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ABSTRACT  

Background: Mannose-binding lectin (MBL) encoded by MBL2 gene is a protein with the ability 

to form carbohydrate complexes with microbial wall promoting their subsequent elimination. 

Genetically determined levels of MBL can modify the risk and clinical characteristics of many 

infectious diseases. The frequency of MBL2 genotypes exhibits significant population differences. 

The data on the distribution of MBL2 genotypes among the aborigines of the Russian Arctic 

territories have not yet been published. 

Methods: A total of 880 specimens of dried blood spots of the newborns were genotyped. The 

newborns represented four populations: Nenets, Dolgan-Nganasans, Mixed aboriginal population, 

and Russians (Caucasians, Krasnoyarsk). Six polymorphisms of the MBL2 gene were studied: 

rs11003125, rs7096206, rs7095891, rs5030737, rs1800450, and rs1800451.  

Results: The frequency of the combined rare O allele (composed of the coding region variants 

rs5030737, rs1800450, and rs1800451) in the homozygous state was significantly higher in 

Russians: 10% vs 2% in Nenets and 1% in Dolgan-Nganosans (p<0.001 for Russians vs other 

populations). The frequency of the high-producing haplotype (HYPA) was 35.4% in the Russian 

newborns, in keeping with European populations (27-33%); 64% for Nenets and 56% for Dolgan-

Nganasans, similar to the estimates obtained for Eskimos and North Amerinds (64-81%). 

Conclusion: Our study results are in line with the hypothesis that human evolution has been 

moving in the direction of accumulation of the genotypes associated with low activity of the lectin 

complement activation pathway because of the prevalence of some intracellular infections such as 

tuberculosis, whereby low MBL activity may have a protective effect. 
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INTRODUCTION 

The complement system is a key component of innate immunity, with the main function being 

predominantly intravascular elimination of bacterial agents. In addition, complement proteins act as 

a bridge between the innate and adaptive immunity systems, providing adequate conditions for B- 

and T-lymphocyte maturation and differentiation. The complement system includes both plasma 

proteins and membrane receptors. The former interacts with each other in three well-known 

«cascading pathways», i.e. lectin (the most phylogenetically ancient), alternative and classical ones. 

Lectins are the general term for proteins forming a separate superfamily for pattern-recognizing 

receptors with the ability to recognize and aggregate oligo- and polysaccharides. Among all lectins, 

ficolins (common domain is fibrinogen) and collectins (common domain is collagen) have the 

unique function to form carbohydrate complexes with microbial wall. These include mannose-

binding lectin (MBL), hepatic and renal collectins,[1-4]. The polysaccharide complex of microbial 

wall with collectin / ficolin and specific proteases leads to the activation of the complement system, 

the inflammatory reaction and the elimination of bacteria. This activation pathway is called lectin 

pathway, as opposed to other classical and alternative pathways.  

MBL is a conventional C-type lectin comprising several subunits and prone to oligomerization to 

dimers, trimers and tetramers. The oligomerization properties are genetically determined and 

critically increase the activity of MBL in terms of the binding of bacterial polysaccharides and 

complement activation,[1]. Dominant mutations in exon 1 of the MBL2 gene, located on 

chromosome 10 (10q21.1), have been known to result in an impaired ability of MBL to oligomerize 

and, accordingly, to the reduced plasma concentration and functional activity. Mutations in codons 

52 (rs5030737; A / D), 54 (rs1800450; A / B) and 57 (rs1800451; A / C) lead to the similar 

consequences. Alleles containing mutations in codons 52, 54 and 57 are designated as D, B and C, 

respectively, as contrasted with the wild-type allele (A). Mutations D, B and C are commonly 

combined as the collective designation “O” due to the physiological consequences of the same type. 
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In addition to the coding mutations in exon 1, the immunological function of MBL is also 

influenced by the gene promoter mutations: dimorphisms at the rs11003125 (H / L) and rs7096206 

(Y / X) loci modulate transcriptional activity, thereby significantly affecting the concentration of 

MBL in blood plasma (H> L and Y> X),[1]. The HY haplotype has been found to be associated 

with the highest plasma concentration of MBL, the LY haplotype is associated with an average 

concentration, and the LX is associated with the low concentration,[5]. Besides, dimorphism in the 

non-coding region of exon 1 (rs7095891; P / Q) has been found. 

