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Abstract 1 
Antibiotic-resistant pathogens are a major public health threat. Understanding how an 2 
antibiotic’s mechanism of action influences the emergence of resistance could help to 3 
improve the design of new drugs and to preserve the effectiveness of existing ones. To this 4 
end, we developed a model that links bacterial population dynamics with antibiotic-target 5 
binding kinetics. Our approach allows us to derive mechanistic insights on drug activity from 6 
population-scale experimental data and to quantify the interplay between drug mechanism 7 
and resistance selection. We find that whether a drug acts as a bacteriostatic or bactericidal 8 
agent has little influence on resistance selection. We also show that heterogeneous drug-9 
target binding within a population enables antibiotic-resistant bacteria to evolve secondary 10 
mutations, even when drug doses remain above the resistant strain’s minimum inhibitory 11 
concentration. Our work suggests that antibiotic doses beyond this “secondary mutation 12 
selection window” could safeguard against the emergence of high-fitness resistant strains 13 
during treatment. 14 
 15 
(word count: 150) 16 
 17 

18 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.06.01.127571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127571
http://creativecommons.org/licenses/by-nc/4.0/


 3 

Introduction 19 

The emergence and spread of antibiotic-resistant bacterial pathogens is an urgent global 20 

problem that threatens to undermine one of the most essential components of modern 21 

medicine (WHO, 2012). Antibiotic resistance is also expensive, adding an average of US $1400 22 

to the costs of treatment for each of the 2.8 million patients who become infected with a drug-23 

resistant bacterium in the United States annually (CDC, 2019; Thorpe, Joski, & Johnston, 2018; 24 

WHO, 2014). The scarcity of promising new antimicrobial drugs with novel mechanisms of 25 

action further exacerbates the challenges associated with managing the spread of drug 26 

resistance (Roberts, Kruger, Paterson, & Lipman, 2008; Silver, 2011). Given the increasing 27 

incidence of resistant bacterial infections and the lack of new drugs on the horizon, clinicians, 28 

researchers, and global leaders must act to preserve the effectiveness of the world’s existing 29 

antibiotic drug arsenal (WHO, 2012). 30 

Antibiotic treatment induces a strong selective pressure on bacterial populations to 31 

evolve resistance (Hughes, 2014; Rao, 1998). Resistance mutations raise the minimum 32 

inhibitory concentration (MIC) of an antibiotic, the amount of drug needed to suppress the 33 

growth of a bacterial culture (Andrews, 2001). However, alleles that confer drug resistance also 34 

frequently carry fitness costs (Andersson & Hughes, 2010; Melnyk, Wong, & Kassen, 2015; 35 

Vogwill & MacLean, 2015), predominantly because antibiotics target vital cellular functions 36 

(such as DNA replication and protein synthesis). Resistance mechanisms reduce the ability of 37 

a drug to disrupt its target, but do so at the expense of optimal physiological function (Lovmar 38 

et al., 2009). 39 

With few exceptions (Engelberg & Artman, 1964), resistance-causing alleles induce 40 

physiological impairments in both drug-free and drug-containing environments, though 41 

resistant strains may only suffer a strict competitive disadvantage (i.e. a slower growth rate) 42 
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against sensitive strains in drug-free conditions. A range of antibiotic concentrations therefore 43 

exists within which drug-resistant strains have a selective advantage over their drug-44 

susceptible counterparts. Dosing drugs within this “resistance selection window” (also called 45 

the “mutant selection window”) can allow for the proliferation of drug-resistant 46 

subpopulations (Karl Drlica & Zhao, 2007; Gullberg et al., 2011; Yu, Baeder, Regoes, & Rolff, 47 

2018). Recent advances in antimicrobial pharmacodynamics have leveraged the characteristics 48 

of resistance selection windows to design dosing strategies that minimize the selection of 49 

resistant pathogens without sacrificing treatment efficacy (Cui et al., 2006; Mohamed, Cars, & 50 

Friberg, 2014; Yu et al., 2018). 51 

The existence of resistance mutations that confer physiological impairments in both 52 

drug-free and drug-containing environments implies that resistant strains face selective 53 

pressures to evolve secondary mutations that alleviate these impairments, and that these 54 

selective pressures exist even under continuous drug exposure (Loftie-Eaton et al., 2017; 55 

Maisnier-Patin, Berg, Liljas, & Andersson, 2002). Secondary mutations can increase bacterial 56 

fitness (through faster growth rates) in the absence of drugs, or they can confer elevated levels 57 

of drug tolerance to preexisting resistant subpopulations (through attenuated drug-target 58 

interactions, faster growth rates in the presence of drugs, or both). In the case of increased 59 

bacterial fitness, secondary mutations enable drug-resistant mutants to compete against drug-60 

susceptible strains in resource-limited, antibiotic-free environments (Andersson & Hughes, 61 

2010; Durão, Balbontín, & Gordo, 2018; Levin, Perrot, & Walker, 2000), and are implicated in 62 

the spread of drug resistance across a wide range of timescales and clinical settings (Handel, 63 

Regoes, & Antia, 2006). In the case of increased drug tolerance, secondary mutations can be 64 

the underlying cause of treatment failure (Ahn et al., 2015; Merker et al., 2018). Elucidating the 65 
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dynamics of secondary mutation emergence during treatment is thus crucial for managing the 66 

spread of resistance. 67 

Since resistance mutations are frequently associated with fitness costs (Melnyk et al., 68 

2015; Vogwill & MacLean, 2015) both in vivo (Majcherczyk, Barblan, Moreillon, & Entenza, 69 

2008) and in vitro (Zhang, Sahin, McDermott, & Payot, 2006), studies on the resistance 70 

selection window and on secondary adaptation have yielded valuable insights into the 71 

emergence of drug-resistant bacteria during treatment. However, the design of optimal 72 

resistance-mitigating drug dosing strategies remains challenging for two reasons. One 73 

obstacle is that bacteria may acquire resistance through a multitude of mechanisms that 74 

reduce antibiotic efficacy (Blair, Webber, Baylay, Ogbolu, & Piddock, 2015). These molecular 75 

mechanisms may themselves influence the fitness landscape of resistance mutations (that is, 76 

the relationship between the fitness cost of resistance and the selective advantage conferred 77 

by the resistance mutation in drug-containing environments). A second challenge is that an 78 

antibiotic’s mechanism of action may affect the strength of selection for resistant strains over 79 

drug-susceptible strains during treatment. One important feature of an antibiotic’s cellular-80 

level mechanism of action is whether the drug controls bacterial populations by increasing 81 

the rate of bacterial killing (i.e. bactericidal action) or by decreasing the rate of bacterial 82 

replication (i.e. bacteriostatic action). Clinicians and researchers alike have argued that these 83 

modes of antimicrobial action influence the dynamics of resistance selection (Frenoy & 84 

Bonhoeffer, 2018; Stratton, 2003). 85 

The design of resistance-mitigating antibiotic usage therefore depends on an 86 

understanding of how a drug’s mechanism of action, a pathogen’s mechanism of resistance, 87 

and the fitness landscape of resistance affect selection pressures during treatment. Tractable 88 

and quantitative strategies for systematically exploring all of these factors have so far been 89 
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lacking. To address this gap, we developed a dynamical model that simulates the growth and 90 

death of bacterial populations under antibiotic exposure using molecular-scale descriptions of 91 

drug-target binding kinetics and cellular-scale descriptions of a drug’s mechanism of action. 92 

In our model, higher numbers of inactivated drug-target complexes within a cell lead to 93 

increases in antibiotic effect (either bacteriostatic, bactericidal, or a combination of the two). 94 

The relationship between drug-target inactivation and antibiotic effect can take the shape of a 95 

linear (i.e. gradual) or stepwise (i.e. sudden) function, as well as other intermediate forms 96 

(Supplementary Figure S1). The model enables us to estimate critical pharmacodynamic 97 

parameters from experimental datasets as effectively as with classical approaches (Regoes et 98 

al., 2004), to simulate the fitness landscapes of resistance mutations against drugs with diverse 99 

mechanisms of action, and to quantify the probability of secondary mutation emergence 100 

within resistant subpopulations of bacteria during treatment. 101 

We find that bacteria with resistance mechanisms that confer even modest reductions 102 

in drug-target binding affinity can incur strikingly high (80-99%) fitness costs while still 103 

maintaining higher drug tolerances than their susceptible counterparts, regardless of the 104 

antibiotic’s mechanism of action. We also find that drugs with stepwise effects on bacterial 105 

growth and death have narrower resistance selection windows than do drugs with linear 106 

effects. However, our model suggests that whether a drug acts primarily through bactericidal 107 

or bacteriostatic action has comparatively little influence on the strength of resistance 108 

selection during treatment. We further demonstrate that, even with aggressive treatment 109 

regimens, heterogeneous drug-target occupancy within a population enables fitness-impaired 110 

resistant strains to develop secondary mutations that can lead to treatment failure. Our work 111 

cautions that fitness costs may not limit the emergence of resistant strains that evolve through 112 

reductions in drug-target binding affinity. We propose the “secondary mutant selection 113 
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window” as a novel pharmacodynamic characteristic of a drug that should be assessed 114 

alongside other classic parameters such as the MIC and the resistance selection window when 115 

designing robust resistance-mitigating antibiotic dosing strategies. 116 

 117 

Results 118 

A model that links bacterial population dynamics with molecular mechanisms of antibiotic drug action 119 

We developed a linear dynamical model to describe the effect of a constant concentration of 120 

drug on the growth and death rates of a bacterial population (Figure 1A) (see Methods, Model 121 

formulation and analysis for a mathematical description of the model). We assume that each 122 

bacterial cell in the population carries an identical number N of intracellular proteins that the 123 

drug targets for inactivation. Drug molecules inactivate target proteins by binding to them 124 

with a rate kF and can dissociate from the target with a rate kR. The affinity KD of the drug is 125 

thus the ratio of off-rate to on-rate, KD = kR/kF. The model assumes that the growth and death 126 

rates of a bacterial cell depend on its drug-target occupancy (that is, the number of inactivated 127 

drug-target complexes it contains) (Clarelli et al., 2019; Wiesch et al., 2015). We denote drug-128 

target occupancy with the index i, which ranges from 0 to N. Cells harboring successively 129 

larger numbers of inactivated drug-target complexes have successively faster death rates 130 

and/or slower growth rates, depending on the mechanism of action of the drug (see Results, 131 

