 963 
the genes on protein-protein, pathway, and literature mined interaction networks from UCSC 964 
gene and pathway interaction browser database. Subsequent classifiers considered additional 965 
evolutionary and functional features (Figure S3). 966 
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 967 

 968 
FIGURE 2: Schematic of the protocol for training and evaluating the DiGePred digenic 969 
disease pair classifier 970 
Known digenic pairs (positives) and variant gene pairs from healthy individuals (negatives) were 971 
combined at ~1:75 ratio. The combined pairs were divided into training (64%), validation (16%) 972 
and held-out testing datasets (20%). The DiGePred random forest classifier was trained and 973 
cross-validated using the training and validation sets. The final performance estimate for the 974 
trained DiGePred classifier was quantified by the area under the Receiver Operator 975 
Characteristic (ROC) and Precision-Recall (PR) curves (AUCs) on the held-out test set. This set 976 
was also used to establish suggested thresholds on the continuous DiGePred score. 977 
DiGePred’s potential clinical utility was further demonstrated by applying it to an additional 978 
positive set of 14 novel digenic pairs from the recent literature and an external non-digenic set 979 
of gene pairs from 38 unaffected relatives of UDN patients. 980 
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 983 
FIGURE 3: Random forest classifiers can accurately distinguish digenic and non-digenic 984 
gene pairs using different feature sets.  985 
Performance of the classifier at distinguishing between known digenic pairs and gene pairs from 986 
healthy individuals trained using different feature sets as evaluated by: (A) Receiver Operating 987 
Characteristic (ROC) curves and (B) Precision-Recall (PR) curves. Classifiers trained on three 988 
sets of features are compared: i) six network and functional features (NFFs) (dotted line); ii) the 989 
six NFFs and evolutionary genomics features; and iii) the six NFFs, evolutionary genomics 990 
features, and gene-level network and functional features. The mean curves across 10 cross-991 
validation folds are plotted with shaded areas representing the standard deviation.    992 
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 995 

 996 
FIGURE 4: Digenic disease gene pairs can be distinguished from different non-digenic 997 
sets.  998 
Performance of random forest classifiers at distinguishing between digenic pairs and different 999 
non-digenic sets trained using the full set of features as evaluated by (A) ROC and (B) PR 1000 
curves. We considered four different negative sets: i) Unaffected, derived from healthy relatives 1001 
of UDN patients (blue); ii) Random, derived by randomly selecting pairs of genes (green); iii) 1002 
Permuted, derived by generating permutations of known digenic pairs (orange); iv) Matched, 1003 
derived by matching the distribution of network and functional features observed among the 1004 
digenic pairs (grey). The mean curves across 10 cross-validation folds are plotted with shaded 1005 
areas representing the standard deviation. The Permuted and Matched negative sets provide a 1006 
greater challenge given their similarities with the digenic pairs, but the approach still achieved 1007 
strong performance at these tasks. The feature importance values highlight phenotypic and 1008 
pathway similarity and are similar for each classifier, except the Matched classifier (Figure S6). 1009 
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 1012 
FIGURE 5: DiGePred performs well on the held-out test set and accurately identifies 1013 
novel digenic pairs from the recent literature. 1014 
Performance of DiGePred on the held-out test set as evaluated by (A) ROC and (B) PR curves. 1015 
The DiGePred classifier was trained using all features and the unaffected set as negatives. 1016 
Geometric shapes with red borders indicate the position on the ROC and PR curves 1017 
corresponding to the DiGePred scores assigned to 13 novel digenic pairs reported in the recent 1018 
literature. The pink and purple circles represent the points on the curves corresponding to the 1019 
DiGePred score thresholds that maximize the F1 (0.372) and the F0.5 (0.534) metrics. Given the 1020 
importance of precision in clinical applications, we propose the score maximizing the F0.5 metric 1021 
or higher as a threshold for calling a gene pair digenic. At this threshold 9 of the 13 novel 1022 
digenic pairs are predicted to be digenic with a low expected false positive rate (<=0.012%). All 1023 
but one digenic pair score above the F1 threshold. The Zastrow et al. 2017 pair (red x) is not 1024 
truly digenic, but represents a patient with pathogenic variants in two genes that do not interact. 1025 
 1026 
 1027 

A B



 28 

 1028 
FIGURE 6: DiGePred has a low false positive rate and outperforms a recent digenic gene 1029 
prediction method. 1030 
The number of digenic pairs identified for each of 38 healthy relatives of UDN patients is plotted 1031 
at a range of DiGePred thresholds (x-axis) and for the ORVAL/VarCOPP method. The score 1032 
thresholds that maximize the F1 and F0.5 metrics on the held out data are shown in pink and 1033 
purple, respectively. Since these individuals are healthy, any predicted digenic disease pairs are 1034 
very likely false positives. DiGePred predicts significantly fewer digenic pairs at each threshold 1035 
than ORVAL (Mann-Whitney U test, p-values above each bar). At the F0.5 threshold, DiGePred 1036 
predicts an average of two digenic pairs per healthy individual and none above the 0.9 1037 
threshold, while ORVAL predicts an average of 855 digenic pairs per healthy individual at its 1038 
strictest threshold (Figure S10). Results were similar for classifiers trained on other negative 1039 
sets (Figures S11-16). 1040 
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