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Abstract 40 

Prognostic tests using expression profiles of several dozen genes help provide 41 

treatment choices for prostate cancer (PCa). However, these tests require improvement to 42 

meet the clinical need for resolving overtreatment which continues to be a pervasive 43 

problem in PCa management. Genomic selection (GS) methodology, which utilizes whole-44 

genome markers to predict agronomic traits, was adopted in this study for PCa prognosis. 45 

We leveraged The Cancer Genome Atlas (TCGA) database to evaluate the prediction 46 

performance of six GS methods and seven omics data combinations, which showed that 47 

the Best Linear Unbiased Prediction (BLUP) model outperformed the other methods 48 

regarding predictability and computational efficiency. Leveraging the BLUP-HAT method, 49 

an accelerated version of BLUP, we demonstrated that using expression data of a large 50 

number of disease-relevant genes and with an integration of other omics data (i.e., miRNAs) 51 

significantly increased outcome predictability when compared with panels consisting of 52 

small numbers of genes. Finally, we developed a novel stepwise forward selection BLUP-53 

HAT method to facilitate searching multi-omics data for predictor variables with 54 

prognostic potential. The new method was applied to the TCGA data to derive mRNA and 55 

miRNA expression signatures for predicting relapse-free survival of PCa, which were 56 

validated in six independent cohorts. This is a transdisciplinary adoption of the highly 57 

efficient BLUP-HAT method and its derived algorithms to analyze multi-omics data for 58 

PCa prognosis. The results demonstrated the efficacy and robustness of the new 59 

methodology in developing prognostic models in PCa, suggesting a potential utility in 60 

managing other types of cancer. 61 
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 64 

Introduction 65 

Prostate cancer (PCa) is the second most common cancer in men worldwide. An 66 

estimated 1,276,106 new cases and 358,989 deaths were reported in 2018 [1]. Three major 67 

challenges need to be better addressed through biomarker studies to improve the 68 

management of the disease and save lives: (I) early detection of the disease, (II) accurate 69 

prediction of tumor progression to avoid overtreatment, and (III) guidance for personalized 70 

therapies for patients carrying different subtypes of PCa. With a focus on the second 71 

challenge, this study adopted the methodology of genomic selection/prediction (GS), 72 

which is commonly applied in agricultural breeding, for an integration of multi-omics to 73 

improve the predictive ability (or predictability, defined in the Methods) for PCa prognosis. 74 

The majority of PCa tumors grow slowly and will likely never cause health problems. 75 

A small percentage of patients carry aggressive PCa and require immediate treatment. 76 

Patients with slow growing tumors only require active surveillance. Lacking effective tests 77 

to provide patients with the best choices for treatment based on their individual disease 78 

states, overtreatment continues to be a health issue in PCa management owing to the 79 

associated negative and unnecessary side effects. A few clinically applicable gene 80 

expression signatures have been developed to calculate risk scores for PCa prognosis, 81 

including Prolaris (Myriad Genetics Inc.), a gene expression signature assay that is based 82 

on 31 genes involved in cell cycle progression for cancer risk stratification [2], Decipher 83 

(GenomeDx Biosciences Inc.), a 22-marker expression panel for prediction of systemic 84 
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progression after biochemical recurrence [3], and OncotypeDX Genomic Prostate Score 85 

(Genomic Health, Inc.,), which consists of 17 genes (12 selected genes in four biological 86 

pathways and five reference genes) to predict adverse pathology at the time of radical 87 

prostatectomy [4]. Compared with the clinically applied nomograms [5], these multiple-88 

gene tests only provide a moderate improvement to disease prognosis, and they all need 89 

further validation by prospective trials [6, 7]. This leaves a wide gap between clinical 90 

practice and its objective for eliminating unnecessary surgeries. 91 

Many common human diseases, including cancer, have a polygenic nature, i.e., the 92 

disease phenotypes are controlled by many genetic variants with minor effects. Numerous 93 

studies have indicated that using genome-wide markers as predictors yielded much higher 94 

predictability of complex traits than using a few major Quantitative Trait Loci (QTLs) only 95 