Due to the pronounced linkage disequilibrium, all the reported mutations can be combined into a 

limited number of haplotypes (HYPA, LXPA, LYQA, LYPA, HYPD, LYPB, LYPD and LYQС) 

out of 64 possible,[5, 6]. The frequency of MBL2 haplotypes has significant population 

differences,[5, 7]. Thus, the HYPA haplotype frequency associated with the high MBL 

concentration varies from 6-8% in African populations (Mozambique, Kenya,[5, 8]) to 64-81% in 

northern indigenous populations (Native North-Americans, Inuits,[9-11]). In this gradation, 

Caucasians, with 27-30% frequency of the HYPA haplotype, occupy an intermediate position,[12-

14]. 

Additionally, to assess the clinical consequences of genetically determined differences in MBL 

expression, MBL-deficient (YO / YO or XA / YO), MBL-intermediate (YA / YO or XA / XA) and 

MBL-highly expressing (YA / YA or XA / YA) diplotypes were proposed to be distinguished,[10, 

15, 16]. It is generally believed that 20-25% of the entire human population are MBL-deficient 

haplotype carriers, and there is no or extremely low MBL concentration in plasma in 8-10%,[5, 17, 

18]. 

The vast majority of MBL-deficient individuals are generally healthy. There are evident clinical 

consequences for MBL deficiency only in certain clinical situations, i.e. in patients with 

neutropenia, after organ and tissue transplantation, in newborns, especially in premature infants,[19, 

20]. Nevertheless, a large number of studies have shown that genetically determined levels of MBL 
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can modify the risk and clinical characteristics of many infectious diseases. Moreover, this effect 

seems to be pluripotent in nature. A sufficiently high MBL level is a protective factor against the 

occurrence and severity of infections caused by encapsulated bacteria (Streptococcus pneumoniae, 

Haemophilus influenzae, and Neisseria meningitidis), primarily in young children,[21, 22]. At the 

same time, it was hypothesized that normal / high MBL levels may increase the risk of infection and 

hyperinflammatory response in disorders caused by certain intracellular pathogens such as 

Mycobacterium tuberculosis and Leishmania,[18, 23]. Therefore, the carriers of certain MBL-

deficient haplotypes may have a specific clinical advantage with the intracellular infections. The 

recent meta-analyses have shown that the relationship between MBL genotypes and tuberculosis are 

controversial, i.e. some genetic variations increase the risk of the disease (rs1800450, rs5030737), 

while some may decrease (rs1800451, rs7095891),[24-26]. The analysis is complicated by large 

heterogeneity in different clinical forms of tuberculosis in the studies. In addition, risk assessment 

can largely depend on the ethnicity and age of the populations,[24, 25, 27].  

To the best of our knowledge, the data on the prevalence of genotypes and haplotypes of the MBL2 

gene in the Russian population of East Siberia and among the aborigines of the Russian Arctic 

territories have not yet been published. The current study aims to fill this gap by the analysis of the 

aboriginal and alien populations of this region: the Nenets, the Dolgans-Nganasans and the 

Russians. 

 

METHODS 

A total of 880 specimens of dried blood spots for the newborns obtained from the Krasnoyarsk 

Regional Consulting-Diagnostic Centre for Medical Genetics to study the prevalence of single 

nucleotide polymorphisms of MBL2 gene. 
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The demographic characteristics of the studied newborns according to the region of mother’s 

settlement was the same as in our previously published study,[28]. The newborns were split into 

four groups to study ethnic specificity of the MBL2 polymorphisms: (1) 260 from the Arctic region 

of mother's settlement, from villages with predominantly Nenets population (Nenets comprise 85% 

of the population); (2) 110 from the Arctic region of  mother's settlement, from villages with 

predominantly Dolgan-Nganasan population (Dolgan-Nganasans comprise 91% of the population); 

(3) 210 from the Arctic region of mother's settlement, from villages with mixed populations with 

various combination of indigenous and alien residents; (4) 300 newborns of European ancestry 

(Russians by self-reports of their mothers) from the city of Krasnoyarsk . 

The study was approved by the Ethical Committee of the Scientific Research Institute of Medical 

Problems of the North (# 9 of 8.09.2014). Signed informed consent was obtained from parents of all 

participated children. 

