
Alsaleh,	Panse	et	al		

	 1	

 
Autophagy in T cells from aged donors is maintained by 

spermidine, and correlates with function and vaccine responses 
 
 
Ghada Alsaleh1#, Isabel Panse1,2#, Leo Swadling3, Hanlin Zhang1, Alain Meyer4, Janet Lord5, 
Eleanor Barnes6,7,8, Paul Klenerman6,7,8, Christopher Green9, Anna Katharina Simon1 

 
 
 
1 The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, UK 
2 Deutsches RheumaForschungsZentrum, Berlin, Germany 
3 Division of Infection and Immunity, University College London, London, UK 
4 Fédération de médecine translationnelle Université de Strasbourg, France 
5 MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of 
Inflammation and Ageing, University of Birmingham, UK 
6 Peter Medawar Building for Pathogen Research, Nuffield Department of 
Medicine, University of Oxford, Oxford, UK 
7 Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK 
8 NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, 
UK 
9 Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK 
 
 
# these authors have contributed equally 
Corresponding authors: katja.simon@kennedy.ox.ac.uk & 
ghada.alsaleh@kennedy.ox.ac.uk 
 
 
 
 
 
 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.127514doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127514
http://creativecommons.org/licenses/by/4.0/


Alsaleh,	Panse	et	al		

	 2	

Abstract 

Older adults are at high risk for infectious diseases such as the recent COVID-19 

and vaccination seems to be the only long-term solution to the pandemic. While 

most vaccines are less efficacious in older adults, little is known about the 

molecular mechanisms that underpin this. Autophagy, a major degradation 

pathway and one of the few processes known to prevent aging, is critical for the 

maintenance of immune memory in mice. Here, we show induction of autophagy 

is specifically induced in human vaccine-induced antigen-specific T cells in vivo. 

Reduced IFNg secretion by vaccine-induced T cells in older vaccinees correlates 

with low autophagy. We demonstrate in human cohorts that levels of the 

endogenous autophagy-inducing metabolite spermidine, fall with age and 

supplementing it in vitro recovers autophagy and T cell function. Finally, our data 

show that endogenous spermidine maintains autophagy via the translation factor 

eIF5A and transcription factor TFEB. With these findings we have uncovered 

novel targets and biomarkers for the development of anti-aging drugs for human 

T cells, providing evidence for the use of spermidine in improving vaccine 

immunogenicity in the aged human population. 
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Introduction 

The outbreak of coronavirus disease 2019 (COVID-19) caused a great threat to 

world-wide public health in 2020 with the majority of deaths occurring in older 

adults. The development of effective treatments and vaccines against COVID-19 

is now more than ever becoming a pressing and urgent challenge to overcome1,2. 

However the successful vaccination of the elderly against pathogens is 

considered one of the big challenges in our society3,4. Immunosenescence, which 

is characterized by poor induction and recall of B and T memory responses upon 

exposure to new antigens, can lead to reduced immune responses following 

immunization of older adults. While most vaccines are less immunogenic and 

effective in the older population 3, little is known about the molecular mechanisms 

that underpin immune senescence. Autophagy is thought to be one of the few 

cellular processes that underlie many facets of cellular ageing including immune 

senescence 5. By delivering unwanted cytoplasmic material to the lysosomes for 

degradation, autophagy limits mitochondrial dysfunction and accumulation of 

reactive oxygen species (ROS) 6. Autophagy degrades protein aggregates that 

accumulate with age and its age-related decline could contribute to “inflamm-

aging” 7, the age-related increase in inflammatory cytokines in in blood and tissue. 

Loss of autophagy strongly promotes production of the inflammatory cytokines 

TNFa, IL-6 and IL1-b 8,9. We previously found autophagy levels decline with age 

in human peripheral CD8+ T cells 10. Deletion of key autophagy genes leads to a 

prematurely aged immune phenotype, with loss of function in mouse memory 

CD8+ T cells 11 12, hematopoietic stem cells 13, and macrophages 9 with a myeloid 

bias 13. In addition, we find in autophagy-deficient immune cells the same cellular 
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phenotype that cells display in older organisms; they accumulate ROS and 

damaged mitochondria 9,12.  

Importantly, we can improve CD8+ T memory responses from aged mice with 

spermidine 12, an endogenous metabolite synthesized from arginine. It was shown 

in yeast and other model organisms that spermidine extends life-span via 

increased autophagy 14. Several downstream mechanisms of spermidine-induced 

autophagy have been described in mice, including the inhibition of histone de-

acetylases 14. Recently we uncovered  a novel pathway in which spermidine lends 

a residue for the hypusination of the translation factor eIF5a, which is necessary 

for the translation of a three proline motif present in the master transcription factor 

of autophagy and lysosomal biogenesis, called TFEB 15. We demonstrated this 

pathway operates in activated B cells, which upon activation have an unusually 

high protein synthesis rate, owing to the high production of immunoglobulins. It is 

likely that B cells may be particularly reliant on the unfolded protein response, the 

proteasome, and autophagy, to cope with this high rate of protein synthesis. B 

cells may have evolved special coping strategies including the translational 

signalling for autophagy via eIF5A and TFEB. We therefore sought to extend our 

findings to another immune cell type, CD8+ T cells, to investigate whether this 

pathway may be conserved in a related adaptive immune subset and possibly 

broadly applicable. 

