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Abstract 

Somatic mutations are a major source of cancer development. Many driver mutations 

have been identified in protein coding regions. However, the function of mutations 

located in microRNAs (miRNAs) and their target binding sites along the human genome 

remains largely unknown. Here, we built comprehensive cancer-specific miRNA 

regulatory networks across 30 cancer types to systematically analyze the effect of 

mutations on miRNA related pathways. 3,518,261 mutations from 9,819 samples were 

mapped to miRNA-gene interactions (mGI), and mutations in miRNAs versus in their 

target genes show a mutually exclusive pattern in almost all cancer types. Using a linear 

regression method, we further identified 89 driver mutations in 14 cancer types that can 

significantly perturb miRNA regulatory networks. We find that driver mutations play their 

roles by altering RNA binding energy and the expression of target genes. Finally, we 

demonstrate that mutated driver gene targets are significantly down-regulated in cancer 

and function as tumor suppressors during cancer progression, suggesting potential 

miRNA candidates with significant clinical implications. We provide this data resource 

(CanVar-mGI) through a user-friendly, open-access web portal. Together, our results 

will facilitate novel non-coding biomarker identification and therapeutic drug design.  

 

Introduction 

Genetic changes are a primary source of oncogenesis. Somatic mutations accumulate 

in cells during one’s lifetime. Among them, some may affect a gene’s function or a 

regulatory element and lead to a phenotypic consequence, and are therefore often 

referred to as “driver mutations”. Other variants may not have either phenotypic 

consequences or biological effects that are selectively advantageous to cancer cells, 

and are thus defined as “passenger mutations” (1). Many studies have paid attention to 

missense mutations in protein coding regions that can drive cancer development. A 

number of driver mutations have been identified in previous research efforts, such as 

BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D) 

(2). However, in addition to missense mutations that affect the protein coding 

components of human genome, microRNAs (miRNAs) and their target binding sites 
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occupy a significant proportion of the genome and can harbor somatic mutations which 

play driver roles through miRNA related pathways. 

 

miRNAs are endogenous regulatory non-coding RNAs that are ~22nt in length and act 

by targeting messenger RNAs (mRNAs) for cleavage or translational repression. The 

diversity and abundance of miRNA targets contribute to the complexity of gene 

regulatory networks. Increasing lines of evidence have demonstrated that miRNAs play 

critical functions in various developmental, physiological and pathological processes 

including cancer. Deregulation in the expression of miRNAs and their targets has been 

observed in various types of human cancer, such as glioma, breast cancer and prostate 

cancer. Mutations in miRNAs or their target genes may exert important effects on their 

deregulated expression. A number of studies have suggested that somatic mutations 

could impact miRNA-gene interactions and are related to cancer development (3, 4). 

 

Several initial studies explored the mutational effect on miRNAs and their targets. 

SomamiR (5, 6) mapped mutations to miRNAs and their targets, and developed a tool 

to calculate enrichment of mutated targets on KEGG pathways. PolymiRTS (7-9) used a 

TargetScan score to evaluate the effects changed by mutations on miRNA targets. 

However, mutations in specific cancer types and in individual patients were not 

considered in these studies. Furthermore, the mechanism of how these mutations 

influence miRNA target genes was not clear. A study by Stegeman et al. used miRNA 

mimics and reporter gene assays and showed that mutations could change the 

expression of target genes in prostate cancer (10). But it remains elusive the extent to 

which mutations could impair miRNA-gene interactions, and a global view of driver 

mutation-mediated gene regulatory network perturbations on a pan-cancer scale is 

needed.   

 

Recently, with the development of high throughput sequencing projects, such as TCGA 

and ICGC, numerous somatic mutations have been identified in various cancer types. 

These mutations might create new miRNA binding sites or lose several binding sites, 

which further perturb miRNA-gene regulation. To address these goals, we interrogated 
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to what extent and how somatic mutations perturb miRNA-gene regulatory networks in 

cancer. In this study, we derived elaborate miRNA-target interaction networks in each 

cancer type by integrating empirically validated binding sites by CLIP-Seq, and 

expression correlation between miRNAs and target genes predicted by TargetScan (11). 

We demonstrate that somatic mutations are likely to occur selectively in miRNAs or 

target genes to perturb cancer hallmark-related functions. A mutually exclusive pattern 

is found for mutations in miRNAs and their targets. Driver mutations that significantly 

perturb miRNA regulatory networks in cancer are further identified. We show that driver 

mutations could exert their functions by impairing RNA binding affinity, resulting in 

alteration of target gene expression profiles. Intriguingly, driver gene targets that are 

significantly down-regulated in cancer often function as tumor suppressors during 

cancer progression. Our study provides a valuable resource for systematic investigation 

of the functional impact of somatic mutations on miRNA regulation in cancer. 