Blood Sample Collection and Genotyping 

DNA was extracted using DIAtomTM DNA Prep kits (“Izogen”, Russia). Genotyping was carried 

out using restriction fragment lengths polymorphism approach (RFLP) and real-time polymerase 

chain reaction. Six polymorphisms of the MBL2 gene were studied: rs11003125, rs7096206, 

rs7095891, rs5030737, rs1800450 and rs1800451.  

Genotyping of rs1800450 and rs1800451 polymorphisms was performed by RFLP approach. The 

relevant genomic fragment of 349 bp was amplified using the pair of oligonucleotide primers: 

forward 5'-TAGGACAGAGGGCATGCTC-3' and reverse 5'-CAGGCAGTTTCCTCTGGAAGG-3' 

(annealing temperature 60˚C). Restriction endonucleases AccB1 I (rs1800450) and Mbo II 

(rs1800451) for hydrolysis of the fragment followed by the electrophoresis in agarose gel with 

ethidium bromide to visualise the results. For rs1800450, AccB1 I endonuclease produces a single 

fragment of 349 bp for the B allele and two fragments of 260 and 89 bp for the A allele. For 
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rs1800451, Mbo II endonuclease produces a single fragment of 349 bp for the A allele and two 

fragments of 270 and 79 bp for the C allele. 

Four polymorphisms rs11003125, rs7096206, rs7095891 and rs5030737 were carried out using the 

real-time polymerase chain reaction approach. The nucleotide sequences of allele-specific probes 

are presented in Table 1.  

Table 1. The nucleotide sequence of allele-specific probes used for genotyping 

Polymorphism  The nucleotide sequence of allele-

specific probes 

Fluorophore – allele 

rs11003125 
F – GGGCCAACGTAGTAAGAA  

R – GGAGTTTGCTTCCCCTTG 

VIC-C/FAM-G 

rs7096206 
F – GCGTTGCTGCTGGAAGAC  

R – CAATGCACGGTCCCATTTG 

VIC-G/FAM-C 

rs7095891 
F – GGGAAGGTTAATCTCAGTTAA  

R – CCAGGGATGGGTCATCTATT 

VIC-A/FAM-G 

rs5030737 
F – CTCCAGGCATCAACGGC  

R – CCAACACGTACCTGGTTC 

VIC-T/FAM-C 

 

Statistical Analysis 

Differences in genotypic frequencies between the ethnic groups were assessed using the Pearson’s 

χ2 test. Haplotypes were assessed and compared between the populations using the haplo.stats 

package for R. Haplotype score test was applied with 1000 permutations to calculate p-values. 

Bonferroni correction for multiple testing was duly applied. Statistically significant differences 

were considered at p<0.05 after correction for multiple testing. 

RESULTS 

The genotype frequencies for the polymorphic regions of the MBL2 gene included in the study, 

except for rs1800451, are presented in Table 2. The variant C allele in rs1800451 was revealed in 
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only one case out of 880 tested newborns, namely in the homozygous state (CC) in a European 

living in Krasnoyarsk, so this SNP was excluded from subsequent analysis. Among the 

homozygous variants of the studied MBL2 gene polymorphisms, the most straightforward 

population differences were identified for rs11003125 in the promoter region: the frequency of the 

LL genotype associated with low MBL production in the Russian population was 2-3 times higher 

than the frequency in the native populations of the Arctic. Namely, in Russians it was 37%, in 

Nenets it was 10%, in Dolgan-Nganosans it was 15% (p<0.001 for Russians vs other populations). 

The frequency of the combined rare O allele (composed of the coding region variants rs5030737, 

rs1800450 and rs1800451) in the homozygous state was also significantly higher in Russians: 10% 

vs 2% in Nenets and 1% in Dolgan-Nganosans (p<0.001 for Russians vs other populations). 