 

Here we show for the first time that autophagy is indeed highly active in human 

CD8+ T cells after the in vivo encounter of antigens in donors from two different 

experimental vaccination trials. Our data show that polyamine levels fall with age 
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in peripheral mononuclear cells. When supplemented with spermidine, the 

dysfunctional autophagic flux can be rejuvenated in CD8+ T cells from old donors, 

and levels of the important effector molecules IFN𝛾 and perforin are enhanced as 

a consequence. Moreover, autophagy and effector function are maintained by 

spermidine in T cells from young donors. Lastly, in human CD8+ T cells we show 

that spermidine signals via eIF5A and TFEB to maintain autophagy levels. This 

study demonstrates that the function of human CD8+ T cells can be improved with 

spermidine. Taken together with our previous work on B cells, this leads us to the 

hypothesis that both T and B cell responses to infections and vaccinations are 

exquisitely reliant on sufficient autophagy levels, which are maintained by 

intracellular spermidine. This work highlights the potential of spermidine as a 

vaccine adjuvant in the older adults. 

 

Results 

First we optimised a flow cytometry-based assay to reliably and reproducibly 

measure autophagy, before applying it to measure autophagy after in vivo antigen 

stimulated T cells post-vaccination. To inhibit the autophagic flux and thereby 

degradation of LC3-II, the lysosomal inhibitor bafilomycin A was added to the 

culture for 2 hrs before washing out non-membrane bound LC3-I and staining. In 

the human lymphocyte line Jurkat cells we confirmed that treatment with 

bafilomycin A1 increases LC3-II by both flow cytometry and Western blot 

(Supplementary Fig. S1a and b). Similar results were obtained in PBMC 

stimulated in vitro (Supplementary Fig. S1c and d). Next we used in vitro 

stimulated control PBMC obtained from five young donors (22-50 yrs old), bled 
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on three different occasions, 2 weeks apart, were stimulated with either IFN𝛾/ 

LPS, anti CD40/ IgM or antiCD3/CD28 to induce autophagy in monocytes 

(Supplementary Fig. S2a), B cells (Supplementary Fig. S2b), CD4+ T 

(Supplementary Fig. S2c) or CD8+ T (Supplementary Fig. S2d) cells, 

respectively.  

	  
 
 
Figure S1 
Autophagy levels by flow cytometry-based assay and conventional LC3 western blot 
in Jurkat cell line and PBMC.  (a-b) Human T cell line Jurkat was cultured for 24h and 
treated with or without Bafilomycin A1 for the last 2h. Cells were split into two aliquots, (a) 
representative flow cytometry-based assay (b) representative western blot for LC3-II and 
GAPDH for the same sample. (c-d) PBMC from young human donors were cultured with 
anti-CD3/CD28 for 3 days in the absence/presence of Bafilomycin A1 for the last 2h. Cells 
were split into two aliquots, (c) representative flow cytometry-based assay (d) representative 
western blot for LC3-II and GAPDH for the same sample.  
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Figure S2  
LC3-II detection by flow cytometry is a reliable and reproducible technique in immune 
cells over several blood draws   
PBMC were generated from blood taken at 3 weeks intervals (samples 1, 2, 3) from young 
human donors and were cultured for 24 hours, in the abence/presence of Bafilomycin A1 for 
the last 2h. Here basal autophagic flux was calculated as LC3-II mean fluorescence intensity 
(treatment-basal)/basal. (a) Monocytes gated on CD14+ treated with IFNg or LPS, (b) B cells 
gated on CD19+ treated with anti-CD40L and anti-IgM, (c) CD4+ T cells gated on CD3+CD4+ 
treated with anti-CD3/CD28, (d) CD8+ T cells gated on CD3+ CD8+ treated with anti-
CD3/CD28.  
 
 

Taken together, the data show: a) autophagic flux varies little within 	one individual 

between blood draws; b) there is limited variation between individuals; c) 

bafilomycin A treatment leads to accumulation of LC3-II in all cell types; d) the 

respective stimulations via TCR/BCR/TLR or IFN𝛾-R weakly induce autophagic 

flux which is consistently further increased in the presence of bafilomycin A. 
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Published human studies so far have limited their analysis of TCR-induced 