 

Materials and Methods 

Identification of global miRNA-gene interactions (mGIs) 

Argonaute (AGO) proteins are RNA-binding proteins (RBP) and essential components 

of the RNA-induced silencing complex (RISC) which is the molecular machinery for 

miRNA-induced silencing. High-throughput sequencing of immunoprecipitated RNAs 

after cross-link (CLIP-Seq) to AGO proteins provides powerful ways to trace the 

footprints of miRNA binding sites (12). We collected 36 AGO CLIP-Seq datasets from 

starBase v2.0 (13) and considered these binding sites as evidences of physical 

interactions between miRNAs and target genes. All the peaks of AGO CLIP-Seq data 

were merged together based on their genomic locations to obtain a global pool of 

miRNA-gene physical interactions. Peaks that were overlapped with at least 1bp were 

merged together and 434701 merged peaks were finally obtained after converting to 

hg38 genome assembly.  

Although the AGO CLIP-Seq peaks could capture the footprints of miRNA binding sites, 

which miRNAs could bind to specific target sites still remains unclear. Agarwal, et al. 

showed that many non-canonical sites detected by cross-linking method do not mediate 

repression despite binding the miRNAs while the vast majority of functional sites are 
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canonical and can be identified by TargetScan (v7.0) (11). In this study, to identify mGIs 

and functional binding sites on the mRNA, 16,347,639 interactions between all the 

miRNAs in miRBase release 21 and target genes in whole human genome were 

downloaded from TargetScan (v7.0) (11). miRNA family name was mapped to mature 

miRNA name to get the miRNA-gene pair. Binding sites of each miRNA-gene pair were 

further intersected with AGO merged peaks and we finally obtained 279,924 miRNA-

gene interactions (mGIs) among 2586 mature miRNAs and 4198 target genes as global 

reference. 

 

Identification of cancer-type specific miRNA-gene interactions (mGIs) 

To obtain the functional mGIs in specific cancer type, we considered the expression 

correlation among samples for each mGI of global reference in the cancer type. Gene 

expression quantification by RNA-Seq data and isoform expression quantification of 

mature miRNAs by miRNA-Seq data of 33 cancer types were downloaded from The 

Cancer Genome Atlas Project (TCGA). For each cancer type, datasets with more than 

50 common samples (Table S1) between RNA-Seq and miRNA-Seq data were 

extracted and spearman's rank correlation of expression for each pair of miRNA and 

target gene was calculated.  
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Where �� is the rank correlation coefficient between the expression of miRNAi and genei 

in the ith mGI. The ranks of miRNAi and genei expression in kth sample are represented 

as rmik and rgik. N is the total number of samples in a cancer type. To control the false 

discovery rate (FDR), p-values of correlations for mGIs in each cancer type were further 

adjusted by Benjamini & Hochberg method (14). Finally, mGIs with ρ<0 and FDR<0.05 

were considered as functional and reliable regulations in each cancer type. 

 

Validation of identified mGIs 

To validate the mGIs identified from cancer samples, we built a benchmark dataset by 

collecting various sources of experimentally validated mGIs.  Both validated positive 

and negative mGIs were collected from mirRecords (15), miRTarBase (16), TargetMiner 
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(17) and TarBase (18) (see supplementary table). After mapping gene IDs to approved 

HGNC gene symbols (19) and miRBase IDs (20) and integrating redundant mGIs from 

different sources, we finally retrieved 5577 validated mGIs including 5139 positive mGIs 

which are validated as functional and 438 negative mGIs which are validated as non-

functional (see supplementary table). Considering the incomplete for both benchmark 

and our predicted datasets, 166 common mGIs involved in our predictions were 

extracted for evaluation. Contingence table of prediction result was listed in Figures, 

meanwhile Fisher’s exact tests were calculated based on the number of true positive 

(TP), true negative (TN), false positive (FP) and false negative (FN). Moreover, 

evaluations of performance were also calculated as below:  

Precision=TP / (TP + FP) 

Recall = TP / (TP + FN) 

F1= 2*Precision*Recall / (Precision + Recall) 

Accuracy (ACC) = (TP + TN) / (TP + FN + FP + TN) 

 

Cancer mutations 

The cancer mutation dataset of 33 cancer types was achieved from “Multi-Center 

Mutation Calling in Multiple Cancers” (MC3) and was produced using six different 

algorithms on data from TCGA. 3518261 mutations in 9819 cancer samples were 

included in our analysis. 

 

Mutation probability 

We mapped cancer mutations to the specified region by bedtools (21). To calculate the 

mutation probability in a genomic region, we firstly defined mutation rate of muti as: 

R(muti)= N(muti) / N, where N(muti) is the number of samples with mutationi in a cancer 

and N is the number of all samples in a cancer. Then mutation probability of a region r 

was calculated as:  

P(r) =∑ ���� �	��� �
	   ���
����	⁄ . 

In brief, P(r) was calculated by summing up the mutation rate of all mutations in the 

region r and normalized by the length of region. In this way, we could compare the level 

of mutation probability for regions with different lengths and different number of 
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mutations. To evaluate the level of mutation probability in mature miRNAs, the mature 

miRNA regions, seed regions (2-8 bp of each miRNA), upstream and downstream 

flanking 50bp regions of mature miRNAs were calculated for comparison.   