Classification of drug action). We thus define the growth rate (G[i]) and death rate (D[i]) of each 132 

subpopulation as discrete monotonic functions of drug-target occupancy. In practice, G[i] and 133 

D[i] take the form of constrained logistic functions each controlled by a steepness and 134 

inflection point parameter, allowing us to define quasi-linear, quasi-stepwise, quasi-135 

exponential, and sigmoid curves (Supplementary Figure S1). 136 

137 
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 138 

 139 
 140 
Figure 1 – Features of a model that links bacterial population dynamics with the cellular 141 
mechanisms of antibiotic drug action. (A) Illustration of the model. We consider a 142 
population Bi of bacterial cells harboring i inactive drug-target complexes. The change in the 143 
size of Bi is a function of cellular growth and death rates (each of which is determined by the 144 
value of i), and of the molecular kinetics of the drug binding and unbinding to its protein 145 
target. The total bacterial population is given by the sum B0 + B1 + … + BN-1 + BN, where N is the 146 
number of drug targets per cell. (B) Dynamics of a bacterial population exposed to a drug dose 147 
above the minimum inhibitory concentration (MIC). The black line represents the total 148 
bacterial population; shaded lines represent subpopulations with x and fewer inactivated 149 
drug-target complexes. (C) Proportion of the bacterial subpopulation Bi as a share of total 150 
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population for the first three hours of the curve shown in panel (B). (D) Pharmacodynamic 151 
curves derived from the model for a wild-type (light green) and drug-resistant (dark green) 152 
bacterial strain. The MIC is denoted as the drug concentration at which the net bacterial 153 
growth rate is zero. Inset: the resistance selection window (green shading) is given by the drug 154 
concentration range within which the drug-resistant strain exhibits a higher—but still 155 
positive—net growth rate compared to the wild-type strain. G0 denotes the growth rate of the 156 
wild-type strain in the absence of antibiotic (i.e. the growth rate for subpopulation B0). DN 157 
denotes the maximum death rate of bacterial strains when all N cellular targets are inactivated 158 
(i.e. the death rate of subpopulation BN). 159 
________________________________________________________________________________________________ 160 

The model tracks the growth and death of all N+1 bacterial subpopulations, each 161 

denoted Bi, over time (Figure 1B). Drug concentration determines the net growth rate of the 162 

entire bacterial population (Supplementary Figure S2). In the absence of drug, the population 163 

grows exponentially at a rate equal to the difference between the drug-free growth and death 164 

rates (G0 and Do, respectively). When drug is present, the composition of bacterial 165 

subpopulations asymptotes towards a steady state after a transient phase during which drug 166 

molecules bind to their targets (Figure 1C). At steady state, the relative composition of 167 

bacterial subpopulations does not depend on the total size of the population. 168 

We can calculate the MIC of a drug directly from model parameters (see Methods, 169 

Calculation of the minimum inhibitory concentration), and we can simulate clinically observed 170 

drug resistance mutations by modulating the parameters of the model that influence the value 171 

of the MIC. Changes in the binding kinetics of the drug (i.e. kF and kR) simulate target 172 

modification mutations that decrease the affinity of an antibiotic molecule to a cellular 173 

protein (Billal, Feng, Leprohon, Légaré, & Ouellette, 2011; Everett, Jin, Ricci, & Piddock, 1996; 174 

Gao et al., 2010). Changes to the value of N represent changes in the number of protein targets 175 

per cell, equivalent to target up- or downregulation (Brochet, Couvé, Zouine, Poyart, & Glaser, 176 

2008; Palmer, Chait, & Kishony, 2018; Palmer & Kishony, 2014). We assume that fitness costs 177 

associated with resistance alleles take the form of reduced growth rates, and we simulate this 178 

cost by reducing the drug-free growth rate of resistant strains by a factor cR such that the 179 
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maximum growth rate of a resistant strain (G0,RES) relative to that of a wild-type strain is G0,RES 180 

= G0(1–cR). When cR ranges from 0 (no cost) to 1 (no growth whatsoever), the resistant strain 181 

exhibits a slower growth rate relative to that of the wild-type. If cR is negative, the resistant 182 

strain exhibits a faster drug-free growth rate than does the wild-type strain, as has been 183 

observed in rare cases with some fluoroquinolone-resistant Escherichia coli isolates (Lindgren, 184 

Marcusson, Sandvang, Frimodt-Møller, & Hughes, 2005). The model also enables us to 185 

generate pharmacodynamic curves by calculating the net growth rates of simulated bacterial 186 

populations over a range of drug concentrations (Figure 1D). The resistance selection window 187 

constitutes the range of drug concentrations over which a drug-resistant mutant strain has a 188 

higher but strictly positive net growth rate relative to that of its wild-type counterpart (Figure 189 

1D, inset). 190 

 191 

Inferring cellular mechanisms of antibiotic action from population-scale data 192 

To test the utility of our biochemical model for gaining cellular-scale insights into 193 

antimicrobial drug mechanisms from population-scale experiments, we calibrated our model 194 

to a family of time-kill curves of the gram-negative bacterium Escherichia coli challenged to 195 

ciprofloxacin, a fluoroquinolone first brought to market in 1987. Ciprofloxacin has two known 196 

molecular targets in bacteria, both of which are heterotetrameric type-II topoisomerases: the 197 

DNA gyrase complex (GyrA2B2) and DNA topoisomerase IV (ParC2E2). However, ciprofloxacin 198 

preferentially binds to the GyrA2B2 complex in gram-negative bacteria (Karl Drlica, Malik, 199 

Kerns, & Zhao, 2008). We used a mass-spectrometry based estimate for the number of 200 

GyrA2B2 complexes per E. coli cell (N ~ 183) as the number of drug targets within each 201 

bacterium (Wiśniewski & Rakus, 2014). 202 
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We implemented an adaptive simulated annealing algorithm to calibrate the 203 

parameters of our model to an experimental dataset of ciprofloxacin time-kill curves 204 

(Methods, Model calibration via simulated annealing). We performed 249 independent 205 

parameterizations using the algorithm and selected the parameter set that yielded the lowest 206 

objective function value (Figure 2A, Table 1, Supplementary Figure S3). Bacterial persistence 207 

(Dörr, Lewis, & Vulić, 2009; Harms, Maisonneuve, & Gerdes, 2016) likely plays a role in the 208 

slower-than-expected population decline that we observe experimentally at high drug 209 

concentrations. At antibiotic doses below those that elicit persistence, the calibrated model 210 

accurately recapitulates the pharmacodynamic curve derived from experimental data 211 

(Supplementary Figure S4). 212 

 213 

 214 
 215 
Figure 2 – Calibrating the model to experimental data reveals underlying mechanisms of 216 
drug action. (A) Comparison between calibrated biochemical model (solid lines) and 217 
experimental data (shaded points). The experimental data (Supporting Data File 1) represent 218 
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time-kill curves of Escherichia coli exposed to ciprofloxacin. (B) Comparison of calibrated 219 
biochemical model the EMAX pharmacodynamic model (Regoes et al., 2004). We fit the EMAX 220 
model to the same experimental dataset shown in panel (A) and compared correlation 221 
coefficients and MICs. Red points in the MIC panel denote experimentally-measured 222 
ciprofloxacin MICs for E. coli strains isolated prior to the widespread emergence of quinolone 223 
resistance (see Supporting Data File 2). The solid horizontal line represents the mean of 224 
experimental measurements, and the dashed lines indicate the 95% confidence interval. (C) 225 
Cellular growth and death rates as a function of ciprofloxacin-GyrA2B2 complex number (i) for 226 
the model calibrated to the experimental data shown in panel (A). (D) Four extreme schemes 227 
of drug action resulting from two characteristics (activity and steepness) of a drug’s effect on 228 
growth and death rates as a function of drug-target occupancy. Supplementary Figure S5 229 
shows the simulated bacterial kill curves for these schemes at 4x MIC. 230 
________________________________________________________________________________________________ 231 

Model	parameters	
Name	 Description	 Value	 Units	 Source	

N	 Number	of	target	proteins	per	cell	(i.e.	
GyrA2B2	copy	number)	 183	 cell-1	 (Wiśniewski	&	Rakus,	

2014)	
G0	 Bacterial	growth	rate	in	the	absence	of	drug	 0.526	 hr-1	 Model	calibration	
D0	 Bacterial	death	rate	in	the	absence	of	drug	 5.40	x	10-3	 hr	-1	 (Wang	et	al.,	2010)	

DN	
Bacterial	death	rate	in	saturating	

concentrations	of	drug	 7.53	 hr	-1	 Model	calibration	

kF	 Drug-target	binding	rate	 5.23	x	103	 M	-1	sec	-1	 Model	calibration	
kR	 Drug-target	unbinding	rate	 3.17	x	10-4	 sec	-1	 Model	calibration	

αG	 Steepness	of	growth	rate	function	G[i]	 16.8	 #	drug-target	
complexes-1	 Model	calibration	

αD	 Steepness	of	death	rate	function	D[i]	 7.29	 #	drug-target	
complexes-1	 Model	calibration	

γG	 Inflection	point	of	growth	rate	function	G[i]	 24.9	 #	drug-target	
complexes	 Model	calibration	

γD	 Inflection	point	of	death	rate	function	D[i]	 359	 #	drug-target	
complexes	 Model	calibration	

B0	
Initial	size	of	bacterial	population	at	the	start	

of	drug	treatment	 6.88	x	109	 cell	ml-1	 Model	calibration	

µR	 Mutation	rate	for	drug	resistance	emergence	 2.00	x	10-7	 cell-1	division-1	

(Martinez	&	Baquero,	
2000;	Schulz	zur	Wiesch,	

Engelstädter,	&	
Bonhoeffer,	2010)	