autophagy to non-specific stimulation in vitro such as anti-CD3/CD28. Here we 

took advantage of an existing cohort of healthy human donors that were 

vaccinated with a candidate HCV vaccine encoding HCV non-structural proteins 

(NSmut). Healthy volunteers received an adenoviral vector prime vaccination 

(ChAd3-NSmut or Ad6-NSmut) followed by a heterologous adenoviral boost 

vaccination (ChAd3-NSmut or Ad6-NSmut) or an MVA-NSmut boost vaccination 

(Fig 1a and Supplementary Fig S3a ) 16,17.  
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Figure S3  
Regimen of immunisations and blood sampling 
(a) HCV= Hepatitis C virus, ChAd=Chimpanzee Adenoviral Vector, MVA= Modified Ankara 
Virus vector, (b) RSV=respiratory syncitial virus, ChAd=Chimpanzee Adenoviral Vector, 
MVA= Modified Ankara Virus vector, Unlike for HCV, the adults in the RSV study will have 
prior immune responses that have been boosted by natural exposure throughout life. In the 
context of RSV, we still use the term “prime” to mean the first dose of vaccine. Similarly, the 
term “boost” means the second dose of vaccine and not exposure. 
 
To identify HCV specific CD8+ T cells, PBMC were co-stained with an MHC 

class I pentamer (HLA-A*02:01, HCV peptide KLSGLGINAV) and anti-LC3-II 

(Fig 1b). When measured at the peak magnitude of the T cell response to 

vaccination (2-4 weeks post Ad, 1 week post MVA) HCV specific CD8+ T cells 

show a significant increase in autophagic flux that is not observed in HCV non-

specific CD8+ T cells (Fig 1c). In antigen-specific T cells, autophagic flux is 

highest shortly after vaccination but had declined to levels equivalent to antigen-

non-specific T cells cells by the end of the study (week 36 or 52). Together, 

these data show that antigen exposure induces autophagic flux in CD8+ T cells 

in humans in vivo. In previous work we found autophagic flux was reduced in 

CD8+ T cells from 24 month old mice 12. To test whether this is true in human 
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CD8+ T cells from human individuals, and whether this correlates with vaccine 

immunogenicity, we measured autophagic flux in vaccinees of various ages that 

were given an experimental RSV vaccine  (Fig1a and Supplementary Fig S3b). 
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Figure 1 
Autophagy is induced by vaccination in antigen-specific T cells and correlates with 
donor age. Peripheral blood mononuclear cells were isolated from blood samples of 
vaccinated healthy donors. LC3-II was measured in CD8+ cells using flow cytometry after 2 
h treatment with 10 nM bafilomycin A1 (BafA1) or vehicle. Autophagic flux was calculated as 
LC3-II mean fluorescence intensity (BafA1-Vehicle)/Vehicle. (a) Vaccine regimen for HCV 
and RSV trials (b) Representative plots showing Baf A in light blue and vehicle pink (c) 
Quantification in HCV non-specific CD8+ T cells  and HCV specific CD8+ T cells  detected 
by HCV pentamers from 10 vaccinees (includling duplicates) using different HCV vaccine 
regimens, priming with ChimAd and boosting with MVA or AD6 vectors. Autophagy was 
measured at the peak of the T cell response post prime vaccination, peak of the T cell 
response post boost vaccination and at the end of the study. (d) Autophagic flux was 
measured in CD8+ cells from young donors (N=12, <65yrs) and old donors (N=21, >65 years) 
vaccinated with respiratory syncytial virus (RSV) 7 days after last boost, quantification 
calculated as mentioned above. Data represented as mean ± SEM. (e, f) Correlation of 
autophagic flux with total response to peptide pools specific T cell IFNg response to RSV 
exposure measured by ELISpot in CD8+ cells from old donors (e) and young donors (f), 
donors as in (d). Linear regression with 95% confidence intervals from old and young donors. 
The goodness of fit was assessed by R2. The P value of the slope is calculated by F test.  
 
As older adults are particularly susceptible to severe disease from RSV infection, 

the vaccine was given to two age groups (18-50 years and 60-75 years of age). 

As expected, the naturally-derived population of RSV-specific IFNγ producing 

CD4+ and CD8+ T cells in peripheral circulation in response to the infection 

declines with age (Fig. S4). 

  

Figure S4 
Correlation of age with total and peptide-pool specific T cell IFNg response to RSV exposure 
measured by ELISpot in CD8+ cells, donors as in Fig 1E. (linear regression with 95% 
confidence intervals from old and young donors. The goodness of fit was assessed by R2. 
The P value of the slope is calculated by F test.  
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No MHC class I pentamers were available for RSV to identify antigen-specific T 

cells, however, bulk T cells of the >60year vaccinees showed significantly lower 

basal autophagic flux (Fig. 1d). We correlated autophagy levels in T cells with 

IFNγ ELISpot responses in individual vaccinees and found a strong inverse 

correlation in the aged group (Fig. 1e) between autophagy and IFNγ responses, 

but not in the young group (Fig. 1f). Taken together these data suggest that 

reduced T cell autophagy in aged T cells may underpin reduced T cell responses 

to vaccination.  