 

Significance of mutation exclusivity on mGI 

For each mutated mGI, mutations could act on either the miRNA or target gene, or both 

of them. In this case, we classified mutated mGIs as miRNA-mutation mGIs, target-

mutation mGIs and dual-mutation mGIs. To find out whether the mutations on mGIs 

work in a synergetic way or in an exclusive way, we evaluated the mutation exclusivity 

of mGIs based on the occurrence of dual-mutation mGIs. In this way, mutation 

exclusivity on miRNA-gene pair was tested by hypergeometric distribution based on the 

number of all mutated mGIs, miRNA-mutation mGIs, target-mutation mGIs and dual-

mutation mGIs in each cancer type.  
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Where N is the number of mutated mGIs, K is the number of mGIs with miRNA mutation 

which equals m+d, M is the number of mGIs with target mutation which equals t+d and 

X is the number of dual mutation mGIs. In the case, m is the number of miRNA 

exclusively mutated mGIs, t is the number of target exclusively mutated mGIs and d is 

the number of dual-mutation mGIs.  

 

Identification of driver mutations on mGI 

For each mGIj identified in a type of canceri, firstly all the mutations within mature 

miRNAj and binding sites of target genej were considered as candidate driver mutations. 

For each mutationk on mGIj, we searched samples with mutationk in canceri and 

integrated them with gene expression of miRNAj and genej in mutated samples. To 

identify the driver mutations that could affect miRNA-mRNA binding, we assumed the 

driver mutation on either miRNA or target site could alter the inhibitory role of miRNAj 

and cause abnormal expression of target genej which is isolated from the distribution of 

non-mutated control samples. Here two sets of control samples were considered, thus 

non-mutated cancer samples in 25 cancer types and non-mutated normal samples in 5 
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cancer types. For each mutated mGIj in canceri, we used the linear regression model Lj 

to fit the expression distribution of control samples and calculated the prediction interval 

with a probability of 0.95.  

Lj:                    gj ~ β0 + β1 * mj 

Where gj and mj are the expression of genej and miRNAj among control samples. β0 and 

β1 are estimated parameters trained by expression of control samples, where only the 

models with significant p value (p<0.05) are considered as successful. In this way, the 

control samples should fall into the predictive confident interval while samples with 

driver mutations on mGIj should fall out of it. 

 

Minimum free energy (MFE) change by driver mutations on mGI 

Minimum free energy (MFE) can be used to evaluate the strength of the hybridization 

between miRNA and target mRNA. The lower the free energy is, the more stable a 

miRNA could bind to a target mRNA. In this study, we calculated the minimum free 

energy (MFE) for wild-type mGIs and driver-mutated mGIs using RNAhybrid (22). The 

energy change of mGI altered by driver mutation is defined as:  

∆# � ��#��� � ��#���� 

The lower the ∆# is, the more stable it is for the binding of miRNA-mRNA. Thus it can 

be more easily for the miRNA to carry out its inhibitory function and downregulate the 

expression of target gene more effectively. 

When calculating the proportions of mGI with changed or unchanged MFE, we defined 

mGIs with |∆# | in top 30% as energy changed and all the other 70% as unchanged. 

Similarly for the gene expression, mGIs with |∆#$���%%�&� | in top 30% was defined as 

expression changed and the others as unchanged. 

 

mGI network analysis 

Network visualization was conducted by the software Cytoscape (23). The layout of 

driver network was grouped by the classification of driver gene nodes which are 

“mutated miRNAs”, “non-mutated miRNAs”, “mutated genes” and “non-mutated genes”. 

Node degree is the number of interactions for each node in the global network. 
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Cancer hallmark and enrichment 

To investigate the functional importance of the driver genes and mutations, functional 

enrichment analysis of the driver genes was carried out to investigate whether they 

were enriched in cancer hallmarks. The gene list of each cancer hallmark was obtained 

from one of the previous studies. We used hypergeometric test for exploring the 

statistical significance and the p-value was computed as follow: 
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Where N is the number of genes in the whole genome, of which K genes were involved 

in the functional category under investigation (such as cancer hallmarks), and the 

number of candidate driver genes is M, of which t genes were involved in the functional 

category. 

 

Differential expression analysis 

Differential expression analysis was carried out for all genes in cancer types having 

both tumor and normal samples. Count of raw reads in each gene was downloaded in 

‘HTSeq-Counts’ format from TCGA.  R package ‘DESeq2’ was used to carry out 

differential analysis. Genes with reads count smaller than 10 in total samples were 

filtered out. Finally, genes with |fold change|>2 and adjusted p value<0.05 were 

considered as significantly differentially expressed.  

 

Random permutation test for differentially expressed genes 

For a given set of N genes, we calculated the proportion of significantly down-regulated, 

up-regulated and non-differentially expressed genes, which are denoted as D, U and M. 