µC	
Mutation	rate	for	emergence	of	secondary	

mutations	in	resistant	strains	 2.00	x	10-6	 cell-1	division-1	
(Martinez	&	Baquero,	
2000;	Schulz	zur	Wiesch	

et	al.,	2010)	

cR	
Cost	of	resistance	mutation,	such	that	the	
antibiotic-free	growth	rate	of	a	resistant	

mutant	is	G0	(1	-	cR)	
0.25	 Non-

dimensional	 (Gagneux	et	al.,	2006)	

 232 
Table 1 – Model parameters. We obtained the values of kF, kR, αG, αD, γG, γD, and B0 by 233 
calibrating the model to experimental data (Figure 2). We inferred antibiotic-free growth rate 234 
and antibiotic-saturated death rate (G0 and DN) by fitting an exponential curve to 235 
ciprofloxacin kill curves using 0 and 2.19 µg/ml of drug, respectively (Supplementary Figure 236 
S11). We use a constrained logistic function to model the growth and death rates of bacterial 237 
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cells as a function of bound target number, where α controls the steepness of the logistic 238 
function and γ controls the inflection point of the logistic function (Supplementary Figure 239 
S1). Parameters not obtained from model calibrations to experimental data were retrieved 240 
from the literature. For the bacterial death rate in the absence of drug (D0), we used the mean 241 
of death rates reported in Wang et al., 2010. 242 
________________________________________________________________________________________________ 243 

We compared our biochemical model’s ability to capture critical pharmacodynamic 244 

characteristics of a drug against that of an EMAX model (Regoes et al., 2004). The EMAX approach 245 

describes net bacterial growth rate directly as a function of drug concentration and does not 246 

accommodate molecular descriptions of drug-target interactions. Such models have been 247 

used extensively to estimate pharmacodynamic parameters, to design drug dosing regimens, 248 

and to predict the strength of resistance selection at nonzero drug concentrations. Our 249 

formulation delivers performance comparable to that of the EMAX model for fitting 250 

experimental time-kill curves (Figure 2B, left panel) and more accurately estimates MIC 251 

(which we determined to be 8.9 x 10-3 µg/ml for ciprofloxacin) from these data (Figure 2B, right 252 

panel). This demonstrates the validity of our approach for deriving pharmacodynamic 253 

insights similar to what an EMAX model provides. 254 

Our model furthermore offers capabilities that the EMAX approach lacks, including the 255 

ability to estimate molecular kinetic parameters of drug-target binding from population-scale 256 

data. To test the robustness of these estimates, we analyzed the KD values for ciprofloxacin 257 

binding to E. coli GyrA2B2 generated for the 249 independent parameterizations described 258 

above. The best 90% of all calibrations (that is, the 224 fits with the lowest objective function 259 

values) consistently converged upon a narrow range of affinity values (95% confidence 260 

interval: 7.2 x 10-8 to 1.6 x 10-7 M) (Supporting Data File 3). Our estimates lie within the range of 261 

KD values of ciprofloxacin for E. coli GyrA2B2 reported from experimental measurements, 262 

which span from 3.2 x 10-8 to 3.0 x 10-6 M (Jungkind & American Society for Microbiology 263 
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Eastern Pennsylvania, 1995; Kampranis & Maxwell, 1998; Shen & Pernet, 1985; Siporin, Heifetz, 264 

& Domagala, 1990). 265 

 266 

Classification of antibiotic action 267 

Another unique feature of our approach is the ability to describe bacterial growth and death 268 

rates as a function of drug-target occupancy. For ciprofloxacin, the calibrated model predicts 269 

three regimes of bacterial subpopulation dynamics in relation to GyrA2B2 inactivation: a 270 

growth regime in which bacterial replication dominates among subpopulations with low 271 

numbers of inactivated targets, a stalling regime for intermediate numbers of drug-target 272 

complexes in which neither growth nor death is appreciable, and a killing regime at high 273 

numbers of inactivated targets in which bacterial death increases quasi-exponentially (Figure 274 

2C). The forms of G[i] and D[i] that we obtain here suggest that ciprofloxacin has a 275 

multimodal mechanism of action, a result consistent with prior experimental studies (K. 276 

Drlica, 1999; Karl Drlica et al., 2008; Silva, Lourenço, Queiroz, & Domingues, 2011). The drug 277 

stalls cellular replication at intermediate target occupancies and induces killing only at higher 278 

doses. Like many antibiotics, ciprofloxacin thus exhibits both bactericidal and bacteriostatic 279 

effects on microbial populations (Pankey & Sabath, 2004; Silva et al., 2011). Our biochemical 280 

model represents this explicitly. 281 

Most drugs nonetheless demonstrate a greater degree of bactericidal or bacteriostatic 282 

activity at clinically relevant doses (Nemeth, Oesch, & Kuster, 2015), and we hypothesized that 283 

the ability of a drug to stall growth or to accelerate death may affect the selection for resistant 284 

strains and the emergence of secondary mutations. We also suspected that the relationship 285 

between drug-target occupancy and antibiotic effect—reflected in the steepness of the G[i] 286 

and D[i] functions—could further shape the dynamics of resistance selection. 287 
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These two characteristics (bactericidal versus bacteriostatic activity and drug effect 288 

steepness) represent two general dimensions along which a drug’s mechanism of action can 289 

affect the growth and death of bacterial populations. Four extreme cases of drug action thus 290 

exist (Figure 2D). In the case of a purely bacteriostatic antibiotic, death rates are a constant 291 

function of inactivated drug-target complex number (that is, D[i] = D0 for all values of i). For a 292 

purely bactericidal antibiotic, the growth rate of all bacterial subpopulations remains constant 293 

(G[i] = G0 for all values of i). The steepness of the drug effect is reflected in the form of the 294 

function D[i] for bactericidal antibiotics and G[i] for bacteriostatic antibiotics (Supplementary 295 

Figure S1). We defined linear and stepwise onset of action as our two extremes, as other 296 

monotonic forms are intermediate cases of these curves. 297 

 298 

The opposing effects of increased drug resistance and decreased cellular fitness 299 

Mutations that confer resistance against antibiotics often come at the cost of reduced growth 300 

rates compared to those of drug-susceptible strains (Andersson & Hughes, 2010; Melnyk et al., 301 

2015). The balance of replication and death determines bacterial net growth both in the 302 

absence and in the presence of antibiotics, and very high fitness costs associated with 303 

resistance can prevent bacterial viability at any drug concentration (Björkman, Nagaev, Berg, 304 

Hughes, & Andersson, 2000). We sought to investigate the quantitative basis for the trade-off 305 

between drug resistance and cellular growth and to investigate how the drug mechanisms 306 

defined above influence the range of permissible fitness costs that a drug-resistant mutant can 307 

incur while still maintaining a drug susceptibility that is lower than that of a wild-type strain. 308 

In the simplest case of the model, where the number of target molecules per cell is 1, the 309 

expression for the MIC captures the opposing effects of drug resistance and cellular growth 310 

(see Methods, Calculation of minimum inhibitory concentration for derivation): 311 
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[Equation 1] 312 

MIC = 	
𝑘' + 	𝐷*
𝑘+𝐷*

𝐺- 313 

The MIC increases with reductions of the on-rate kinetics of drug-target binding (kF) and with 314 

increases in the off-rate kinetics of drug-target binding (kR), but decreases with fitness costs 315 

that manifest as reductions in the drug-free growth rate (G0). These proportionalities hold for 316 

any number N of drug targets. 317 

We modeled the opposing effects of biochemical changes that reduce drug 318 

susceptibility (i.e. altered drug-target binding kinetics or target upregulation) and the fitness 319 

costs of these biochemical changes. We considered a set of five antibiotics with an identical 320 

protein target and identical molecular kinetic parameters (that is, the target number N, the 321 

drug-target on-rate kF, and the drug-target off-rate kR are constant for the wild-type strain) 322 

(Supplementary Table S1, Supplementary Figure S5). One antibiotic in the set features 323 

growth and death dynamics derived from the model calibration to ciprofloxacin time-kill 324 

curve data (Figure 2C). The other four antibiotics are hypothetical and feature growth and 325 

death dynamics that represent four extremes of antibiotic action (Figure 2D). We simulated 326 

mutant strains of E. coli that acquire drug resistance phenotypes either through changes in the 327 

molecular kinetics of drug binding (kF or kR) or by increasing the copy number N of the drug’s 328 

cellular protein target. Each of these resistance mechanisms has been observed in clinical 329 

isolates of drug-resistant, gram-negative bacteria (Blair et al., 2015; Melnyk et al., 2015; 330 

Redgrave, Sutton, Webber, & Piddock, 2014). We then simulated fitness costs associated with 331 

the resistance mutation and calculated the mutant strain’s MIC relative to that of the wild-332 

type strain. 333 

For resistance acquired through changes in the kinetics of drug-target binding (kF and 334 

kR), we found that mutants can tolerate strikingly high (80-99%) fitness costs while still 335 
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maintaining an MIC that is greater than that of the drug-susceptible wild-type (Figure 3, top 336 

and middle rows). This permissibility of fitness costs exists for all five of the drug mechanisms 337 

we simulated, although drugs that act with linear effects (Bacteriostatic/Linear and 338 

Bactericidal/Linear) have a narrower range of permissible fitness costs than do drugs that act 339 

with stepwise effects. For all drug mechanisms, mutant strains make larger gains in MIC by 340 

decreasing the on-rate kinetics of drug-target binding (kF) than they do by increasing the off-341 

rate kinetics of drug-target binding (kR) by the same amount (Supplementary Figure S6). That 342 

is, mutations that lead to the same change in drug-target affinity (as quantified by the 343 

dissociation constant KD = kR/kF) through different changes in the on- and off-rate binding 344 

kinetics do not necessarily have the same range of permissible fitness costs. This has 345 

biological significance—limiting the opportunity for a drug to bind to its target, thereby 346 

preventing the drug from actuating its effects on cellular growth and death, should lead to 347 

lower drug susceptibilities than would accelerating the rate at which an already-formed drug-348 

target complex disassociates. The difference in the fitness effects of mutations that modify kF 349 

and kR is especially pronounced for bactericidal drugs that elicit linear increases in cellular 350 

death (Bactericidal/Linear). 351 

352 
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 353 

 354 
 355 
Figure 3 – Drug mechanism influences the fitness landscapes of resistance mutations. We 356 
calculated the MIC, expressed as a fold-change relative to the MIC of the wild-type, for 357 
mutant strains carrying (top row) drug targets with reduced binding kinetics (kF), (middle row) 358 
drug targets with accelerated unbinding kinetics (kR), or (bottom row) increased numbers of 359 
drug target molecules (N). Mutant strains also carry fitness costs, expressed as a fractional 360 
reduction in drug-free growth rate relative to wild-type. When modulating the number of 361 
drug target molecules N (bottom row), we assumed that cells require a fixed number of active 362 
protein targets to grow at a normal rate and that cellular killing is induced when a fixed 363 
number of inactive drug-target complexes form within a cell. Thus, the inflection point for the 364 
growth rate function (γG) changes concomitantly with N such that N-γG remains constant, 365 
while the inflection point for the death rate function (γD) remains constant (see 366 
Supplementary Figure S1 for illustrations of the effects of γG and γD on bacterial growth and 367 
death rates). 368 
________________________________________________________________________________________________ 369 