We have recently shown that treating old but not young mice with the metabolite 

spermidine improves autophagy levels in B lymphocytes due to an age-related 

decline of endogenous spermidine 15. Here we sought to confirm this in human 

lymphocytes. Firstly, we determined spermidine and putrescine levels in PBMC 

by gas chromatography-mass spectrometry (GC-MS), and found an inverse 

correlation between age and spermidine but not with putrescine (Fig. 2a). We 

hypothesized that low levels of spermidine are responsible for low levels of 

autophagy and poor T cell function in PBMC from old donors. We therefore tested 

whether supplementation with spermidine recovers T cell autophagy and function. 

As activation of PBMC with anti-CD3/CD28 optimally induces autophagy levels 

on day 4	18, we activated PBMC from old donors in the presence of spermidine 

for 4 days and tested their autophagic flux and function by flow cytometry. Both 

autophagic flux and the secretion of IFNγ measured by ELISA was improved 

significantly in T cells from older vaccinees (Fig. 2b and c), Similarly, increased 

IFNγ can be detected after spermidine treatment by intracellular staining for flow 
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cytometry (Fig. 2d). Interestingly, spermidine supplementation also increases the 

expression of Perforin (Fig. 2e) but not of Granzyme B (Fig. 2f).  
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Figure 2 
Spermidine declines with age, and supplementing spermidine improves autophagy 
and CD8+ T cell function in old donors 
(a) Spermidine and Putrescine content of PBMC collected from healthy donors was 
measured by GC-MS. Linear regression with 95% confidence intervals. The goodness of fit 
was assessed by R2. The p value of the slope is calculated by F test. (b-f) Sorted PBMCs 
from old human donors (>65yrs) were cultured with anti-CD3/CD28 for 4 days and where 
indicated treated with 10 µM spermidine, and autophagic flux measured by flow cytometry 
(b), IFNg assessed by ELISA in tissue culture supernatant (c), intracellular IFNg by flow 
cytometry (d), intracellular Perforin by flow cytometry (e), Intracellular Granzyme B (f), all 
gated on CD8+ cells. Data represented as mean ± SEM, MFI=mean fluorescence intensity. 
Statistics by paired t-test for b,c,d, e, f. 
 

Next, we investigated whether endogenous polyamine maintains autophagy 

levels in activated CD8+ T cells from young donors. The drug DFMO (α-

difluoromethylornithine) inhibits polyamine biosynthesis by irreversibly inhibiting 

ornithine decarboxylase (ODC). DFMO almost completely blocked autophagy in 

CD8+ T cells activated over 7 days, however, when cells were supplemented with 

spermidine autophagic flux was recovered (Fig. 3a). DFMO also partially blocks 

IFN𝛾	and	Perforin expression in anti-CD3/CD28 activated CD8+ T cells, which 

can also be rescued by spermidine (Fig. 3b and c). As before, Granzyme B was 

not affected by DFMO + spermidine (Fig 3d). T cells from young donors, with their 

high endogenous spermidine levels, do not respond to spermidine 

supplementation (Fig. 3e, f and g). 
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Figure 3 
Endogenous spermidine maintains levels of autophagy and T cell function 
(a-d) Sorted PBMC cells from young human donors (< 65yrs) were activated with anti-
CD3/CD28 for 7 days and treated with spermidine synthesis inhibitor DFMO alone or 
together with 10 µM spermidine. Autophagic flux (a) was assessed each day and IFNg (b), 
Perforin (c), Granzyme B (d) were measured by flow cytometry in CD8+ cells on day 4. (e-f) 
Sorted PBMC cells from young human donors (< 65yrs) were cultured with anti-CD3/CD28 
for 4 days and treated with 10 µM spermidine. (e) intracellular IFNg, (f) intracellular Perforin, 
(g) and intracellular Granzyme B were measured in CD8+ cells by flow cytometry. Data 
represented as mean ± SEM.  
 
 
We previously found that spermidine maintains autophagic flux via hypusination 

of eIF5A and TFEB 15, and we sought to test this pathway in human T cells. 
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Spermidine lends a moiety to the translation factor eIF5A, which in addition to its 

role in initiation and termination also promotes the translation of polyproline rich 

domains, which are difficult to translate 19. One such triproline motif-containing 

protein is TFEB, with mouse TFEB containing one triproline motif while human 

TFEB contains two. TFEB is the key master transcription factor of 

autophagosomal and lysosomal gene expression 20-22. Here we addressed 

whether this pathway operates in human T cells and accounts for the loss of 

autophagy and T cell function. We first verified in the human lymphocyte line 

Jurkat that the inhibitor GC7 inhibits the hypusinated/ activated form of eIF5A (Fig. 