As the definition, D+U+M=1. To test whether the observed values of D, U and M are 

significant, we randomly picked N genes from all genes in all cancer types and 

calculated the proportions of them as d, u and m in each random case. By repeating 

10000 times, we got the random distribution of variable d, u and m. By comparing the D, 

U and M with the random distributions of d, u and m, we got the significance for each 

classification of differentially expressed genes.        
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The web-based resource 

The results in this work were organized in a website resource, “CanVar-mGI” (cancer 

variant mGI). The website was implemented with Perl, JavaScript and HTML and user-

friendly accessible. 

 

Results 

Integrative method for construction of pan-cancer miRNA regulatory networks 

To analyze miRNA-gene regulation across cancer types, we proposed a computational 

method for identifying active miRNA-gene regulation in specific cancer types (Figure 

1A). In brief, high-throughput sequencing of immunoprecipitated RNAs after cross-link 

(CLIP-Seq) to AGO proteins was used to identify endogenous genome-wide interaction 

maps for miRNAs (12) and bioinformatics tools were developed to infer specific target 

sites each miRNA could bind to (11, 24, 25). In a previous study, Agarwal et al. showed 

that many non-canonical sites detected by cross-linking methods did not mediate gene 

repression despite their ability to bind miRNAs while the vast majority of functional sites 

were canonical and could be identified by TargetScan (v7.0) (11). In this study, we 

integrated AGO CLIP-Seq data from starBase v2.0 (13) with TargetScan 7.0 (11) and 

derived 279,924 miRNA-gene interactions (mGIs) among 2,586 mature miRNAs and 

4,198 target genes as a global reference network. After the inference of the global mGI 

network, we integrated the miRNA and gene expression profiles in specific cancer types 

to identify active miRNA-gene regulation. Only negatively correlated miRNA-gene pairs 

(FDR<0.05) were kept for further analysis. In total, 107,068 unique mGIs were obtained 

from 30 of 33 cancer types. Next, we validated our results using a benchmark dataset of 

experimental results collected from various sources. The performance of our predictions 

was: recall rate=93.5%, precision=94.1%, F1 score=93.8%, accuracy=88.6%. In 

addition, our predictions exhibited a significant overlap with the benchmark dataset 

(Figure 1B, odds ratio=6.36 and p=0.015). These results indicate that integration of 

multi-omics datasets enables us to identify cancer type-specific active miRNA-gene 

regulation at the systems level.  
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Comparing miRNA-gene regulatory networks across cancer types, we identified marked 

rewiring in the miRNA regulatory programs among different cancer types, with a unique 

‘on/off’ switch depending upon the cancer type. We found that ∼42.47% miRNA-gene 

regulation occurred only in one cancer type (Figure 1C) but only 1.55% miRNA-gene 

regulation was observed in greater than 10 cancer types. The low conservation of 

miRNA-gene regulation could be explained in part by the cancer-specific expression of 

miRNAs or target genes. We also observed that the distribution of cancer frequent 

(common) mGIs (N>=10 cancer types) was more homogeneous than that of total mGIs 

(Figure S1A and S1B). This indicates although the proportion of frequent mGIs is small, 

they are relatively stable across cancer types. In contrast, the number of cancer specific 

mGIs increased as the total number of mGIs grew (Figure S1C). Moreover, we 

performed functional enrichment analysis using the target genes that were observed in 

cancer frequent mGIs. We found that these genes were involved in general cancer-

related functions, including FoxO signaling pathway, TGF-beta signaling pathway and 

cell adhesion related functions (Figure 1D). Furthermore, hierarchical clustering analysis 

was conducted based on the occurrence of cancer frequent mGIs. Several cancer types 

with similar origins were clustered together (Figure S1D). OV (ovary) and CESC (cervix) 

were clustered into gynecologic system, showing low occurrences of cancer frequent 

mGIs. KIRP and KIRC (kidney) were clustered into urologic system, showing medium 

occurrences of frequent mGIs. COAD, READ (colorectal) and LUAD, LUSC (lung) were 

separately clustered into gastrointestinal and thoracic systems, respectively, showing 

relatively high occurrences of frequent mGIs. All these results indicate the intricate 

functional roles of miRNA regulation in cancer. Taken together, our integrative analysis 

reveals cancer-specific miRNA-gene regulation, providing a valuable resource for 

mechanistic investigation of the function of miRNAs in cancer.   

 

miRNA mutations and target gene mutations in cancer 

miRNAs play important roles in the development and progression of cancer. Several 

miRNA-associated mutations have been identified before, but systematic analysis of 

mutational landscape on miRNA regulation is still lacking. In this study, cancer somatic 

mutations obtained from the TCGA project were mapped to miRNAs and their target 
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genes, or other regions in the human genome. We found that the mutation probability in 

miRNAs was greater than that in mRNAs (Figure 2A, p<2.2e-16, Wilcoxon rank-sum 

test; Figure S2). Moreover, we found that the genomic regions of miRNAs also had a 

higher mutation probability than upstream or downstream flanking regions (Figure 2A, 

p<2.2e-16). Specifically, the mutation probability of the seed regions within miRNAs was 

greater than other parts within miRNAs or the flanking regions (p<2.2e-16), suggesting 

the seed regions of miRNAs are required for miRNA regulation. In addition, we identified 

thousands of mutations located in target coding genes of miRNAs. Compared with the 

flanking regions, the miRNA binding sites in target genes exhibited a higher mutation 

probability (Figure 2B). These results indicate that mutations are likely to occur in the 

genomic regions that are critical for miRNA binding.  