[7-11]. The mediocre predictive abilities of the current prognostic tests are likely due to the 96 

limited number of genes being included in simple linear models, even though some of these 97 

genes are major players of cancer progression. Conventional statistical methods usually 98 

cannot efficiently handle highly saturated models with 𝑝 ≫ 𝑛, where 𝑝 is the number of 99 

parameters (selected markers) of the models and 𝑛 is the sample size. GS is a powerful 100 

tool in the fields of plant and animal breeding, which estimate genetic effects of thousands 101 

of genome-wide markers simultaneously using whole-genome regression (WGR) models 102 

[12, 13]. Numerous advanced statistical methods, including BLUP [14, 15] and Bayesian 103 

models (i.e., BayesA, BayesB, and BayesC, etc.) [12, 13, 16, 17] have been proposed [18, 104 

19], and the vast success of GS in plant and animal sciences gave an impetus to introduce 105 

this powerful application to human medicine.  106 
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In this study, we established a novel method, named Stepwise Forward Selection using 107 

BLUP-HAT (SFS-BLUPH), and applied this method to data from the TCGA Prostate 108 

Adenocarcinoma (TCGA-PRAD) project to develop a multi-omics signature for PCa 109 

prognosis. At first, the pre-radical prostatectomy nomogram developed by Memorial Sloan 110 

Kettering Cancer Center (MSKCC) was used to derive six quantitative disease traits, 111 

including progression-free probability in five years (PFR5YR), progression-free 112 

probability in ten years (PFR10YR), organ-confined disease (OCD), extracapsular 113 

extension (ECE), lymph node involvement (LNI), and seminal vesicle invasion (SVI). 114 

These six traits were then used to evaluate six GS models and three types of omics data 115 

including mRNA transcriptome (TR), miRNAs (MI), and methylome (ME) as well as all 116 

possible combined data (TR+MI, TR+ME, MI+ME, TR+MI+ME) to identify the best 117 

combination of model and omics data for predicting PCa outcomes. The six GS models 118 

included BLUP [14, 15], Least Absolute Shrinkage and Selection Operator (LASSO) [20], 119 

Partial Least Squares (PLS) [21], BayesB [13], Support Vector Machines (SVM) [22] using 120 

the radial basis function (SVM-RBF), and the polynomial kernel function (SVM-POLY). 121 

The results indicated that the most widely used GS model, BLUP, outperformed the other 122 

models in terms of predictability and computational efficiency. The computational 123 

efficiency was further boosted by adopting the BLUP-HAT method, an optimized version 124 

of BLUP [23]. With the BLUP-HAT method and the TCGA-PRAD data, we demonstrated 125 

that: (I) prediction models using expression profiles of a large number of genes selected 126 

from the transcriptome outperformed three clinically employed tests which only considered 127 

the expression of a small number of major genes. (II) The predictability for disease traits 128 

can be further increased if the selective predictors from other omic types (i.e., miRNAs in 129 
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this study) were also factored into the prognostic models. Finally, we utilized the new SFS-130 

BLUPH method to screen the gene and miRNA expression data in the TCGA-PRAD 131 

training dataset for the optimal signatures of predictor variables in predicting RFS followed 132 

by a rigorous validation in six independent PCa cohorts. The new SFS-BLUPH 133 

methodology demonstrated its translational potential and may be widely adopted for 134 

management of other types of cancer. 135 

 136 

Methods 137 

TCGA-PRAD dataset 138 

Multi-omics data (including HTSeq-Counts of RNA-seq, BCGSC miRNA Profiling 139 

of miRNA-seq, and Beta value of Illumina Human Methylation 450 array) and clinical data 140 

for 495 PCa patients from the TCGA-PRAD project were downloaded and processed by a 141 

series of functions in the R package GDCRNATools [24]. The mRNAs and miRNAs with 142 

counts per million reads (CPM) < 1 in more than half of the patients as well as the 143 

methylation probes with any missing values were filtered out before subsequent analysis. 144 

Certain clinical characteristics, such as pre-operative PSA, which were not available in the 145 