4a) and also confirmed that it decreases LC3-II expression in a dose-dependent 

manner (Fig. 4b). GC7 reduces TFEB and hypusinated eIF5A in CD8+ T cells 

activated for 4 days (Fig 4c). It also diminishes the autophagic flux in activated 

CD8+ T cells over a time course of 7 days (Fig. 4d). We then tested whether 

spermidine maintains eIF5A hypusination and TFEB levels in CD8+ T cells from 

young donors by depleting endogenous spermidine with DFMO. While anti-

CD3/CD28 increases expression levels of TFEB and eIF5A, a reduction of 

hypusinated eIF5A and TFEB levels in PBMCs treated with DFMO was observed, 

which is rescued with spermidine (Fig. 4e). As expected, spermidine treatment of 

PBMC from young donors demonstrated to have high levels of spermidine does 

not induce this pathway (Supplementary Fig. S5a) nor T cell function (Fig. 3e, f 

and g). Finally, we sought to address whether naturally low endogenous 

spermidine levels can be rescued in PBMC from old donors activated with anti-

CD3/CD28. Again, we observed that activation induces levels of protein 

expression of both hypusinated eIF5A and TFEB, and spermidine further 

improves both eIF5A and TFEB two-fold (Fig 4f). 
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Figure 4 
Spermidine’s mode of action is via eIF5A and TFEB in human CD8+ T cells 
(a) Human T cell line Jurkat was cultured for 24h with 100 µM GC7, then eIF5A and 
hypusinated eIF5A were measured by WB. (b) Jurkat cell line was stimulated with increasing 
concentrations of GC7 and cell lysates blotted for LC3B. (C, D) PBMC from young human 
donors were cultured with anti-CD3/CD28 for 7 days and treated with GC7. The protein levels 
of TFEB and eIF5A hypusination were measured in CD8+ cells by Western blot on day 4 (c) 
and  autophagic flux was determined as in Fig 1 (d). (e) PBMC from young human donors 
were cultured with anti-CD3/CD28 for 4 days and treated with spermidine synthesis inhibitor 
DFMO alone or together with 10 µM spermidine. The protein levels of TFEB and eIF5A 
hypusination were measured in CD8+ cells by Western blot. (f) Sorted PBMCs from old 
human donors (>65yrs) were cultured with anti-CD3/CD28 for 4 days and where indicated 
treated with 10 µM spermidine, The protein levels of TFEB and eIF5A hypusination were 
measured in CD8+ cells by Western blot. Target band intensity was normalized to eIF5A (for 
Hyp) or GAPDH (for TFEB). Data represented as mean ± SEM.  
 

 

Figure S5 
Spermidine does not improve eIF5A and TFEB in young donors 
(a) PBMC from young human donors were cultured with anti-CD3/CD28 for 4 days and 
treated with 10 µM spermidine for 4 days. The protein levels of TFEB and eIF5A hypusination 
were measured in sorted CD8+ cells by Western blot. Target band intensity was normalized 
to eIF5A (for Hyp) or GAPDH (for TFEB). Data represented as mean ± SEM. * 
 
 
Discussion 

Several studies have addressed the induction of autophagy by antigenic stimulation 

in murine T cells in vivo and in response to anti-CD3/CD28 in vitro stimulation of 

human T cells 23. In mouse studies Xu et al measured a peak in autophagy induction 

shortly after the CD8+ effector phase with subsequent failure to mount memory 

responses 11. In line with this, we and Xu et al showed that deletion of autophagy 

Figure S5
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mostly affects T cells in the memory phase of CD8+ T cell responses as opposed to 

the effector phase 11,12. The question remains whether it is initiation or maintenance 

of memory responses that are affected. Interestingly, the work of Schlie et al showed 

that the memory response could be rescued by N-acetyl cysteine, arguing that 

memory cells may be formed but not maintained without autophagy 24. While it has 

been shown in human T cells that autophagy peaks after 4 days of anti-CD3/CD28 

stimulation, later time points are more difficult to mimic accurately in vitro. Here we 

show for the first time that antigenic encounter in vivo induces autophagy after the 

effector phase, arguing that autophagy may be important in human CD8+ T cells 

during the memory phase. Interestingly, we could not observe any bystander effect 

on CD8+ T cells that are not specific for HCV, suggesting that it is a cell-intrinsic effect 

through specific stimulation via their TCR. 

 

The role of autophagy in these long term surviving antigen-specific T cells is still 

elusive: autophagy could either degrade molecules no longer needed such as PU1 

in the establishment of a Th9 response 25 or CDKN1 in the effector phase of CD8 T 

cells 26 or organelles such as mitochondria or ER 12,27. Alternatively, autophagy could 

provide building blocks including amino acids, free fatty acids and nucleotides that 

are important for essential cellular requirements: provision of ATP 28,29, transcription 

and translation for T cell function. Or a combination of these mechanisms may be at 

play here, something which remains to be elucidated. 

 

With increasing life expectancy, the number of people over 60 years of age is 

expected to double by 2050, reaching 2.1 billion worldwide. The severity of many 
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infections is higher in the older population compared to younger adults as 

particularly notable during the SARS2-CoV pandemic. Moreover, the success of 

childhood vaccination is widely recognized but the importance of vaccination of 

the older population is frequently underestimated 3. Immune responses to 

vaccines are known to be particularly ineffective in the older population and yet 

some vaccines such as for influenza and SARS2-Cov are primarily needed for the 

older adults. The development of drugs that improve vaccination in this expanding 

population is therefore an urgent socio-economic need.  