Ciprofloxacin exhibits a bactericidal effect by permitting GyrA2B2-mediated cleavage 370 

of DNA but preventing DNA re-ligation, resulting in widespread and eventually 371 

insurmountable chromosome fragmentation (Karl Drlica et al., 2008; Pan, Yague, & Fisher, 372 

2001). When simulating the overexpression of target proteins in resistant cells (Figure 3, 373 
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bottom row) we therefore assumed that bacterial killing is induced when a fixed number of 374 

inactivated drug-target molecules form within a cell (that is, we assume a toxicity threshold 375 

whereby γD remains constant with changing N). Conversely, we assumed that a resistant cell 376 

requires a fixed number of active, non-complexed target proteins in order to maintain its 377 

maximum growth rate (that is, a survival threshold). γG thus changes in step with N such that 378 

N-γG remains constant. We made these same assumptions for the four hypothetical 379 

antibiotics. 380 

We found that target overexpression has a diversity of effects on resistance that 381 

depend on the mechanism of action of the drug. For ciprofloxacin and its multimodal effects 382 

on growth and death, small increases in target number can lead to modest increases in MIC, 383 

even when the resistant cell faces large fitness costs as a result of GyrA2B2 overexpression. 384 

However, larger increases in target number lead to reductions in MIC. This result is consistent 385 

with experimental studies on target amplification, in which the overexpression of gyrAB in E. 386 

coli resulted in increased susceptibility to ciprofloxacin (Palmer & Kishony, 2014). Target 387 

overexpression leads to substantial gains in resistance against bacteriostatic drugs that exhibit 388 

stepwise effects, even at very high fitness costs. The effect of target overexpression on drug 389 

resistance is negligible for bactericidal drugs and for bacteriostatic drugs with a linear effect 390 

on growth stalling. 391 

 392 

Drug mechanism shapes the resistance selection window 393 

To understand how a drug’s mechanism of action affects the propensity to select for resistance 394 

during treatment, we simulated the pharmacodynamics of wild-type and drug-resistant 395 

strains challenged to each of the five drugs in the set outlined above. MICs for clinical isolates 396 

of ciprofloxacin-resistant E. coli strains with single point mutations in GyrA, which may 397 
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reduce the affinity of ciprofloxacin to GyrA2B2, range from 10 to 16 times greater than the MIC 398 

of a drug-susceptible wild-type (Everett et al., 1996; Morgan-Linnell & Zechiedrich, 2007; 399 

Piddock, 1999; Redgrave et al., 2014). Data on the fitness costs associated with mutant GyrA-400 

mediated ciprofloxacin resistance in E. coli are sparse, but studies of rifampicin-resistant 401 

clinical isolates of Mycobacterium tuberculosis with point mutations in the rpoB gene have 402 

suggested that a 20-30% reduction in growth rate is approximately the maximum fitness cost 403 

that drug-resistant mutants can incur before facing extinction in competitive drug-free 404 

environments (Gagneux et al., 2006). To model drug-resistant strains, we therefore scaled kF 405 

and kR such that the MIC of the resistant strain is 12 times that of its drug-susceptible 406 

counterpart given a 25% fitness cost (cR = 0.25) (Figure 4A). 407 

 408 

 409 
 410 
Figure 4 – The propensity to select for resistant mutants depends on drug mechanism. (A) 411 
We modeled wild-type strains using the parameters obtained from the calibration detailed in 412 
Figure 2. (B) Relationship between MICs of resistant strains (expressed as multiples of 413 
MICWT) and fitness cost of resistance. Horizontal dashed lines indicate the MICs of the wild-414 
type and resistant strains described in panel (A); the vertical dashed line indicates the fitness 415 
cost at which all resistant strains have the same fold-increase in MIC relative to that of wild-416 
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type (cR = 0.25). (C) Pharmacodynamic curves for the wild-type and resistant strains described 417 
in panel (A). (D) Resistance selection windows for drug-resistant strains. The fitness advantage 418 
of resistant strains over wild-type strains is shown within the drug concentration range in 419 
which the resistant strain has a positive net growth rate that is larger than that of the wild-420 
type. The fitness advantage is expressed as a proportion of the resistant strain’s growth rate in 421 
the absence of drug (G0,RES). 422 
________________________________________________________________________________________________ 423 

A nearly linear relationship exists between drug resistance and fitness cost for strains 424 

resistant to drugs with a linear effect on growth or death (Figure 4B, Bacteriostatic/Linear and 425 

Bactericidal/Linear). By contrast, drugs with stepwise effects on growth and killing 426 

(Bacteriostatic/Stepwise and Bactericidal/Stepwise) exhibit only modest reductions in MIC 427 

until they incur very high (>90%) fitness costs. We determined resistance selection windows 428 

for strains resistant to the five drugs in our set by simulating pharmacodynamic curves for 429 

wild-type and resistant strains (Figure 4C). To quantify the magnitudes of selection for 430 

resistant strains, we calculated the difference in net growth rates between wild-type and 431 

susceptible strains over the concentration range that defines the resistance selection window 432 

for each drug (Figure 4D). For linear-effect bacteriostatic drugs (Bacteriostatic/Linear), we 433 

found that the resistance selection window begins at drug concentrations as low as 200x 434 

below the MIC of the susceptible strain. Drugs with stepwise effects on growth or killing 435 

(Bacteriostatic/Stepwise and Bactericidal/Stepwise) have narrower resistance selection 436 

windows than their counterparts with more linear activity profiles. 437 

Consistent with prior studies on the pharmacodynamic profiles of antimicrobial agents 438 

(Mohamed et al., 2014; Nielsen & Friberg, 2013; Yu et al., 2018), we find that the size of the 439 

resistance selection window is associated with the steepness of a drug’s pharmacodynamic 440 

curve. Given a cellular effect (i.e. bacteriostatic or bactericidal), drugs with steeper 441 

pharmacodynamic curves tend to have narrower selection windows (Supplementary Figure 442 

S7). However, we also find that strains resistant to drugs with narrower resistance selection 443 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.06.01.127571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127571
http://creativecommons.org/licenses/by-nc/4.0/


 22 

windows have higher net growth rates within the resistance selection regime than do strains 444 

resistant to drugs with wider resistance selection windows (Figure 4D). This finding has clear 445 

clinical significance: drugs with steeper pharmacodynamic profiles feature relatively small 446 

concentration ranges that select for resistance, but the negative consequences of dosing within 447 

the resistance selection window are higher for these drugs. 448 

 449 

The secondary mutant selection window is narrower for antibiotics with stepwise effects on growth 450 

and death 451 

The genotypic space for mutations that confer resistance to antibiotics by modifying the 452 

binding kinetics of a drug to its target, such as those described in Figure 4, is typically highly 453 

constrained (Levin et al., 2000; Palmer & Kishony, 2013). This is because a return to a drug-454 

susceptible state requires reversion of the specific genetic changes that conferred resistance in 455 

a bacterial population, whereas secondary mutation accumulation can involve a wider range 456 

of genetic changes throughout the cell’s metabolic network. Therefore, the probability that a 457 

bacterial population evolves secondary mutations that compensate for the fitness costs of a 458 

resistance mutation is often higher than the probability that a bacterial population will revert 459 

to susceptibility in drug-free environments (Isalan et al., 2008; Maisnier-Patin et al., 2002). 460 

During treatment, resistant bacterial populations may also accumulate secondary mutations 461 

that further raise MIC. In order to understand how drug mechanism influences such 462 

secondary adaptation, we simulated the emergence of secondary mutants from drug-resistant 463 

subpopulations of a bacterial population faced with antibiotic challenge (Supplementary 464 

Figure S8; Methods, Simulating the emergence of secondary mutations). 465 

The probability of secondary mutation emergence is substantially higher for drugs 466 

with linear effects on cellular growth and death than it is for drugs with stepwise effects 467 
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(Figure 5A). This holds true for both bactericidal and bacteriostatic agents. Counterintuitively, 468 

then, the suppression of secondary mutation emergence is not necessarily guaranteed by 469 

rapid killing as suggested by earlier studies (Lipsitch & Levin, 1997). Likewise, rapid 470 

attenuation of cell division does not halt the emergence of secondary mutations. We studied 471 

the basis for this result by investigating the steady-state target occupancy distributions of cells 472 

under antibiotic exposure. By accounting for the kinetics of drug-target binding, our 473 

biochemical model shows that target occupancy among cells follows a distribution and is not 474 

a single value even in otherwise clonal bacterial subpopulations (Figure 5B). This results in 475 

heterogeneous replication rates within the drug-resistant subpopulation (Supplementary 476 