 

To further explore if these mutations could play a functional role in perturbing miRNA-

gene regulation, we estimated the functional impact of all somatic mutations identified in 

cancer. Several methods have been proposed to assess the effects of mutations on 

protein function, and these methods are complementary to each other. We herein used 

Combined Annotation–Dependent Depletion (CADD) (Kircher et al., 2014), which is a 

framework that integrates multiple annotations into one metric, to explore the functional 

impact of mutations in target genes of miRNAs. For each cancer type, we randomly 

selected the same number of mutations as background controls. We then compared the 

CADD scores of mutations in target genes with those of randomly selected mutations.  

In the majority (23/31) of cancer types, mutations in target genes had significantly 

higher scores (Wilcoxon rank-sum test p<0.05) than random controls (Figure 2C), 

suggesting that the identified miRNA target mutations could have deleterious effects in 

cancer. Evolutionary conservation of mutated residues has also been demonstrated to 

reflect the functional importance of the mutational event (Watson et al., 2013). We 

therefore explored the conservation feature of the mutations in target genes. We found 

that positions harboring target gene mutations were more likely to be conserved than 

positions harboring randomly selected mutations in most (29/31) cancer types (Figure 

2D). All these results indicate that there are widespread mutations enriched within 
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miRNA sites and their target genes, which could functionally perturb the binding of 

miRNAs, thus playing critical roles in cancer.  

 

Mutually exclusive mutations in miRNA-gene regulation 

It has been observed that sets of genes that are co-involved in the same cancer 

pathways tend not to harbor mutations together in the same patient, which is called 

mutual exclusivity (26, 27). However, it remains elusive if the mutual exclusivity 

hypothesis could be extended in the context of miRNA regulation. We therefore 

assessed whether the same cancer patients could simultaneously carry miRNA 

mutations and target gene mutations. To do so, we calculated the number of miRNA-

gene interactions (mGIs) for three mutation perturbation models. The first one is that 

mutations located only in miRNAs to perturb the interactions; the second one is that 

mutations located only in target genes to perturb the interactions; and the third one is 

that mutations are located in both miRNAs and their target genes (Figure 3A). We found 

that a vast majority of mGIs harbored miRNA mutations or target mutations, and only a 

small fraction of mGIs had both miRNA and target mutations (Figure 3B). In addition, we 

found that patients in different cancer types exhibited different regulatory patterns 

(Figure 3C; Figure S3). For example, the majority of patients with ACC, LAML, PAAD 

and READ carried miRNA mutations. In contrast, TGCT, THYM, PCPG patients were 

likely to have target binding site mutations. In summary, we found that the mutual 

exclusivity of miRNA versus target mutations was more significant across cancer types 

than expected by chance (Figure 3C, p<0.05 for 23/25 cancer types).  

 

Specifically, we identified mutually exclusive mGIs that had been reported in various 

types of cancer. For example, the let-7 family is a conserved family of miRNAs and the 

deregulation of this family was observed in many cancer types, such as breast cancer, 

lung cancer and melanoma. Here, several mutations were observed in let-7f-1-3p, let-

7a-5p and let-7b-3p. In addition, several mutations located within target genes were 

also observed in patients, such as LIFR, SPIRE1 and E2F3. However, no patient was 

found with both miRNA mutations and target gene mutations. These observations 

suggest that the mutations selectively target miRNAs or target genes to perturb miRNA-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.02.128777doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.128777


 

 

14 

 

gene regulation in cancer, which is consistent with the pathway redundancy model in 

cancer. Next, we explored the signaling pathways that were likely perturbed by these 

mutations. As the hallmarks of cancer comprise biological capabilities acquired during 

the multistep development of human tumors, we evaluated whether these mutations 

could possibly perturb cancer hallmark related functions. As shown in Figure 3D, we 

found that the mutated miRNA target genes were significantly enriched in various types 

of cancer hallmarks, such as regulation of cell proliferation and DNA repair. Together, 

these results indicate that these mutually exclusive mutations within miRNAs or target 

genes likely perturb cancer hallmark related functions.  

 

Identification of driver mutations on mGIs 

Distinguishing driver mutations from passenger mutations in individual genomes is a big 

challenge in cancer genomic studies. In this study, we integrated the mGI regulatory 

networks with target gene transcriptomic networks to identify candidate driver mutations 

in each cancer type. Our hypothesis was that candidate driver mutations were likely to 

perturb mGIs which could be reflected by a significant change in the expression levels 

of target genes (Figure 4A). We thus used a linear regression model to fit the 

expression distribution among non-mutated control samples and identified driver 

mutations that elicited significant deviations from the normal correlation between 

miRNAs and their target genes (see details in methods). In total, we identified 89 driver 

mutations across 14 cancer types (Figure 4B; Figure S4). Among 89 driver mutations, 

75 of them occurred in target genes and 14 of them occurred in miRNAs. In addition, 9 

of 75 driver mutations in target genes had indeed been characterized as cancer 

mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database and in 

this study we inferred their possible functions through miRNA regulatory networks. 