 

Targeting mTOR with Rapamycin was the first drug both in mice and in human 

clinical trials shown to have a beneficial effect on T cell responses in mice and 

older humans 30,31. However, whether Rapamycin triggers autophagy at the 

administered dose has not been investigated. With this study we show for the first 

time that the autophagy-inducing drug spermidine has an immune boosting effect 

on the T cell compartment in humans in vitro and that low autophagy levels 

correlate with low responses to vaccination. The translation of TFEB is one of the 

limiting factors for sufficient autophagy levels required to mount an immune 

response. In addition, to be active, TFEB needs to be dephosphorylated for its 

translocation into the nucleus, which mTOR inhibition facilitates 32-34. Therefore, 

spermidine and an mTOR inhibitor may have to be combined to optimally restore 

immune responses in the older adults. 

 

We find that spermidine levels decline in PBMCs in the older humans. This confirms 

earlier study in plasma in which spermidine levels were found to be low in the >65 
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age group and rising again in centenarians 35. Studies of this kind usually indicate 

that the phenotype is maladaptive with age as centenarians do not display many of 

the aging features of the age group below. However, the reasons for the age-related 

decline in spermidine in blood cells are not clear, and currently under investigation. 

Overall it is evident that endogenous spermidine maintains autophagy in human T 

cells, a novel metabolic pathway that has not been investigated before.  

 

Spermidine has recently been administered to humans in a small experimental trial 

with a beneficial effect on cognitive function without adverse effects 36,37. It remains 

to be shown whether at such low doses it has an effect on autophagy. Our study 

strongly suggests that a small experimental trial should be conducted to test whether 

spermidine can be used to improve vaccination efficiency in older adults - eIF5A, 

TFEB and autophagy in PBMCs could be used as biomarkers to determine dose, 

duration and biomarkers for the anti-immune senescence effect. 

 

In conclusion we validated a novel anti-immune senescence pathway in humans with 

druggable targets and biomarkers, which could  also be used for other broader anti-

aging drug trials.  

 

Materials and Methods 

 

Human Samples Human peripheral blood mononuclear cells (PBMC) were 

obtained under the ethics reference NRES Berkshire 13/SC/0023,	from phase I 

clinical trials of novel viral-vectored vaccines for hepatitis-C virus (HCV; 
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NCT01070407 and NCT01296451) or respiratory syncytial virus (RSV), described 

in more detail elsewhere 16,17 38	39	40 . Volunteers were self-selected adults who 

provided written informed consent and who were carefully screened for being 

healthy before vaccination. The vaccine schedules are described in Diagrams (Fig 

S4 A and B). Blood samples were collected in heparinised tubes for assays that 

required PBMC. PBMC were isolated within 6 h of sample collection. An aliquot 

of PBMC was immediately used for fresh ELISpot assays and the remainder 

cryopreserved in RecoveryTM Cell Freezing Medium. Serum samples were 

obtained by centrifugation of whole blood collected in clotted tubes, and then 

cryopreserved.  

Control PBMC were isolated from blood or blood cones of healthy donors using 

Ficoll-Paque density gradient separation. All volunteers provided written informed 

consent. The study was approved by the Local Ethics Committee Oxford and 

Birmingham. Freshly isolated PBMCs were cultured directly or were frozen in 90% 

FBS and 10% DMSO in liquid nitrogen. Fresh or thawed PBMCs were cultured 

with RPMI 1640, 10% FCS, 2 mM L-Glutamine, 100 U/mL Penicillin (Invitrogen). 

ELISpot Assay 

Ex vivo IFNγ ELISpot assays were performed according to manufacturers’ 

instructions (Mabtech) on freshly isolated PBMC plated in triplicates at 2×105 

PBMC per well. In brief, peptide pools consisted of mainly 15-mer sequences 

with 11 amino acid overlaps and covering the sequence of proteins F, N and 

M2- 1. Peptides were dissolved in 100% DMSO and arranged in four pools. 

DMSO (the peptide diluent) and Concanavalin A (ConA) were used as negative 
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and positive controls, respectively. The mean + 4 StDev of the DMSO response 

from all samples identified a cut off whereby individual samples with background 

DMSO values ≥50 spot forming cells per million PBMCs were excluded from 

analysis. Calculation of triplicate well variance was performed as described 

previously	40. 

 

Human T cell assays 

The mean age of young donors was 40.7±11.3 years and the mean age of old 

donors was 77.6±6.6. PBMC were activated with either soluble anti-CD3 (1 μg/ml, 

Jackson Immuno Research) and anti-CD28 (1 μg/ml, Jackson Immuno Research) 

with or without 10μM spermidine, or 1 mM difluoromethylornithine (DFMO, Enzo 

Life Sciences) or 10 µM GC7 (or as indicated, Millipore) for 4 days. After MACS 

sorting of CD8+ T cell using a negative selection kit (CD8+ T Cell Isolation Kit II, 

human, Miltenyi Biotec), cells were lysed for western blotting or stained for 

Autophagy flux assay as described below. IFNγ release in culture supernatants 

was measured by heterologous two-site sandwich ELISA, according to the 

manufacturer’s protocol (Invitrogen). 