Genomic Data Commons (GDC) data portal were retrieved from Broad GDAC Firehose 146 

(https://gdac.broadinstitute.org/). The TCGA-PRAD dataset was used for two purposes: (1) 147 

to compare the performance of GS models and different omics data in predicting PCa 148 

outcomes and evaluate the predictabilities of tens of thousands of BLUP-HAT models with 149 

various numbers of genes or miRNAs, and (2) to serve as a training dataset for the 150 

development of a multi-omics signature for RFS prediction. The clinical characteristics for 151 

495 patients were summarized in Table 1. 152 
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Table 1: Clinical characteristics of the patients in TCGA-PRAD project 153 

  Patients ( N = 495) 

Age at diagnosis (years)   65 353 

 > 65 142 

Clinical tumor stage T1a 1 

 T1b 2 

 T1c 172 

 T2a 54 

 T2b 54 

 T2c 50 

 T3a 36 

 T3b 17 

 T4 2 

Gleason score   6 45 

 7 (3+4) 149 

 7 (4+3) 98 

   8 203 

Pre-operative PSA (ng/mL) 0-3.9 52 

 4-9.9 273 

 10-19.9 99 

   20 55 

 154 

Independent validation datasets 155 

The profiling data of mRNAs and/or miRNAs as well as clinical data (with available 156 

RFS data) in six public datasets (GSE70769, DKFZ2018, GSE116918, GSE107299, 157 

GSE54460, and MSKCC2010) were used to validate the prognostic signatures [25-30]. 158 

MSKCC2010 had both mRNA and miRNA data, while the other five datasets only had 159 

mRNA data. Detailed information for these six datasets was summarized in Table 2. 160 
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Processed microarray data for GSE70769 and GSE116918 were downloaded from GEO 161 

(https://www.ncbi.nlm.nih.gov/geo/) using R package GEOquery [31]; Reads per kilobase 162 

per million mapped reads (RPKM) data for DFKZ2018 and processed microarray datasets 163 

for MSKCC2010 were downloaded from cBioPortal (https://www.cbioportal.org/) [32]. 164 

Raw data of GSE107299 were downloaded from GEO and normalized with the Robust 165 

Multichip Average (RMA) method implemented in the R package oligo [33]. Raw 166 

sequencing data for GSE54460 were downloaded from SRA 167 

(https://www.ncbi.nlm.nih.gov/sra) under the accession number SRP036848. The raw 168 

sequencing data were aligned using STAR (version 2.7.2a) software [34], quantified using 169 

featureCounts (version 2.0.0) software [35], and normalized using the Trimmed Mean of 170 

M-values (TMM) normalization method implemented in the R package edgeR [36]. 171 

Table 2: Information of the six publicly available independent validation datasets 172 

Dataset 
Sample 

Size 

Transcriptome 

Platform 

miRNA 

Platform 
Tissue 

GSE70769 85 
Illumina HumanHT-

12 V4.0 
× Fresh frozen 

DKFZ2018 32 
Illumina HiSeq 2000 

(RNAseq) 
× Fresh frozen 

GSE116918 229 ADXPCv1a520642 × FFPE 

GSE107299 94 
Affymetrix Human 

Gene 2.0 ST Array 
× Fresh frozen 

GSE54460 90 
Illumina HiSeq 2000 

(RNAseq) 
× FFPE 

MSKCC2010 61 (40)* 
Affymetrix Human 

Exon 1.0 ST Array 

Agilent-019118 

Human miRNA 

Microarray 2.0 

Fresh frozen 

* For MKSCC2010 dataset, 61 patients have gene expression data, and 40 of them have both gene expression 173 
and miRNA expression data. 174 
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Pre-radical prostatectomy nomograms 175 