 

Mutations at mGI interfaces could impair the binding of miRNAs to target genes by 

changing the minimum free energy (MFE) of binding sites, thus further tuning the 

regulation of target gene expression. In this study, we calculated the changes of MFE 

using RNAhybrid (22) and changes of target gene expression between wild-type and 

mutated mGIs. By comparative analysis of different types of mGIs, we found that the 
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energy changes were significantly correlated with the changes in target gene 

expression levels by Fisher’s exact test (Figure 4C, p=0.002, odds ratio=3.3). We next 

speculated that if driver mutations disrupt miRNA-target binding, one would expect the 

repression of target gene expression by miRNAs to be reversed (i.e., increased). 

Consistently, we found that target genes with increased expression (e.g., top 5%) 

showed a significantly higher alteration of MFE than those with decreased expression 

(e.g., bottom 5%) by Wilcoxon rank-sum test (p=0.038, Figure 4D). Together, these 

results suggest that driver mutations are likely to perturb mGIs in cancer through their 

functional influence on miRNA binding affinity to target genes.  

 

mGI network perturbations by driver mutations 

To analyze the structure and properties of perturbed mGI networks by driver mutations, 

we extracted all mGIs involving both miRNAs and target genes that harbored driver 

mutations. As shown in Figure 5A, the bipartite mGI networks had four types of node 

components: mutated miRNAs, non-mutated target genes, non-mutated miRNAs and 

mutated target genes. mGIs could be perturbed by mutations in the miRNAs (mostly 

interactions between mutated miRNAs and non-mutated targets), or perturbed by 

mutations in the target genes (mostly interactions between non-mutated miRNAs and 

mutated targets). We then examined the functional pathways impacted by the driver 

mutation-induced mGI network perturbations. Through analysis of cancer hallmark 

signatures, we found that perturbed target genes were enriched in “insensitivity to 

antigrowth signals” and “self-sufficiency in growth signals” (Figure 5B). These two 

functions could help explain the increased growth and escaping from antigrowth signals 

in the cancer cells carrying these driver mutations. Furthermore, we investigated the 

expression profiles of all the target genes in the perturbed mGI networks. As shown in 

Figure 5C and 5D, 83.3% (40/48) of the mutated target genes in perturbed networks 

were differentially expressed in at least one cancer type, and 68.9% (31/45) of the non-

mutated target genes (but targeted by mutated miRNAs) were differentially expressed in 

at least one cancer type. These results indicate that the target genes perturbed by 

driver mutations are associated with cancer development. 
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Intriguingly, for the miRNAs carrying driver mutations (shown in top left of Figure 5A), all 

of them were from the let-7 family including hsa-let-7a-2-3p, hsa-let-7a-3p, hsa-let-7a-

5p, hsa-let-7b-3p, hsa-let-7c-3p, hsa-let-7c-5p, hsa-let-7f-1-3p, hsa-let-7f-2-3p, hsa-let-

7f-5p and hsa-let-7g-3p. As a well-known miRNA family with functions of tumor 

suppression, aberrant regulation of the let-7 family had been reported in many cancer 

types (28). These included increased cellular proliferation in lung cancer (29), increased 

proliferation and migration in liver cancer (30), increased invasion and metastasis in 

gastric adenocarcinoma, lymph node metastasis in breast cancer (31) and so on. Our 

study further recaptures the functional importance of the let-7 family in cancer by 

pointing out that the let-7 family could rewire molecular signaling through mutations 

within miRNAs themselves to dysregulate their targets. 

 

Driver mutations primarily target tumor suppressor genes 

To take a close investigation on the mutated target genes, we made a volcano plot for 

them in their matched cancer types and found 26.3% of the mutated targets were down-

regulated (Figure 6A; upper left region). To explore the significance of this proportion, 

we randomly picked the same number of genes as the mutated target gene set in all 

cancer types 10,000 times and generated the random distribution as a background 

control. We found that the observed proportion of down-regulated genes in reality was 

significantly higher than expected by chance (Figure 6B). In addition, the proportions of 

up-regulated and non-differentially expressed genes were not significant (Figure S5) 

which supports the conclusion that mutated target genes are significantly down-

regulated. 