 

Autophagy Flux Assay for Flow Cytometry 

PBMC from healthy donors, activate for T cells with CD3/CD28 beads 

(Dynabeads Thermo Fisher) (1:1), for B cells with anti-IgM (5 µg/ml, Jackson 

Immuno Research) and CD40L (100 ng/ml, Enzo Life science) and for monocytes 

activated with IFN g (20 ng/ml, Jackson Immuno Research) and/or LPS (10 µg/ml, 

Santa Cruz) (all 24hrs except for T cells which were stimulated overnight). 
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Autophagy levels were measured after 2h treatment with bafilomycin A1 (10nM 

BafA1) or vehicle. We adapted the FlowCellect Autophagy LC3 antibody-based 

assay kit (FCCH100171, Millipore) as follows: In brief, cells were stained with 

surface markers (as above) and washed with Assay Buffer in 96 well U bottom 

plates. 0.05% Saponin was added to each well and spun immediately, followed 

by anti-LC3 (FITC) at 1:20 in Assay Buffer, (30-50µl/ well) at 4°C for 30 minutes, 

and washed once with 150µl Assay Buffer. Stained cells were fixed with 2% PFA 

before FACS analysis. Autophagic flux was calculated as LC3-II mean 

fluorescence intensity of (BafA1-Vehicle)/Vehicle.  

 

Surface Staining for Flow Cytometry  

For CellTrace staining, CellTrace Violet (C34557, Thermo Fisher) was used 

according to the manufacturer’s protocol. Cells were transferred to a round bottom 

96 well plate and centrifuged (300xg, 5 minutes). The pellet was resuspended in 

PBS containing the viability dye Live/Dead (Life Technologies) or fixable Zombie 

Aqua Live/Dead (423102, Biolegend) for 10 minutes in the dark at room 

temperature (RT) to exclude dead cells during analysis. After washing with PBS/5% 

FCS, cells were resuspended in PBS/2% FCS/ 5mM EDTA (FACS buffer) 

containing a cocktail of antibodies relevant to the desired cell surface markers. Fc 

block was typically added to the antibody mix to minimise non-specific staining. 

Surface antibody staining was performed at 4°C for 20 mins in the dark. A list of 

all surface antibodies utilised and their working concentrations are in Table 2. 

Following incubation cells were washed with FACS buffer and immediately 

analysed on a four-laser LSR Fortessa X-20 flow cytometer. Acquired data were 
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analyzed using FlowJo 10.2. 

 

Intracellular Staining for Flow Cytometry 

For intracellular staining, PBMC were stimulated in R10 with anti-CD3 (1 μg/ml, 

Jackson Immuno Research) and anti-CD28 (1 μg/ml, Jackson Immuno Research) 

with or without 10μM spermidine for 4 days. On day 4 cells were re-stimulated 

with the same concentrations of anti-CD3/CD28 for 6 hours at 37°C in the 

presence of 1 μg/ml brefeldin-A (Sigma-Aldrich). As a control, cells were left 

unstimulated. Following surface marker staining as described above, cells were 

fixed with 100μL Fixation buffer (eBioscience) for 20 min at RT in the dark. Next, 

cells were permeabilised with 100μL of 1x Permeabilisation buffer (eBioscience) 

for 15 min in the dark at RT. Then, cells were resuspended in the intracellular 

antibody mix (anti-IFN-γ, anti-Granzyme B, anti-Perforin) and incubated for 30 

min in the dark at RT. After being washed twice with Permeabilization buffer the 

cells were resuspended in 200μL of FACS buffer for analysis.  

 

MHC class I pentamer staining to identify antigen-specific T cells 

An HCV-specific HLA-A*02-restricted pentamer, peptide sequence KLSGLGINAV 

(Proimmune) was used to identify HCV-specific CD8+ T cells ex vivo. PBMC were 

washed in PBS and were stained with pentamers at room temperature (20mins) 

in PBS, washed twice in PBS before further mAb staining as described above. 

During analysis, stringent gating criteria were applied with doublet and dead cell 

exclusion to minimise nonspecific binding contamination.  