The pre-radical prostatectomy nomogram (https://www.mskcc.org/nomograms/), 176 

developed by the MSKCC, utilizes pre-treatment clinical data to predict the extent of the 177 

cancer and long-term outcomes following radical prostatectomy, which can be analyzed as 178 

quantitative traits by genomic prediction models. We used this tool to predict six post-179 

surgery disease traits, including progression-free probability in five years (PFR5YR), 180 

progression-free probability in ten years (PFR10YR), organ-confined disease (OCD), 181 

extracapsular extension (ECE), lymph node involvement (LNI), and seminal vesicle 182 

invasion (SVI). The pre-surgery clinical characteristics used for nomogram calculation 183 

included age, preoperative PSA level, Gleason score (primary Gleason and secondary 184 

Gleason), and clinical tumor stage based on the American Joint Committee on Cancer 185 

(AJCC) version 7 staging system [37]. 186 

Genomic selection methodologies 187 

In this study, we compared the predictive ability of six widely used GS methods, 188 

including BLUP, LASSO, PLS, BayesB, SVM-POLY, and SVM-RBF. The BLUP method 189 

was implemented using a custom R script [38]. LASSO, PLS, and BayesB were 190 

implemented in the R packages glmnet [39], pls [40], and BGLR [41], respectively. The 191 

two SVM methods, SVM-RBF and SVM-POLY, were implemented in the R kernlab 192 

package [42]. 193 

The mRNA, miRNA, and methylation features, which were initially profiled in 194 

different ranges, were rescaled by z-score transformation, allowing for an objective 195 

comparison among these multi-omics profiles and for integrated analyses. 196 
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The predictability of a model, defined as the squared correlation coefficient (r2) 197 

between the observed and predicted trait values, was calculated through a 10-fold cross 198 

validation (CV) procedure. In a 10-fold CV, the sample was arbitrarily partitioned into ten 199 

portions with approximately equal size. In each iteration, nine portions were used as the 200 

training data to develop the model and the remaining one portion was used as the test data 201 

for model evaluation. This process was repeated ten times with each portion having been 202 

used as the test data exactly once. The entire 10-fold CV was then replicated ten times to 203 

reduce the variation caused by random partitioning. 204 

BLUP-HAT method 205 

The BLUP-HAT model [23], which produces the same results as BLUP but enjoys 206 

much more computational efficiency due to the avoidance of the time-consuming CV, was 207 

used in place of the conventional BLUP method to compare the predictabilities of many 208 

thousands of models with various numbers of predictors. The linear mixed model that 209 

accounts for the relationship between each trait and predictor variables can be expressed 210 

as 211 

 1

1

m
T

n k k

k

y y  
=

= = + +y 1 Z ε    (1) 212 

where y  is the vector of trait values for n patients, 1 is a vector of 1’s,   is the intercept 213 

(overall mean), kZ  is a numerical vector for the kth predictor variable, k is the effect of 214 

kth variable, m is the number of predictor variables in the model, and ε  is an n×1 vector 215 

of random errors. We assume that ( )2~ N 0,k    for all 𝑘 = 1,… ,𝑚 , and 216 

( )2~ N , ε 0 I  so that 217 
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1

1
tr

m
T

k k

k

m
T

k k

k

n

m

m

=
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 (3) 220 

is a relatedness matrix which is equivalent to the kinship matrix in GS [38]. Let us define 221 

1

m

k k

k


=

=ξ Z  as the poly-predictor effect, and 
2 2

A m  =  as the poly-predictor variance, 222 

we can rewrite the mixed model (1) as  223 

 = + +y ξ ε  (4) 224 

Thence, the Henderson’s equation for the mixed model (4) can be derived as 225 

 
1 /

T T T

−

    
=    

+     

1 1 1 1 y

ξ1 I K y
 (5) 226 

where1 is an identity matrix and
2

2

A



= . The best linear unbiased estimation (BLUE) of 227 

the fixed effects and the best linear unbiased prediction (BLUP) of the random poly-228 

predictor effect are obtained via 229 

 

1

1

ˆ

ˆ /

T T T



−

−

     
=     

+      

1 1 1 1 y

1 I K yξ
 (6) 230 
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The variance-covariance matrix of the BLUE and BLUP is 231 

 