Figure S9) that allow some bacteria to mutate. Classical population-dynamic models of 477 

antibiotic action (Lipsitch & Levin, 1997; Regoes et al., 2004), which assume that a drug affects 478 

the net growth rate of all cells equally, overlook this phenomenon. 479 

 480 

 481 
 482 
Figure 5 – Emergence of secondary mutations among resistant subpopulations of infecting 483 
bacteria. (A) Probability of a drug-resistant strain with secondary mutations emerging from 484 
an infecting bacterial population before the infection is cleared (i.e. before the total bacterial 485 
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population decreases to less than 1). The initial population size for this simulation is 109 cells. 486 
Inset shows probabilities of secondary mutation emergence before infection clearance when 487 
the drug concentration used is 2x MICRES. (B) Frequency distributions of inactive drug-target 488 
complexes for drug-resistant subpopulations undergoing steady-state exponential decline at 489 
2x MICRES. (C) Probability of secondary mutant emergence from bacterial subpopulations 490 
with i inactivated drug-target complexes, shown for ciprofloxacin dosed at 2x MICRES. (D) 491 
Probability of secondary mutant emergence from bacterial subpopulations as a function of 492 
drug dose, shown for ciprofloxacin dosed at 2x MICRES. Probabilities are shown as absolute 493 
values (left panel) and as values normalized to the total probability of compensation for the 494 
entire bacterial population over the course of treatment (right panel). (E) Resistance and 495 
secondary mutant selection windows for different drug action mechanisms. The resistance 496 
selection window (middle green) is defined as the drug concentration range over which a 497 
drug-resistant strain has a growth advantage over wild-type. The secondary mutant selection 498 
window (dark green) is defined as the drug concentration range over which the probability of 499 
a resistant strain with secondary mutations emerging before infection clearance exceeds 10-4 500 
(see Supplementary Figure S10 and Methods, Simulating the emergence of secondary mutations). 501 
Dashed lines indicate the MICs of the wild-type and resistant strains. CIP: ciprofloxacin; S/S: 502 
bacteriostatic/stepwise effect; S/L: bacteriostatic/linear effect; C/S: bactericidal/stepwise effect; 503 
C/L: bactericidal/linear effect; MICWT: MIC of the wild-type strain; MICRES: MIC of the 504 
resistant strain. 505 
________________________________________________________________________________________________ 506 

For ciprofloxacin doses only slightly above the MIC of the resistant strain ([Drug] = 2x 507 

MICRES), we found that secondary mutations are most likely to emerge once the bacterial 508 

population has reached a steady-state target occupancy distribution (Figure 5C). A 509 

considerable probability of secondary mutation emergence nonetheless exists among 510 

bacterial subpopulations with low numbers of inactivated drug-target complexes. These low-511 

occupancy subpopulations have faster growth rates and thus higher mutation rates. They are 512 

also present in very large numbers during the initial stages of treatment, when drug molecules 513 

are binding to their cellular targets and before the overall population begins to decline 514 

(Figure 1C). We found that drug concentration influences the likelihood of a secondary 515 

mutant arising from a steady-state or a low-occupancy subpopulation (Figure 5D). While the 516 

overall probability of secondary mutation emergence decreases with higher drug dose (Figure 517 

5D, left panel), the relative probability that a secondary mutation arises from a low-occupancy 518 

population is greater for higher drug doses (Figure 5D, right panel). This implies that 519 
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secondary mutations are more likely to emerge very early during treatment when high drug 520 

doses are used. 521 

Prior studies have estimated that the probability of the existence of a fitness cost-free 522 

bacterial pathogen prior to treatment ranges from 3 x 10-4 to 5 x 10-5 per infection (Colijn, 523 

Cohen, Ganesh, & Murray, 2011). We sought to determine the range of drug concentrations 524 

over which the likelihood of secondary mutation emergence during treatment is at least as 525 

high as the likelihood for preexisting secondary resistance. We therefore determined the drug 526 

concentration at which the probability of secondary mutation emergence before population 527 

extinction equals 10-4 (that is, each treatment course has a 1 in 10,000 chance of giving rise to a 528 

resistant strain bearing secondary mutations). We used this value as an upper boundary for 529 

the “secondary mutant selection window,” the range of drug concentrations over which the 530 

probability of the emergence of a drug-resistant bacterial strain with secondary mutations is 531 

substantial (Supplementary Figure S10). The secondary mutant selection window extends the 532 

range of drug concentrations defined by the resistance selection window over which drug-533 

resistant strains may be selected (Figure 5E). 534 

As with the resistance selection window, we found that the size of the secondary 535 

mutant selection window varies dramatically depending on a drug’s mechanism of action. 536 

Drugs with linear effects on cellular growth and death have larger secondary mutant selection 537 

windows than do drugs with stepwise effects on cellular growth and death. This is because for 538 

drugs with stepwise effects, it is possible to shift the entire distribution of target occupancy to 539 

a range where bacterial replication is virtually eliminated (or where bacterial death far 540 

outweighs replication) across the entire population. With linear action, replication can still 541 

occur even at high target occupancy, enabling the emergence of mutants. Drugs that fully 542 

suppress cellular replication above MIC (i.e. Bacteriostatic/Stepwise) have small secondary 543 
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mutant selection windows, as the probability that additional mutations emerge over the 544 

course of treatment is equal to the probability that a resistant strain with secondary mutations 545 

emerges during the transient phase of drug-target binding immediately after treatment onset, 546 

which lasts on the order of a few hours (Figure 1C). 547 

 548 

Discussion 549 

The increasing prevalence of first line- and multi-drug resistant bacteria (WHO, 2012, 2014) 550 

signals the need for new antibiotics and robust drug dosing strategies that minimize the 551 

emergence and spread of resistance (CDC, 2019). Despite this need, little is known about the 552 

role that a drug’s mechanism of action plays on the evolution of antibiotic resistance. We 553 

studied the relationship between drug mechanism and drug resistance using a mathematical 554 

model that connects bacterial population dynamics with molecular-scale descriptions of drug-555 

target binding kinetics (Figure 1A). Our biochemical model allows us to describe bacterial 556 

replication and death as functions of drug-target occupancy, enables us to estimate molecular 557 

kinetic parameters from population-scale data, and delivers performance on par with that of 558 

classical pharmacodynamic models (Figure 2B). 559 

 We calibrate the model to an experimental dataset of ciprofloxacin time-kill curves 560 

(Figure 2A, Table 1), and we show that drug-resistant strains can incur strikingly high fitness 561 

costs associated with mutations that reduce drug-target binding kinetics (Figure 3). We find 562 

that the relationship between drug-target inactivation and antibiotic effect (i.e. bacterial 563 

killing, growth stalling, or both) exerts a strong influence on the strength of selection for 564 

resistant strains during treatment, regardless of whether the drug is bactericidal or 565 

bacteriostatic (Figure 4D). We also show that the molecular kinetics of drug-target binding 566 

within cells results in heterogeneous replication rates among members of an otherwise 567 
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homogenous population (Figure 5B). This enables some drug-resistant strains to develop 568 

secondary mutations that can further reduce drug susceptibility, increase resilience in drug-569 

free environments, and ultimately lead to treatment failure. 570 

 The clinical consequence of the frequently-observed trade-off between bacterial 571 

fitness and drug resistance (Andersson & Hughes, 2010) is the existence of a resistance 572 

selection window—a range of drug concentrations that selects for the propagation of drug-573 

resistant strains over their drug-susceptible counterparts (Karl Drlica & Zhao, 2007; Roberts et 574 

al., 2008). It is important to note that numerous factors not captured by the resistance 575 

selection window can contribute to resistance selection in clinical settings, most notably 576 

ecological interactions between drug-susceptible strains, drug-resistant strains, and host 577 

physiology (Day, Huijben, & Read, 2015). Our approach nonetheless enables us to isolate the 578 

roles that a drug’s mechanism of action play in driving the emergence of resistance. 579 

We show that the resistance selection window is narrower for drugs that exert their 580 

effects on growth or death in a stepwise (i.e. sudden) manner, resulting in a steeper 581 

pharmacodynamic curve (Figure 4C-4D, Supplementary Figure S7). This result is consistent 582 

with other studies on the pharmacodynamics of antimicrobial agents, which have found that 583 

the size of the resistance selection window is associated with the steepness of the 584 

pharmacodynamic curve (Mohamed et al., 2014; Nielsen & Friberg, 2013; Yu et al., 2018). The 585 

characteristics of antimicrobial agents that enable steeper pharmacodynamic curves 586 

nonetheless remain poorly described. Models that capture the effects of antibiotic drugs on 587 

multiple scales, such as that described in this study and elsewhere (Clarelli et al., 2019; Wiesch 588 

et al., 2015), could serve as helpful tools for studying the interplay between a drug’s molecular 589 

mechanism and its effect on bacterial population dynamics, enabling the design of new 590 

antimicrobial agents with narrow resistance selection windows. 591 
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Mutations that alleviate the fitness costs associated with drug resistance and/or that 592 

further raise a strain’s MIC play a major role in driving the spread of antimicrobial resistance 593 

across bacterial populations and clinical settings (Handel et al., 2006). Our study sheds 594 

quantitative light on the mechanistic factors that govern the emergence of these secondary 595 

mutations during treatment. We propose the use of the secondary mutant selection window 596 

(Supplementary Figure S10) as a tool for illustrating the likelihood of further mutation 597 

acquisition at nonzero drug concentrations. As with the size of the resistance selection 598 

window, the size of the secondary mutant selection window varies greatly depending on the 599 

mechanism of action of the antibiotic (Figure 5E). We stress that the secondary mutant 600 

selection window does not necessarily indicate a region on the pharmacodynamic profile of a 601 

drug over which the selection of a resistant strain with secondary mutations is favored. The 602 

strength of selection depends on the physiological effect of the secondary mutation itself—603 

that is, whether the mutation accelerates growth rate, slows drug-target binding, or exerts a 604 

multitude of other possible effects. Indeed, secondary mutations that act strictly by restoring 605 

growth rates to wild-type levels lead only to modest (usually sublinear) increases in MIC 606 

(Figure 4B), implying that strains with cost-free resistance phenotypes would still have MICs 607 

well below the upper boundary for the secondary mutant selection windows shown in Figure 608 

5E. Rather, the secondary mutant selection window defines the drug concentration range 609 

within which the accumulation of secondary mutations is substantial and therefore clinically 610 

significant. 611 

Suppressing secondary mutation is crucial for reducing the survival of drug-resistant 612 

mutants in antibiotic-free environments, where drug-resistant strains enter into direct 613 

competition with other microbial organisms for limited resources (Andersson & Hughes, 2010; 614 