Western blot 
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Cells in suspension were washed with PBS and lysed using NP-40 lysis buffer 

containing proteinase inhibitors (Sigma) and phosphatase inhibitors (Sigma) on 

ice. After spinning down the debris, protein concentration in the supernatant was 

quantified by BCA Assay (23227, Thermo Fisher). Reducing Laemmli Sample 

Buffer was then added to the supernatant and heated at 100°C for 5 minutes. 5-

20 µg protein was loaded for SDS-PAGE analysis. NuPAGE Novex 4-12% Bis-

Tris gradient gel (Thermo Fisher) with MES running buffer (Thermo Fisher) was 

used. Proteins were transferred to a PVDF membrane (IPFL00010, Millipore) 

and blocked with 5% skimmed milk-TBST. Membranes were incubated with 

primary antibodies dissolved in 1% milk overnight and secondary antibodies 

dissolved in 1% milk with 0.01% SDS for imaging using the Odyssey CLx 

Imaging System. Data were analyzed using Image Studio Lite. 

 

Spermidine measurement in cell lysates by GC-MS 

This protocol was used as published previously 41. Briefly, cells were washed with 

PBS and the pellet resuspended in lysis buffer (80% methanol + 5% 

Trifluoroacetic acid) spiked with 2.5 µM 1,7-diaminoheptane (Sigma). The cell 

suspension, together with acid-washed glass beads (G8772, Sigma), was 

transferred to a bead beater tube and homogenized in a bead beater (Precellys 

24, Bertin Technologies) for four cycles (6500 Hz, 45 s) with 1 minute of ice 

incubation between each cycle. The homogenized samples were centrifuged at 

13,000 g for 20 minutes at 4°C. The supernatant was collected and dried 

overnight. For chemical derivatization, 200 µL trifluoroacetic anhydride was added 

to the dried pellet and incubated at 60°C for 1 hour, shaking at 1200 rpm. The 
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derivatization product was dried, re-suspended in 30 µL isopropanol and 

transferred to glass loading-vials. The samples were analyzed using a GCxGC-

MS system as described 41. The following parameters were used for quantification 

of the 1D-GC-qMS data: Slope: 1000/min, width: 0.04 s, drift 0/min and T. DBL: 

1000 min without any smoothing methods used. 

 

Statistical analyses 

Prism software (GraphPad) was used for statistical analyses. Data are 

represented as mean ± SEM. All comparative statistics were post-hoc analyses. 

Paired or unpaired two-tailed Student’s t-test was used for comparisons between 

two normally distributed data sets with equal variances. Linear regression with a 

95% confidence interval was used to assess the relationships between age and 

the expression of target proteins or spermidine levels, in which R2 was used to 

assess the goodness of fit and the P value calculated from F test was used to 

assess if the slope was significantly non-zero. P values were used to quantify the 

statistical significance of the null hypothesis testing. *P≤0.05, **P≤0.01, 

***P≤0.001, ****P≤0.0001, ns, not significant. 
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ANTIBODIES SOURCE IDENTIFIER 
Anti-GAPDH Millipore MAB374, 

RRID:AB_2107445 
Anti-LC3B Sigma L8918, RRID:AB_1079382 
Anti-eIF5A BD Biosciences 611976, RRID:AB_399397 
Anti-Hypusine Millipore ABS1064, 

RRID:AB_2631138 
Anti-TFEB Bethyl A303-673A, 

RID:AB_11204751 
Anti-β-Actin Cell Signaling 3700, RRID:AB_2242334 
IRDye 800CW Donkey Anti-
Rabbit IgG (H+L) 

LI-COR 926-32213, 
RRID:AB_621848 

IRDye 680RD Donkey Anti-
Mouse IgG (H+L) 

LI-COR 926-68022, 
RRID:AB_10715072 

BV605 anti-human CD14   BioLegend 301834, Clone: M5E2 
PE anti-human Granzyme B  eBioscience™ 12-8899-41, Clone: GB11 
PE/Cy7 anti-human CD8a  BioLegend 344712, Clone: SK1 
PE/Cy5 anti-human CD19  BioLegend 302210, Clone:HIB19 
BV711anti-human CD19  BioLegend 302245, Clone:HIB19 
APC anti-human CD3  BioLegend 300312, Clone:HIT3a 
APC anti-human Perforin  BioLegend 353311, Clone:B-D48 
APC anti-human CD4  BioLegend 317416, Clone:OKT4 
Alexa Fluor® 700 anti-
human IFNg  

BioLegend 506515, Clone:B27 

LIVE/DEAD™ Fixable Near-IR 
Dead Cell Stain Kit 

InvitrogenTM 

ThermoFisher 
L10119 

LIVE/DEAD™ Fixable Aqua 
Dead Cell Stain Kit 

InvitrogenTM 

ThermoFisher 
L34957 

APC anti-human CD19 BioLegend 302212, RRID:AB_314242 
Alexa Fluor® 700 anti-
mouse CD8a 

BioLegend 100730, RRID:AB_493703 

PE-labeled MHC class I 
pentamer (HLA-A*02:01, HCV 
peptide KLSGLGINAV) 

ProImmune  

CellTrace™ Violet Cell 
Proliferation Kit 
 

InvitrogenTM,  
ThermoFisher  

 

C34557 

FlowCellect™ Autophagy LC3 
Antibody-based Detection Kit 

Merck Millipore FCCH100171 
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