1

2

1

ˆ
Var

ˆ /

T T




−

−

   
=   

+    

1 1 1

1 I Kξ
 (7) 232 

Following the BLUP-HAT method described by Xu [23], the predicted poly predictor 233 

effect can be expressed using a linear function of the observed poly-predictor effect 234 

involving the hat matrix H , i.e., 235 

 
2 1ˆ
A   −= =K V H  (8) 236 

with 
2 1

A −=H K V . Let ˆ ˆˆ  = +y  be the predicted trait values and let ˆ ˆ= −e y y  be the 237 

residuals, with îe  being the ith element of the residual vector ê . The predicted residual 238 

for individual i becomes  239 

 
,

1
ˆ

1
i i

i i

e e
h

=
−

 (9) 240 

where ,i ih represents the ith diagonal entry on H . The total sum of squares is defined as 241 

 ( )
2

1

n

i

i

SS y y
=

= −  (10) 242 

where y̅ = ∑ y𝑖
𝑛
𝑖=1 /𝑛. 243 

The predicted sum of squares is 244 
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2

1

n

i

i

PRESS e
=

=  (11) 245 

The trait predictability of the BLUP-HAT version is 246 

 2 1
PRESS

r
SS

= −  (12) 247 

 248 

Commercial panels for PCa prognosis 249 

Three commercial gene expression panels for PCa prognosis were compared in this 250 

study, including: 251 

(I) Prolaris® (Myriad Genetics Inc., Salt Lake City, US): The Prolaris gene signature 252 

consists of 31 cell cycle genes and 15 house-keeping genes. All of the 31 genes can map 253 

to Ensembl gene IDs in the TCGA gene expression dataset (Supplementary Table S1). The 254 

15 house-keeping genes were not included in the panel for prediction. 255 

(II) Decipher® (GenomeDX Inc., Vancouver, Canada): The Decipher is a 22-marker 256 

panel involving 19 genes because two markers may be derived from the same gene (e.g., 257 

one in the coding region, and the other one in the intronic region). One of the 19 genes, 258 

Prostate Cancer Associated Transcript 32 (PCAT-32) does not have a unique ID in the 259 

Ensembl genome annotation, so expression of 18 genes with unique Ensembl IDs were 260 

used to represent this panel (Supplementary Table S2). 261 

(III) OncotypeDX GPS® (Genomic Health Inc., Redwood City, USA): OncotypeDX 262 

GPS consists of 17 genes (12 genes in four biological pathways and five reference genes). 263 

Expression of the 12 genes were all quantified in the TCGA dataset and were used for 264 

prediction (Supplementary Table S3). 265 

 266 
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Results 267 

Comparison of GS methodologies using various omics data for PCa outcome 268 

prediction 269 

We first used the six nomogram-derived traits to systematically evaluate six different 270 

GS methods with combinations of various types of omics datasets in full loads (i.e., entire 271 

mRNA transcriptome, and/or entire set of miRNAs, and/or entire methylome). Although 272 

the most important trait of interest for PCa prognosis is the observed clinical outcome (i.e., 273 

RFS), the nomogram-derived traits can represent collective characteristics of a patient’s 274 

disease status and are much less affected by post-surgery therapies compared to the 275 

observed outcomes that are sometimes biased and complicated by incorrectly documented 276 

treatment history. The MSKCC pre-radical prostatectomy nomogram predicts the extent of 277 

the cancer and long-term results following radical prostatectomy, which can be treated as 278 

quantitative traits by the GS models. From the TCGA-PRAD dataset, 289 of the 495 279 

primary tumor patients with the available clinical data required for nomogram calculation 280 

were used for the analyses. Cox Proportional-Hazards (CoxPH) survival analysis was 281 

performed to measure the association between each nomogram-derived trait and RFS. We 282 

also performed Kaplan Meier (KM) survival analysis by classifying patients into two risk 283 

groups based on the median value for each trait. For PFR5YR, PFR10YR, and OCD, the 284 

higher the nomogram values, the lower the risk according to the definitions of the traits. 285 

On the contrary, the higher the nomogram values for ECE, LNI, and SVI, the higher the 286 

risk. Both CoxPH and KM survival analyses indicated that all the six nomogram-derived 287 

traits were significantly associated with RFS (Figure 1), indicating that they were ideal 288 

substitutes for the target traits and could be used for evaluating prognostic models. 289 
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 290 