The haplotype frequencies for MBL2 are presented in тable 3. The HYPA haplotype frequency was 

35.4% in Russian newborns from East Siberia, similar to the frequencies of European populations 

(the Netherlands, 27%,[12], Denmark, 30%,[14], Czech Republic, 33%,[13]), as well as Brazilian 

Caucasians (28-34%,[7, 29]). However, the HYPA haplotype frequency in newborns of the Arctic 

populations was statistically significantly higher than in the Russians: 64% for the Nenets and 56% 

for the Dolgan-Nganosans, close to the frequencies identified for the Eskimos (81%,[5, 9]) and the 

North Amerinds (64%,[11]). At the same time, low frequencies of the MBL-deficient LXPA 

haplotype were recorded in the Russian newborns (Table 3). The greatest differences in the 

frequencies of these haplotypes were typical for the Nenets population, with a statistically 

significant decrease in the LYPA haplotype frequency identified only in this Arctic population. 
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Table 2. MBL2 genotypes frequencies among newborns from different ethnic populations of 

Taymyr-Dolgan-Nenets region of Krasnoyarskiy Kray and the city of Krasnoyarsk, n (%)  

 

MBL2 genotype 

Nenets 

 

Dolgans-

Nganasans 

Mixed Arctic 

populations 

Russians 

(n=260) (n=110) (n=210) (n=300) 

rs11003125 

promoter 

HH 114 (0.44) 32 (0.29) 71 (0.34) 54 (0.18) 

HL 121 (0.47) 61 (0.55) 103 (0.49) 134 (0.45) 

LL 25 (0.10) 17 (0.15) 36 (0.17) 112 (0.37) 

rs7096206 

promoter 

XX 4 (0.02) 3 (0.03) 4 (0.02) 11 (0.04) 

XY 60 (0.23) 33 (0.30) 47 (0.22) 115 (0.38) 

YY 196 (0.75) 74 (0.67) 159 (0.76) 174 (0.58) 

rs7095891 

5’UTR  

 

PP 4 (0.02) 3 (0.03) 4 (0.02) 11 (0.04) 

PQ 60 (0.23) 33 (0.30) 47 (0.22) 115 (0.38) 

QQ 196 (0.75) 74 (0.67) 159 (0.76) 174 (0.58) 

rs5030737 

exon 1 

AA 252 (0.97) 110 (1.00) 201 (0.96) 265 (0.88) 

AD 8 (0.03) 0 (0.00) 9 (0.04) 32 (0.11) 

DD 0 (0.00) 0 (0.00) 0 (0.00) 3 (0.01) 

rs1800450 

exon 1 

AA 218 (0.84) 85 (0.77) 164 (0.78) 221 (0.74) 

AB 37 (0.14) 24 (0.22) 35 (0.17) 54 (0.18) 

BB 5 (0.02) 1 (0.01) 11 (0.05) 25 (0.08) 

Combined 

coding 

genotype 

(rs5030737, 

rs1800450, 

rs1800451) 

AA 221 (0.81) 85 (0.77) 155 (0.74) 189 (0.63) 

AO 44 (0.17) 24 (0.22) 44 (0.21) 82 (0.27) 

OO 

 

5 (0.02) 1 (0.01) 11 (0.05) 29 (0.10) 
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Table 3. MBL2 haplotypes frequencies among newborns from different ethnic populations of Taymyr-Dolgan-Nenets region of 

Krasnoyarskiy Kray and the city of Krasnoyarsk 

 

 

Population 

 

n 

MBL2 haplotypes 

HYPA LXPA LYQA LYPA LYPB LYQB HYPD LYPD 

Nenets (1) 260 0.638 0.127 0.100 0.026 0.070 0.007 0.015 0 

Dolgans-

Nganasans (2) 

 

110 0.556 0.154 0.118 0.033 0.116 0 0 0 

Mixed Arctic 

population (3) 

210 0.551 0.118 0.120 0.044 0.100 0.025 0.015 

 

0 

Russians (4) 

 

 

300 0.354 0.221 0.133 0.048 0.145 0.025 0.045 0.018 

 

p 

p1-4<0.001 

p2-4<0.001 

p3-4<0.001 

p1-3=0.036 

p1-4<0.001 

p3-4<0.001 

 p1-4<0.001   p1-4=0.030 

p2-4=0.012 

 

 

 

 

 

Note: only p-values <0.05 after correction for multiple testing are provided. 
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Data on the MBL-deficient haplotypes frequencies in the studied populations are summarized in 

Table 4. MBL-deficient (YO / YO or XA / YO), MBL-intermediate (YA / YO or XA / XA) and 

MBL-highly expressing (YA / YA or XA / YA) haplotypes were identified. Populations of Nenets 

and Dolgan-Nganosans showed significantly lower frequencies of MBL-deficient genotypes than 

Caucasians of East Siberia (3.9%, 6.4% and 21.3%, respectively, p <0.001). The mixed Arctic 

population has demonstrated an intermediate frequency value of 9.1%. 