Durão et al., 2018). We demonstrate that dosing drugs at or slightly above the MIC of a 615 
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resistant strain may not be sufficient for preventing the spread of resistance, and that—for 616 

drugs with linear effects on bacterial growth and death as a function of drug-target 617 

occupancy—there exist appreciable risks of selecting for secondary mutations even at doses 618 

substantially above the MIC of the resistant strain. Reassessing the range of drug 619 

concentrations that selects for resistant mutants as a composite of the resistance selection 620 

window and the secondary mutant selection window (Figure 5E, Supplementary Figure S10) 621 

could facilitate the design of drug dosing strategies that holistically mitigate the emergence 622 

and spread of resistance. 623 

Our study shows that both bactericidal and bacteriostatic drugs are capable of 624 

exhibiting narrow resistance selection windows and low probabilities of secondary mutation 625 

emergence in bacterial populations subjected to antibiotic treatment. This finding challenges 626 

the long-accepted notion that bactericidal agents are superior to bacteriostatic agents in 627 

suppressing the emergence of resistance during treatment (Stratton, 2003), and signals the 628 

need to look beyond a drug’s ability to kill or stall bacterial replication to assess the risks of 629 

resistance emergence. The relationship between drug-target inactivation and overall 630 

antibiotic effect has a much stronger influence on the strength of resistance selection than 631 

does the drug’s bacteriostatic or bactericidal activity (Figure 4D). The processes that may 632 

dictate such a relationship for any given antibiotic nonetheless remain enigmatic. This 633 

underscores the need for deeper experimental and theoretical research on the molecular 634 

processes that govern the pharmacodynamics of antibiotic drugs. 635 

The proper use of antibiotics in clinical and non-clinical settings constitutes a core 636 

action for addressing the worldwide threat of antibiotic resistance (CDC, 2019). The 637 

quantitative approach we present in this study may prove useful for identifying strategies that 638 

manage the emergence of resistance to existing and future antimicrobial agents. We argue 639 
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that dosing regimens should account for a drug’s resistance and secondary mutant selection 640 

windows if they are to minimize the selection of resistance phenotypes during treatment. Our 641 

findings suggest that even drugs with seemingly straightforward pharmacodynamic 642 

classifications (i.e. bacteriostatic versus bactericidal action) can set bacterial populations on 643 

complex and sometimes counterintuitive evolutionary trajectories with respect to resistance 644 

selection. In the clinic, there exists little evidence that bactericidal antibiotics lead to more 645 

favorable outcomes than do bacteriostatic antibiotics, especially for combatting 646 

uncomplicated infections (Leekha, Terrell, & Edson, 2011; Pankey & Sabath, 2004). Yet it is 647 

precisely in the treatment of uncomplicated, drug-susceptible infections that the greatest 648 

gains are to be made in mitigating the emergence of resistance. Mechanistic models such as 649 

that presented in this study can help to uncover clinically useful drug characteristics that 650 

classical models may overlook. We envision a coupling of our quantitative approach with 651 

high-throughput experimental platforms (Kulesa, Kehe, Hurtado, Tawde, & Blainey, 2018; 652 

Schoepp et al., 2017) to aid in the development of new drugs with optimal pharmacodynamic 653 

profiles and to accelerate the discovery of drug- and pathogen-specific dosing regimens that 654 

minimize resistance emergence. 655 

 656 

Methods 657 

Bacterial time-kill curve experiment 658 

We conducted time-kill curve experiments using Escherichia coli strain BW25113 (Coli Genetic 659 

Stock Center #7636) (Datsenko & Wanner, 2000). We diluted overnight cultures of BW25113 660 

1:1000 into pre-warmed lysogeny broth (LB) and grew cells to an optical density at 600nm 661 

(OD600) of 0.50. We then prepared a 1:3 dilution series of ciprofloxacin (highest concentration: 662 

2.19 µg/ml) and added the antibiotics to bacterial cultures. We quantified bacterial population 663 
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sizes at regular (20-30 min) time intervals by plating a 1:10 dilution series of liquid culture onto 664 

LB agar plates and counting colony forming units in technical triplicate. The bacterial kill 665 

curve obtained at the highest ciprofloxacin concentration was used to determine the 666 

maximum death rate (DN) of bacterial cells, and a growth curve obtained using the same 667 

protocol with the omission of ciprofloxacin was used to determine the maximum growth rate 668 

(G0) of cells in an antibiotic free environment (Supplementary Figure S11). 669 

 670 

Model formulation and analysis 671 

Our biochemical model constitutes a system of linear ordinary differential equations that 672 

describe how successive numbers of inactivated drug-target complexes affect bacterial 673 

replication and death. We consider a population of initial size B0 of phenotypically 674 

homogenous and clonal bacteria exposed to a constant concentration C0 of drug. When no 675 

drug is present, bacterial cells replicate at a rate G0 and die at a rate D0. All cells have an 676 

identical number N of proteins that drug molecules target for inactivation. We assume first-677 

order kinetics for drug-target binding: drug molecules bind to cellular protein targets within 678 

cells, thereby inactivating the protein, at a rate kF. Inactivated drug-protein targets dissociate 679 

at a rate kR. The first-order affinity of the drug to its protein target (KD) is therefore the ratio of 680 

the molecular dissociation rate to the molecular on-rate (KD = kR/kF). 681 

We stratify the entire bacterial population into N+1 subpopulations according to the 682 

number i of inactivated drug-target complexes within each cell (i.e. the drug-target 683 

occupancy), and we assume that growth and death rates of each bacterial cell depend on the 684 

drug-target occupancy. That is, bacterial subpopulations with a larger drug-target occupancy 685 

have slower growth rates and/or higher death rates than do bacterial subpopulations with a 686 

smaller drug-target occupancy. Growth rate is therefore a monotonically decreasing discrete 687 
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function G[i], and death rate is a monotonically increasing discrete function D[i]. We use 688 

generalized logistic equations (Supplementary Figure S1) to describe overall growth and 689 

death rates as a function of drug-target occupancy, allowing these functions to take the form 690 

of a line, a sigmoidal curve, an exponential curve, or a step function. We assume that when a 691 

drug inactivates all N protein targets in a cell, growth rate falls to zero (for bacteriostatic 692 

drugs), death rate attains a maximal value DN (for bactericidal drugs), or growth and death 693 

rates are both affected (for drugs with mixed bactericidal and bacteriostatic action). In all of 694 

these cases, the maximal rate of killing or growth attenuation can occur before all N target 695 

proteins are inactivated if, for instance, G[i] and/or D[i] are step functions with inflection 696 

points between 0 and N. During replication, a bacterial cell partitions its inactivated drug-697 

target complexes to two daughter cells according to a binomial distribution. 698 

The change over time in the number of bacterial cells with exactly i inactivated drug-699 

target complexes (Bi) thus depends on the growth rate Gi, the death rate Di, and the binding 700 

kinetics of the drug to its protein target: 701 

[Equation 2] 702 

𝑑𝐵0(𝑡)
𝑑𝑡

= 𝑖 + 1 𝑘'𝐵067 + 𝑁 − 𝑖 − 1 𝑘+𝐶-𝐵0;7 − 	𝑖𝑘'𝐵0 − 𝑁 − 𝑖 𝑘+𝐶-𝐵0 − 𝐷0𝐵0 − 𝐺0𝐵0 + 2
𝑗
𝑖
2>

𝐺>𝐵>

*

>?0

 703 

The first four terms on the right side of this equation describe changes in Bi due to drug-target 704 

binding and unbinding. The fifth term describes bacterial death, and the sixth and seventh 705 

terms describe bacterial growth. We can then define B(t) as a vector whose elements comprise 706 

the set of all bacterial subpopulations (B0, B1, …, Bi, …, BN-1, BN) at a given time. Because 707 

Equation 2 is linear, we can describe the temporal dynamics of the entire bacterial population 708 

with this vector, whose representation is a system of linear differential equations: 709 

[Equation 3] 710 
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𝑑𝐵(𝑡)
𝑑𝑡

= 	𝑨𝐵 711 

In the equation above, A denotes the matrix of coefficients describing the system of equations 712 

for the vector B(t). The values for the coefficients in A depend on the concentration C0 of drug, 713 

on the drug’s binding kinetics, and on the growth and death rate functions G[i] and D[i]. 714 

Equation 3 represents an initial value problem. This system of linear differential 715 

equations with a constant coefficient matrix has a unique solution given by 716 

[Equation 4] 717 

𝐵 𝑡 = 	 𝑒𝑨B𝐵- 718 

where the vector 𝐵- denotes the initial composition of bacterial subpopulations at t = 0. The 719 

solution can also be written as a linear superposition of a product of complex exponentials 720 

(with arguments determined by eigenvalues) and polynomials (whose degree is determined by 721 

the geometric multiplicity of these eigenvalues and whose coefficients are uniquely 722 

determined by the initial conditions). In practice, B(t) describes a family of exponential growth 723 

and decay curves that represent the replication and death of all N+1 bacterial subpopulations 724 

over time (Figure 1B). We solve for B(t) numerically by calculating the matrix exponential of A 725 

using a scaling and squaring algorithm implemented in MATLAB (MathWorks, Newton, MA) 726 

(Al-Mohy & Higham, 2009). 727 

 728 

Calculation of minimum inhibitory concentration 729 

We define the MIC as the concentration C0 of an antibiotic such that any concentration of 730 

drug at or above C0 is guaranteed to cause the eventual extinction of the bacterial population. 731 

This occurs precisely when one eigenvalue of matrix A (from Equation 3) is zero and all other 732 

eigenvalues have a negative real component. We thus express the MIC as 733 

[Equation 5] 734 
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𝑀𝐼𝐶 = inf 𝐶- > 0	| 	max ℛℯ 𝑒𝑖𝑔 𝑨 = 0 . 735 