Figure 1. Cox Proportional-Hazards (CoxPH) and Kaplan-Meier (KM) survival analyses of 291 

relapse-free survival (RFS) using the six nomogram-derived traits as variables in the TCGA-PRAD 292 

dataset. (A) Forest plot visualizing the hazard ratio (HR) in log scale, 95% confidence intervals in 293 

log scale, and p value of CoxPH survival analysis (B) KM curves visualizing the survival 294 

probabilities over time for high and low risk groups classified based on the median value of the 295 

nomogram-derived scores for each trait. 296 

 297 

 298 
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In total, 285 out of the 289 patients with all the omics data available were used to 299 

evaluate the performance of different GS methods and combinations of various types of 300 

omics data in predicting nomogram-derived traits. A total of 15,536 genes, 388 mature 301 

miRNAs, and 381,602 methylation probes were included for the comparison. The 302 

predictabilities of six nomogram-derived traits for the 285 patients were evaluated using 303 

six statistical methods and seven omics data combinations via 10-fold CV. The results 304 

indicated that the predictabilities of different traits varied substantially (Figure 2), with 305 

PFR5YR and PFR10YR having the greatest predictabilities. Prediction using mRNA 306 

transcriptomic data (TR) outcompeted prediction using either miRNA predictors (MI) or 307 

methylome predictors (ME). The combined use of TR and MI in a single model predicted 308 

disease outcomes slightly better than the model of using TR alone. In general, prediction 309 

models using ME had lower predictabilities than those using TR, MI, and other data 310 

combinations. Among the six GS methods, the conventional BLUP method generally 311 

outperformed the other methods in terms of trait predictability. In addition, BLUP appeared 312 

to be much more efficient in computation time than other methods, especially when a large 313 

number of features were included in the models (Table 3). Therefore, the BLUP method as 314 

well as the gene and miRNA expression data were selected for the subsequent analyses. 315 
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 316 

Figure 2. Comprehensive evaluation of the performance of six different genomic selection models 317 

(BLUP, LASSO, PLS, BayesB, SVM-POLY, and SVM-RBF) with three omics data (TR: 318 

Transcriptome; MI: miRNAs; ME: methylome) and their combinations (TR+MI, TR+ME, MI+ME, 319 

and TR+MI+ME) using the six nomogram post-surgery traits (PFR5YR: progression-free 320 

probability in 5 years; PFR10YR: progression-free probability in 10 years; OCD: organ-confined 321 

disease; ECE: extracapsular extension; LNI: lymph node involvement; SVI: seminal vesicle 322 

invasion). 323 

 324 

 325 

 326 

 327 

 328 
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Table 3. Computational times in seconds for the six GS models using different 329 

omics data (DELL desktop with 16 cores × 2G memory) 330 

Method TR 
 

MI ME 

BLUP 5 1 63 

LASSO 34 3 333 

PLS 104 1 1,738 

BayesB 385 15 9,343 

SVM-RBF 145 3 3,965 

SVM-POLY 149 47 3,837 

TR: Transcriptome (15,536 genes); MI: miRNAs (388 mature miRNAs); ME: Methylome (381,602 probes) 331 

 332 

Evaluation of prognostic models with different numbers of genes and/or miRNAs 333 

Enlightened by the report that HAT method yielded the approximate calculation of 334 

predictability as the conventional CV in the mixed model analysis but with much improved 335 

computational efficiency [23], a BLUP-HAT method was adopted to test tens of thousands 336 

of models to test the two proposed hypotheses: (I) using a large number of genes selected 337 

from the transcriptome to predict the outcomes of PCa patients will outperform the 338 

clinically employed prognostic tests which only rely on several dozen major genes, and (II) 339 

the predictive power will be further increased if other omics predictors are also factored 340 

into the prognostic models. 341 

The transcriptomic data were used to test the first hypothesis. For each nomogram-342 

derived trait, genes were sorted in descending order based on their absolute Pearson’s 343 

correlation coefficients with the trait. Top N  genes ( N  ranges from 5 to 15,536) selected 344 

from the sorted list were sequentially included in the mixed model to calculate the HAT 345 

value (predictability, defined in Equation 12 in the Methods section). In each plot of Figure 346 