 

By curation from literature, we found that most of the down-regulated mutated target 

genes were tumor suppressor genes (Figure 6C). The top mutated target genes were all 

cancer related and mostly annotated as inhibiting cancer progression. We further 

extracted the perturbed networks of these tumor suppressors (Figure 6D). Upstream 

miRNAs (red nodes) and their interactions with these tumor suppressors were perturbed 

by driver mutations. While the other target genes of these upstream miRNAs were 

unperturbed, no significant functional pathways were enriched for unperturbed targets.  
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In the perturbed tumor suppressor networks, all the target genes involved and most of 

the miRNAs had previous evidence to be associated with cancer. For example, LIFR 

could confer a dormancy phenotype in breast cancer cells and also negatively regulate 

the metastasis of pancreatic cancer cells (32, 33). RBM24 was demonstrated to 

suppress cancer progression in nasopharyngeal carcinoma and also reported as a 

novel player in the p53 pathway (34, 35). KLF15 could inhibit the cell proliferation in 

gastric cancer (36). AKAP12 was reported as a tumor suppressor in glioblastoma and 

prostate cancer, and regulated by miRNA pathways (37-39). CBX7 was reported as a 

tumor suppressor in colon, thyroid carcinomas, glioblastoma and pancreatic cancer (39-

41). It could play its role by modulating the KRAS gene and could be regulated by 

miRNAs (39, 40). For the upstream miRNAs of these tumor suppressors, hsa-miR-

6881-3p was known to play its role through the p53-mediated ceRNAs network in 

hepatocellular carcinoma (42). hsa-miR-15b-5p was used to distinguish human ovarian 

cancer tissues from normal tissues (43). hsa-miR-193b-3p was found differentially 

expressed in hepatocellular carcinoma (44). has-miR-15a-5p was shown to decrease 

melanoma cell viability and could cause cell cycle arrest at the G0/G1 phase (45). hsa-

miR-769-3p was differentially expressed in non-small cell lung cancer (NSCLC) patients 

harboring EGFR mutations (46). In conclusion, the mutated driver target genes 

perturbed through miRNA pathways play their roles probably as tumor suppressors and 

are down-regulated in many cancer types thus accelerating the growth of cancer cells. 

 

CanVar-mGI: a web-based resource for mutation-mediated mGI network 

perturbations in cancer 

To help researchers apply the principles described in this work to any mGIs or 

mutations of interest, we developed a comprehensive and interactive web resource, 

CanVar-mGI. The features provided in the resource, which will be continuously updated, 

should serve as a guide for biologists interested in identifying miRNA-gene regulation in 

specific cancer types and understanding the consequences of mutations that perturb 

specific miRNA-gene interactions in cancer. All the dataset could also be downloaded 
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for further analysis of the functional effect of mutations and miRNA-gene regulation 

(Figure S6).  

 

Discussion 

In this study, we derived de novo cancer specific miRNA-gene interactions with high 

quality by integration of in silico predictive models, AGO CLIP-Seq data, and 

transcriptome networks. We built out these mGI networks of various cancer types as a 

framework for pan-cancer analysis of the functional consequences of somatic mutations 

on mGIs. Further analysis showed that the mutations on mGIs exhibited a mutually 

exclusive pattern. Mutual exclusivity was previously observed for mutations in gene 

members of the same pathways. Yeang et al. found that when a member of a pathway 

was altered, the selection pressure on the other members was diminished or even 

nullified (47). As a result, significantly less overlap in mutations of the other genes was 

expected, creating a mutually exclusive pattern between their alterations. Supporting 

this expectation, it was previously shown that some functionally related genes were 

mutated in a mutually exclusive manner in thyroid tumors (48, 49) and in leukemia (50). 

In our study, we observed this pattern on miRNA-gene interactions in most of the 

cancer types. 

 

To identify driver mutations that can perturb the mGIs, we compared the samples with 

mutations on mGIs with the fitted expression distribution in non-mutated samples and 

evaluated the deviations of each candidate mutations. After identification of driver 

mutations, we analyzed the alteration of minimum free energy and target gene 

expression between driver mutant and wild type mGIs. We found that the target gene 

expression was associated with the alteration of minimum free energy, indicating that 

the driver mutations could perturb mGIs by influencing mGI binding sites. 

 

The genetic changes that contribute to cancer tend to affect three main types of 

genes—proto-oncogenes, tumor suppressor genes, and DNA repair genes which are 

called “drivers” of cancer. In our analysis, we have shown that miRNA related driver 

mutations tend to play their roles on tumor suppressor genes by modulating the miRNA-
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gene interactions. Tumor suppressor genes are involved in controlling cell growth and 

division. Cells with certain alterations in tumor suppressor genes may divide in an 

uncontrolled manner. Concordantly, our analyses show that the identified target genes 

in the perturbed miRNA regulatory networks are enriched in the cancer hallmarks of 

“insensitivity to antigrowth signals” and “self-sufficiency in growth signals” which are 

consistent with the function of tumor suppressors. In this study, while several known 

tumor suppressors have been revealed and perturbed by miRNA related driver 

mutations, such as LIFR, RBM24, PTGER3, several identified novel mutated driver 

genes such as LDLRAD4, AKAP5, KLHL6 and so on, could become potential 

biomarkers and therapeutic targets for tumor suppression. 
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Figure legends 

Figure 1. The landscape of miRNA-gene regulatory networks across cancer types. 