Table 4. The prevalence of the MBL2 deficient haplotypes among newborns from different 

ethnic populations of Taymyr-Dolgan-Nenets region of Krasnoyarskiy Kray and the city of 

Krasnoyarsk, n (%) 

 

 

 

 

MBL2 genotypes 

 

Nenets  

(n=260) 

 

 

Dolgans-

Nganasans 

(n=110) 

 

 

Mixed 

aboriginal 

population 

(n=210) 

 

 

Russians, 

Krasnoyarsk 

(n=300) 

 

 

 

p 

1 2 3 4 

 

MBL2 deficient 

haplotype 

10  

(3.9%) 

7 

(6.4%) 

19 

(9.1%) 

64 

(21.3%) 

1,2,3-

4<0.001 

1-3=0.02 

 

MBL2 

intermediate 

haplotype 

43  

(16.5%) 

21 

(19.1%) 

39 

(18.6%) 

58 

(19.3%) 

 

 

MBL2 sufficient 

haplotype 

207 

(79.6%) 

82 

(74.6%) 

152 

(72.4%) 

178 

(59.3%) 

1-4<0.001 

2-4=0.005 

3-4=0.002 

 

Note: only p-values <0.05 are provided. 

 

 

DISCUSSION 

It has been suggested that, at the population level, the clinical consequences of an inherently high 

ability to produce functionally active MBL in the Arctic representatives are low risk of severe 

bacterial infections at early age and, likely the higher risk of tuberculosis at older age,[18, 26]. 
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Moreover, the low incidence of atherosclerosis and cardio-vascular diseases among the aborigines 

of the Arctic, along with factors such as high consumption of omega-3 fatty acids and lifestyle 

features, might be due to the genetic characteristics of the production and activity of MBL. The 

probability of such a relationship has been described in a number of publications,[9-11, 30]. 

In the current study, the data on the frequencies of genotypes and haplotypes of the MBL2 gene 

among indigenous populations of the Russian Arctic territories have been obtained for the first time. 

Previously, we showed a high prevalence of the genotypes associated with a high L-ficolin activity 

in the Arctic populations of Nenets and Dolgan-Nganosans, compared to Caucasians of East 

Siberia,[28]. In the aboriginal populations of both Nenets and Dolgans-Nganasans, we found the 

decreased prevalence of the genotype for the rs7851696 polymorphism associated with low L-

ficolin carbohydrates binding capacity, as compared to the Russian population. Newborns in mixed 

arctic populations were characterized by the intermediate prevalence of the rs7851696 rare allele 

genotype. We concluded that Arctic populations are characterized by a genetic predisposition to the 

higher level of L-ficolin functional activity, as compared to the Russian population. The Nenets 

population exhibited several important features as compared with the Dolgans-Nganasans: lower 

prevalence of the allele T for the rs17549193 polymorphism and higher prevalence of the allele T 

for the rs7851696 polymorphism. We believe that this genotype is a genetic marker of high 

functional capacity of L-ficolin in Nenets population. Notably, in the current study Nenets 

population exhibited slightly higher prevalence MBL sufficient genotypes in comparison to 

Dolgans-Nganassans (Tables 2, 3).   

Thus, the indigenous Arctic populations are genetically characterized by the greater activity of at 

least two different components of the lectin complement activation pathway, i.e. MBL and L-

ficolin. A definite advantage of our approach for estimating population prevalence of MBL- and L-

ficolin genotypes is to study the newborns when the probable elimination of unfavorable genetic 

variations, possible at an older age, has not yet occurred. 
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Our study results are in line with the hypothesis that human evolution has been moving towards the 

accumulation of the genotypes associated with low activity of the lectin complement activation 

pathway because of the prevalence of some intracellular infections such as tuberculosis and leprosy, 

whereby low MBL and L-ficolin activity may have a protective effect,[7, 18, 23]. Isolated Arctic 

populations have been suggested to encounter these infections historically later and, therefore, to 

maintain the high activity of lectin complement activation pathway formed in the early stages of 

human evolution. 
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