With this formulation, finding the MIC amounts to finding the value of C0 such that the 736 

greatest real component of the eigenvalues of A is zero. Deriving the expression for the MIC in 737 

the simplest case of the model, when N = 1, serves to illustrate this approach. For the purposes 738 

of this derivation, we consider a drug that elicits both a bactericidal and a bacteriostatic effect, 739 

so G[i = 1] = 0 and D[i = 1] = DN. However, the approach for finding the MIC is identical for any 740 

mechanism of drug action. The matrix A describing all bacterial subpopulations (Bi=0 and Bi=1) 741 

in this simple case is 742 

[Equation 6] 743 

𝑨 = 	
𝐺- − 	𝑘+𝐶- 𝑘'
𝑘+𝐶- − 𝑘' +	𝐷*

. 744 

We wish to find the concentration CMIC of antibiotic that yields negative real components of 745 

all but one eigenvalues λ of matrix A. For the 2-by-2 matrix given by Equation 6, the 746 

characteristic polynomial is given by λ2 - tr(A)λ + det(A), and the Routh-Hurwitz stability 747 

criterion needed to satisfy the negative value constraints on λ is tr(A) ≤ 0 and det(A) ≥ 0. For the 748 

matrix described in Equation 6, these expressions correspond to 749 

[Equation 7] 750 

𝐺- − 𝑘+𝐶- − 𝑘' − 𝐷* ≤ 0 751 

and 752 

[Equation 8] 753 

𝐺- − 𝑘+𝐶- −𝑘' − 𝐷* − 𝑘+𝑘'𝐶- ≥ 0. 754 

Solving for the concentration Co in both of these cases yields 755 

[Equation 9] 756 

𝐶- ≥
𝐺- − 𝑘' − 𝐷*

𝑘+
 757 

in the case of Equation 7 and 758 
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[Equation 10] 759 

𝐶- ≥
𝑘' + 𝐷* 𝐺-
𝑘+𝐷*

 760 

in the case of Equation 8. We expect the value of kR to be greater than that of G0 (that is, we 761 

expect the rate of drug-target unbinding to be greater than the rate of bacterial replication). 762 

We also expect the value of the death rate at saturating drug concentrations (DN) to be 763 

nonzero and positive. Therefore, Equation 9 is guaranteed to be satisfied if Equation 10 is also 764 

satisfied. We thus find the expression for the MIC to be 765 

 [Equation 11] 766 

𝐶TUV = 	
𝑘' + 	𝐷* 𝐺-
𝑘+𝐷*

. 767 

From this expression, we can infer the following proportionalities for the value of the MIC 768 

relative to the values of other model parameters: 769 

[Equation 12] 770 

𝐶TUV 	∝ 	𝐺- 771 

𝐶TUV 	∝ 	 1 𝑘+  772 

𝐶TUV 	∝ 	 𝑘'. 773 

Polynomial expressions for the MIC, as shown in Equation 11, become exceedingly 774 

complex beyond N = 3. However, we conjecture (although we have not been able to prove) 775 

that the structure of the linear system shown in Equation 3 guarantees the existence of the 776 

MIC. For larger values of N, we leverage numerical schemes to calculate the eigenvalues of 777 

matrix A. We use MATLAB’s eig() function, which calculates eigenvalues using the QZ 778 

algorithm (Moler & Stewart, 1973). 779 

 780 

Model calibration via simulated annealing 781 
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Numerical values for the model parameters N, D0, µR, and µC were obtained from the literature 782 

(Table 1). The values for G0 and DN were obtained by fitting experimental kill curves at drug 783 

concentrations of zero and 2.19 µg/ml, respectively, to exponential functions (Supplementary 784 

Figure S11). We leveraged an adaptive simulated annealing algorithm coupled with local 785 

gradient descent to obtain the remaining parameters (kF, kR, αG, αD, γG, and γD). Detailed 786 

descriptions of the adaptive simulated annealing algorithm are available elsewhere 787 

(Henderson, Jacobson, & Johnson, 2003; Ingber, 1995); in brief, simulated annealing is a global 788 

optimization algorithm capable of escaping local minima. It is therefore well suited to 789 

applications involving the optimization of many parameters. Adaptive simulated annealing is 790 

a variant on the classical simulated annealing algorithm that probes global parameter space 791 

with greater efficiency by accounting for each parameter’s magnitude when formulating a 792 

new parameter set at every iteration of the algorithm. We used adaptive simulated annealing 793 

to minimize the difference between experimental time-kill curves and model simulations of 794 

bacterial populations challenged to the same antibiotic doses. The difference between 795 

experimental observation and simulation is expressed through the objective function, whose 796 

value ψ the adaptive simulated annealing algorithm seeks to minimize: 797 

[Equation 13] 798 

𝜓 = 	 𝑾	 𝑬 − 𝑩 \.
>0

 799 

E denotes an m-by-n matrix of experimentally-measured population sizes at m drug 800 

concentrations and n timepoints, B denotes simulated population sizes at the same drug 801 

concentrations and timepoints, and W denotes an m-by-n weighting matrix (for our 802 

application, simply a matrix of ones). B is a function of the parameters being optimized (that 803 

is, B = f(kF, kR, αG, αD, γG, γD)). 804 
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 Coupling the adaptive simulated annealing optimization with a local gradient descent 805 

assures that our calibration procedure always converges on a local minimum. We used an 806 

exponential cooling schedule for the simulated annealing algorithm, which assures that the 807 

optimization runs ergodically (Ingber, 1995). That is, repeating the optimization many times 808 

from random initial starting conditions in parallel yields roughly the same results as running 809 

the optimization once for a very long time. This allowed us to parallelize the optimization 810 

procedure by running the algorithm repeatedly across several cores of a computer and to 811 

characterize the distributions of parameter values obtained from these calibrations 812 

(Supplementary Figure S3). After performing 249 independent model calibrations, we 813 

selected the parameter set with the lowest objective function value to use in subsequent 814 

simulations. The parameter values for this set are shown in Table 1. Parameter sets for all 815 

model optimizations performed are available in Supporting Data File 3. 816 

 817 

Simulating the emergence of secondary mutations 818 

We assumed that drug-resistant bacterial strains with secondary mutations that compensate 819 

for fitness costs and/or that further increase MIC emerge from preexisting drug-resistant 820 

subpopulations present in the initial population at the start of treatment (Supplementary 821 

Figure S8). The size of the drug-resistant subpopulation at treatment onset (B0,R) is given by 822 

the mutation-selection balance, which expresses the size of the drug-resistant subpopulation 823 

at which the rate of emergence of drug resistance alleles by spontaneous mutation equals the 824 

rate of elimination of those alleles due to competitive fitness costs (Johnson, 1999): 825 

[Equation 14] 826 

𝐵-,' = 	
𝐵-µ'
𝑐'

 827 

Here, µR denotes the mutation rate for drug resistance emergence per unit time. 828 
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In order to quantify the probability of secondary mutation emergence from this drug-829 

resistant subpopulation, we adapted a formulation that Lipsitch and Levin developed to study 830 

the evolution of drug-resistant bacterial strains during antibiotic treatment (Lipsitch & Levin, 831 

1997). We assumed that secondary mutations emerge exclusively due to errors in DNA 832 

replication during bacterial growth. The expected number of resistant cells with secondary 833 

mutations that emerge from a bacterial population with i inactivated drug-target complexes 834 

(E(MRC,i)) is proportional to the total number of replications that the subpopulation undergoes 835 

before extinction and the rate of secondary mutation emergence: 836 

[Equation 15] 837 

𝐸 𝑀'V,0 = 	 µV 𝐺',0	𝐵',0 𝑡 	𝑑𝑡

Babc,d

-

 838 

In this equation, µC denotes the secondary mutation rate, GR,i represents the growth rate of a 839 

resistant strain with exactly i inactivated drug-target complexes, BR,i(t) describes the 840 

population dynamics of the ith drug-resistant bacterial subpopulation, and tEXT,i describes the 841 

amount of time elapsed from treatment onset until the bacterial subpopulation is eliminated 842 

(Bi,R = 1 when t = tEXT). The total number E(MRC) of resistant mutants with secondary mutations 843 

that we expect to observe over the course of treatment is thus the sum of Equation 15 over all 844 

values of i, and the probability PRC that a compensated resistant mutant will emerge over the 845 

course of treatment follows from the Poisson assumption that secondary mutations arise 846 

stochastically and independently of other mutations: 847 

[Equation 16] 848 

𝑃'V = 1 −	𝑒; f Tgh,d
i
djk . 849 

The summation term in Equation 16 describes the total number of resistant strains with 850 

secondary mutations expected to emerge before extinction. This equation thus quantifies the 851 
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Poisson probability that at least one resistant strain with a secondary mutation will emerge 852 

over the course of treatment. 853 

 854 

Code and data 855 

We wrote all code in MATLAB. All of the code written for this study is available as a software 856 

package in Supplementary File 1. Experimental data represented in Figures 2A and 2B and in 857 

Supplementary Figure S4 are available within Supporting Data Files 1, 2, and 4, and the 858 

parameter values for all iterations of model optimization are available in Supporting Data 859 

File 3. 860 

 861 

862 
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 1110 
 1111 
Supplementary Figure S1 – Bacterial growth and death rates as a function of drug-target 1112 
occupancy. We define the functions G[i] and D[i] as constrained logistic curves such that G[i = 1113 
0] = Go, G[i = N] = 0, D[i = 0] = D0, and D[i = N] = DN. The parameters αG and αD define the 1114 
steepness of the logistic curves for the growth and death rate function, respectively. αG and αD 1115 
are unitless and range from 1 to 500; 1 yields a quasi-linear function, while 500 yields a quasi-1116 
step function. The parameters γG and γD define the inflection point of the logistic curves for 1117 
the growth and death rate function, respectively. γG ranges from –N to N and γD ranges from 0 1118 
to 2N; the curve is quasi-sigmoidal if γG and γD are in between 0 and N and is quasi-1119 
exponential if γG and γD are outside of these bounds. 1120 
 1121 