(A) The workflow to identify genome-wide miRNA-gene regulation in cancer. Firstly, 

global miRNA-gene interactions were identified by integrating sequence alignment and 

AGO-GLIP-Seq datasets. Then miRNA and mRNA expression profiles were integrated 

to identify cancer-specific interactions. Somatic mutations were mapped to mGIs to 

identify candidate driver mutations. 

(B) Validation of the predicted miRNA-gene interactions. The numbers in the table show 

the overlap of predicted mGIs and literature-supported mGIs. Fisher’s exact test was 

used to evaluate the significance. 

(C) The proportion of mGIs in different numbers of cancer types. 

(D) The KEGG pathway enrichment of miRNA target genes found in more than ten 

types of cancer. 

 

Figure 2. miRNA and target gene mutations across cancer types. 

(A) The distribution of mutation probability for miRNA-related regions across cancer 

types, including up-stream, downstream of miRNA regions, miRNAs, seed regions and 

mRNA regions.  

(B) The distribution of mutation probability for target gene-related regions, including up-

stream, down-stream, miRNA binding sites in targets, and all target mRNA regions. 

(C) The average CADD scores for mutations in miRNA target genes and randomly 

selected genes. Red lines for target genes and blue lines for randomly selected genes. 

Cancer types marked with red color indicate that the CADD scores for mutations in 

targets are significantly higher (p<0.05) than other mutations.  

(D) The conservation scores for mutations in miRNA target genes and randomly 

selected genes. Red lines for target genes and blue lines for randomly selected genes. 

Cancer types marked with red color indicate that the conservation scores for mutations 

in targets are significantly higher (p<0.05) than other mutations.  

 

Figure 3. The mutual exclusivity of mutations in mGIs.  

(A) Three models to illustrate the mutual exclusivity of mutations in mGIs. 
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(B) The proportion of mGIs with different types of mutations. Purple, mGIs with miRNA 

mutations; green, mGIs with target mutations; and blue for mGIs with both miRNA and 

target mutations.  

(C) Pie plots show the proportion of samples with different types of mutated mGIs. I, the 

proportion of samples with miRNA mutations; II, the proportion of samples with target 

mutations; III, the proportion of samples with both miRNA and target mutations. Dot 

plots at the bottom indicate the significance level for mutual exclusivity test. 

 (D) The cancer hallmark functions enriched by the mutated genes in mGIs. The size of 

the dots represents the significance and the color of the dots represents different types 

of cancer hallmarks. 

 

Figure 4. The candidate driver mutated mGIs across cancer types. 

(A) The linear regression model is used to identify the candidate driver mutated mGIs in 

cancer. 

(B) The statistics of driver mutations and driver mGIs across cancer types. 

(C) The proportion of mGIs with energy changed or not for expression 

changed/unchanged mGIs. Orange, energy changed; green, energy unchanged. 

(D) The correlation between energy change and expression change. 

 

Figure 5. Network perturbation by driver mutations. 

(A) Gene regulatory networks perturbed by driver mutations in mGIs. Yellow edges are 

perturbed mGIs and grey edges are unperturbed mGIs. Red nodes are mutated 

miRNAs and orange nodes are non-mutated miRNAs; blue nodes are mutated target 

genes and cyan nodes are non-mutated genes.  

(B) Cancer hallmark enrichment of driver target genes. Hallmarks with odds ratio (x-

axis) >1 and p-value (y-axis) <0.05 are significantly enriched. 

(C) Differential expression of mutated driver target genes. Each row represents a driver 

gene which is differentially expressed in at least one cancer type. Each column 

represents a cancer type. The occurrence of each point indicates the gene is 

significantly differentially expressed in that cancer which means the fold change of 

expression is larger than 2 or smaller than 1/2 and the p value calculated by DESeq2 
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(51) is smaller than 0.05. The red color indicates the gene is up-regulated in cancer 

samples versus normal samples, while the blue color indicates down-regulation.   

(D) Differential expression of non-mutated driver target genes. Legends are the same 

as above (C). 

 

Figure 6. Tumor suppressors are often targeted in perturbed miRNA regulatory 

networks. 

(A) Volcano plot of mutated target genes in the cancer type where the driver mutation 

occurs. X-axis shows the log2 value of expression fold change and Y-axis shows the 

value of –log10 (False Discovery Rate). Each point indicates the gene in the cancer 

type where the driver mutation is found. The color of each point indicates the cancer 

type. 

(B) Mutated driver genes are significantly down-regulated. Bar plot shows the random 

distribution of the proportion of down-regulated genes in mutated driver genes. The 

smoothed curve is the probability density of random distribution. The dashed vertical 

line indicates the observed proportion of down-regulated genes. 

(C) A table showing evidence that many mutated driver genes are tumor suppressors. 

(D) Perturbation of tumor suppressor regulatory networks. Yellow edges are perturbed 

mGIs and grey edges are unperturbed mGIs. Red nodes are miRNAs and stared blue 

nodes are mutated target genes. Small genes in left grey box are the targets of these 

miRNAs which are unperturbed. 
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