1122 
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 1123 
 1124 
Supplementary Figure S2 – Simulated time-kill curves of Escherichia coli exposed to a range 1125 
of drug concentrations. We used the parameter set outlined in Table 1 to model the growth 1126 
and death of bacterial populations subjected to drug concentrations up to 16x minimum 1127 
inhibitory concentration (MIC). Drug concentrations are expressed as factors of the MIC. The 1128 
net growth rate of the entire bacterial population over the time course of the simulation 1129 
decreases with increasing drug concentration. 1130 
 1131 
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 1133 
 1134 
Supplementary Figure S3 – Results from 249 independent model calibrations to 1135 
experimental data. We used adaptive simulated annealing coupled with gradient descent (see 1136 
Methods, Model calibration via simulated annealing) to fit the model to experimental kill curve 1137 
data of E. coli exposed to ciprofloxacin (Supporting Data File 1). Shown in this figure are the 1138 
results for 249 independent model fits, each beginning with randomly-chosen values for the 1139 
parameters describing drug-target binding rate kF, drug-target unbinding rate kR, steepness of 1140 
the growth rate function αG, steepness of the death rate function αD, inflection point of the 1141 
growth rate function γG, and inflection point of the death rate function γD. (A) Frequency 1142 
distribution of objective function values obtained from independent model calibrations. The 1143 
objective function value describes the goodness of the fit between experimental data and 1144 
simulation; smaller values indicate higher goodness of fit. (B-H) Optimization plots showing 1145 
randomly chosen initial parameter values (x-axis) and calibrated parameter values (y-axis) for 1146 
all independent model calibrations. The optimized parameters are kF (B), kR (C), KD (the ratio 1147 
of kR to kF) (D), αG (E), αD (F), γG (G), and γD (H). The final objective function value of each 1148 
model fit is colored according to the color bar above panel (A). 1149 
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 1152 
 1153 
Supplementary Figure S4 – Pharmacodynamic curves generated from experimental data 1154 
and from the calibrated model. The experimental pharmacodynamic curve was generated 1155 
by calculating the net growth rates of E. coli exposed to a set of ciprofloxacin drug 1156 
concentrations (Supporting Data File 1). The time-kill curves of this same experimental 1157 
dataset are shown in Figure 2A; see Supporting Data File 4 for experimental data on net 1158 
growth rate as a function of drug concentration. The model-calibrated pharmacodynamic 1159 
curve was generated by simulating bacterial time-kill curves over the same range of drug 1160 
concentrations used in the experiment and calculating associated net growth rates. 1161 
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 1164 
 1165 
Supplementary Figure S5 – Simulated population curves for ciprofloxacin and for four 1166 
extreme modes of antibiotic drug mechanism. We simulated a bacterial population of 108 1167 
cells exposed to antibiotic drug at 4x MIC. The ciprofloxacin curve corresponds to the drug 1168 
mechanism obtained from the model calibration to experimental data and detailed in Figure 1169 
2C, and the remaining curves correspond to the extreme schemes of drug mechanism shown 1170 
in Figure 2D. 1171 
 1172 
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 1174 
 1175 
Supplementary Figure S6 – MIC as a function of drug-target binding and unbinding 1176 
kinetics. The MIC of a mutant (normalized to the MIC of the wild-type) is plotted against the 1177 
fold-change in (A) drug-target binding (kF) or (B) drug-target complex disassociation (kR). For 1178 
this simulation, mutants have no fitness costs associated with changes in kF and kR (cR = 0). For 1179 
drug-target binding (kF), fold increase in MIC is directly proportional to fold decrease in kF for 1180 
all drug mechanisms. In both panels, the dashed line indicates the line of direct 1181 
proportionality. MICWT: MIC of the wild-type strain; MICRES: MIC of the resistant strain. 1182 
 1183 
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 1185 
 1186 
Supplementary Figure S7 – Drugs with steeper pharmacodynamic curves tend to have 1187 
narrower resistance selection windows. To quantify the steepness of pharmacodynamic 1188 
curves, we fit the curves for drug-resistant strains shown in Figure 4C to the 1189 
pharmacodynamic function formulated by Regoes et al. (Regoes et al., 2004). The equation 1190 
describes the net growth rate Gnet of a bacterial population as a function of drug concentration 1191 
C0 and other parameters (MIC, G0, DN) derived from the model: 1192 

𝐺lmB = 	𝐺- − 	
(𝐺- − 𝐷*)(

𝐶-
MIC)

n

(𝐶- MIC)
n − (𝐷* 𝐺-)

 1193 

In this equation, κ describes the Hill coefficient, which serves as a measure of the steepness of 1194 
the pharmacodynamic curve. Larger values of κ indicate steeper curves. For each of the drug 1195 
mechanisms described in this study (Supplementary Table 1), we generated 1196 
pharmacodynamic curves for drug-resistant mutants (Figure 4C, solid lines), determined the 1197 
value of κ that best fits the curve, and plotted κ against the range of drug concentrations that 1198 
represents the resistance selection window (Figure 4D). MICWT: MIC of the wild-type strain; 1199 
MICRES: MIC of the resistant strain. 1200 
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 1202 
 1203 
Supplementary Figure S8 – Emergence of secondary mutations within subpopulations of 1204 
drug-resistant bacteria during antibiotic treatment. When simulating the emergence of 1205 
secondary mutations, we assume that a drug-resistant subpopulation (middle green) of 1206 
bacteria is present at the start of treatment; the size of this subpopulation is given by the 1207 
mutation selection balance of the allele that confers the drug-resistance phenotype (Johnson, 1208 
1999). We calculate the probability that a drug-resistant strain with secondary mutations (dark 1209 
green) emerges from this subpopulation before the elimination of the drug-resistant strain (at 1210 
time tEXT). 1211 
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 1214 
 1215 
Supplementary Figure S9 – Distributions of growth and death rates for drug-resistant 1216 
bacterial subpopulations undergoing steady-state exponential decline at 2x MICRES. Boxes 1217 
denote the central 50% of the growth and death rate distributions, and whiskers denote the 1218 
central 95% of the growth and death rate distributions. 1219 
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 1222 
 1223 
Supplementary Figure S10 – The secondary mutant selection window. The secondary 1224 
mutant selection window comprises the drug concentration range over which the net growth 1225 
of the drug-resistant strain is negative but the probability of secondary resistance emergence 1226 
before the end of treatment exceeds a defined threshold (in our simulations, 10-4, or a 1 in 1227 
10,000 chance). Four regimes of selection exist: the null selection window in which the wild-1228 
type strain dominates, the resistance selection window, the secondary mutant selection 1229 
window, and the complete killing window. We simplify these four regimes by disregarding 1230 
the relative strengths of selection for each strain in each regime and we instead illustrate the 1231 
boundaries of each region along a drug concentration axis (top bar); these simplified selection 1232 
regimes are shown for all five drug mechanisms studied in Figure 5E. 1233 
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 1236 
 1237 
Supplementary Figure S11 – Obtaining G0 and DN from experimental data. (A) To obtain the 1238 
value of G0 (growth rate in the absence of antibiotic) used in simulations, we fit an exponential 1239 
growth curve to experimental data for E. coli cells grown in the absence of antibiotic. (B) To 1240 
determine the value of DN (maximum death rate in saturating conditions of antibiotic), we fit 1241 
an exponential decay curve to experimental data for E. coli cells exposed to 2.19 µg/ml of 1242 
ciprofloxacin (~200 x MIC). The population size deviates from exponential decay at later 1243 
timepoints (dashed and shaded) likely because of the emergence of persistent subpopulations 1244 
of bacteria (Dörr et al., 2009). The R2 values shown are the linear correlation coefficients for 1245 
the model fit, and are not the correlation coefficients for the log-transform of the data. 1246 
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 1249 
Drug	mechanisms	

Activity	
Ciprofloxacin	

Bacteriostatic	 Bacteriostatic	 Bactericidal	 Bactericidal	
Steepness	 Stepwise	 Linear	 Stepwise	 Linear	

Abbreviation	 CIP	 S/S	 S/L	 C/S	 C/L	
αG	 16.8	 500	 1	 1	 1	
αD	 7.28	 1	 1	 500	 1	
γG	 24.8	 35	 35	 35	 35	
γD	 364	 150	 150	 150	 150	

Bacteriostatic	
Potency	 1	 1	 1	 0	 0	

Bactericidal	
potency	 1	 0	 0	 1	 1	

 1250 
Supplementary Table S1 – Parameters for a set of five drugs with different mechanisms of 1251 
action. The parameters αG and αD describe the steepness of the growth and death rate 1252 
functions, respectively, around the inflection point. The parameters γG and γD describe the 1253 
inflection points of the growth and death rate functions (see Supplementary Figure S1). 1254 
Bacteriostatic potency refers to the magnitude of growth rate decline at saturating 1255 
concentrations of drug; a value of 1 indicates that that growth rate declines to zero in 1256 
saturating concentrations of drug (G[i = N] = 0), and a value of 0 indicates that growth rate is 1257 
unaffected by drug concentration (G[i] = G0 for all i). Bactericidal potency refers to the 1258 
magnitude of death rate increase at saturating conditions of drug; a value of 1 indicates that 1259 
death rate increases to maximum in saturating concentrations of drug (D[i = N] = DN > D0), and 1260 
a value of 0 indicates that death rate is unaffected by drug concentration (D[i] = D0 for all i). 1261 
All other parameters (including drug-target binding rate kF, drug-target unbinding rate kR, and 1262 
target number N) are identical for all drugs in the set. 1263 
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Supplementary File 1 – MATLAB code package containing the code written for this study. 1266 
This file contains scripts that we used to implement our model, to analyze data, and to 1267 
generate the numeric values for all main text and supplementary figures. 1268 
 1269 
Supporting Data File 1 – Experimental data for the ciprofloxacin time-kill curve 1270 
experiment represented in Figure 2A and Supplementary Figure S11. 1271 
 1272 
Supporting Data File 2 – Experimentally-measured minimum inhibitory concentrations 1273 
(MICs) for ciprofloxacin against Escherichia coli represented in Figure 2B. We collated this 1274 
list of experimentally-measured MICs from the literature; study sources are given in the file. 1275 
 1276 
Supporting Data File 3 – Model calibrations obtained via simulated annealing. Starting and 1277 
ending values for all model parameters are given for each iteration of the model fitting 1278 
procedure described in Methods, Model calibration via simulated annealing. 1279 
 1280 
Supporting Data File 4 – Experimental pharmacodynamic curve data represented in 1281 
Supplementary Figure S4. We generated these data by calculating the net growth rates of 1282 
bacterial populations at each drug concentration listed in Supporting Data File 1. 1283 
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