3, the predictabilities for the models with the top 12, top 18, and top 31 genes, respectively, 347 
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and the predictabilities for the models consisting of genes in the three commercial tests 348 

were marked. We also included a set of control models with 12, 18, and 31 random genes, 349 

respectively. For each control model, the random genes were repeatedly selected from the 350 

transcriptome ten times, and the average predictability was calculated and labeled by solid 351 

lines with different colors in Figure 3. The results indicated that, as expected, the 352 

predictabilities of the three commercial panels were significantly higher than the randomly 353 

selected genes, confirming the prognostic abilities of those gene panels. It was observed 354 

that all the evaluated models with sorted genes being sequentially added had better 355 

predictabilities than the three commercial gene panels. The predictabilities rose as more 356 

and more genes had been included in the model until they reached the maximum value, 357 

where thereafter the predictability values started decreasing. Generally, a few hundred 358 

genes were required to have the maximum predictability for each trait, which supported 359 

our first hypothesis that the outcome predictability may be substantially boosted by 360 

including hundreds of the genes on the top of the sorted gene list when compared with the 361 

models using only a small number of the top ‘major’ genes. 362 
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 363 

Figure 3. Evaluation of prediction models using different number of genes selected from the 364 

transcriptome in predicting six nomogram-derived traits by the BLUP-HAT method. (Top12, 365 

Top18, and Top31 represent the top 12, 18, and 31 genes in the ranked gene list, respectively. 366 

Rand12, Rand18, and Rand31 represent  randomly selected 12, 18, and 31 genes from the 367 

transcriptome, respectively). The numbers of genes that achieved the maximum predictabilities for 368 

PFR5YR, PFR10YR, OCD, ECE, LNI, and SVI are 470, 995, 1246, 989, 366, and 363, respectively. 369 

 370 

To test the second hypothesis that the predictability can be further improved by 371 

integrating panels from other omics data, BLUP-HAT was also used to identify the optimal 372 

set (top N ) of miRNAs that reached the maximum predictability. Then the predictabilities 373 

of the optimal gene set, the optimal miRNA set, and their combinations were compared for 374 

the six traits. The results indicated that: (1) the models using gene expression data 375 

outperformed the models using expression data of miRNAs, and (2) the models with 376 
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combined expression of genes and miRNAs had greater predictabilities than those using 377 

genes only, supporting our second hypothesis (Figure 4). To this point, we have used PCa 378 

data to successfully provide strong evidence supporting the two hypotheses, which would 379 

generally hold in other types of cancers and may help guide the development of improved 380 

cancer prognostic models leveraging multi-omics data. 381 

 382 

Figure 4. The performance of different expression panels in predicting the six nomogram-derived 383 

traits using BLUP-HAT. (A) Bar plot visualizing the predictability of each panel for predicting a 384 

trait. (B) Box plot visualizing the overall predictabilities of panels with different omics data across 385 

the six traits. (Tr: a panel of top genes with the highest predictability selected from the ranked gene 386 

list; Mi: a panel of top miRNAs with the highest predictability selected from the ranked miRNAs 387 

list; Tr+Mi: a combined panel of Tr and Mi. Genes/miRNAs in the Tr/ Mi panels for different traits 388 

are different) 389 

 390 

Development of multi-omics prognostic models by the SFS-BLUPH methodology 391 

The predictive power and computational efficiency of the BLUP-HAT method have 392 

been demonstrated using six PCa outcome traits calculated by nomogram. We then 393 

leveraged this method to select a multi-omics signature for the prediction of RFS, the 394 

disease phenotype of interest. Patients with limited post-surgery follow-up data were 395 
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eliminated from the initial 495 patients, leaving a total of 153 patients in this analysis, of 396 

which 95 underwent disease relapse or biochemical recurrence (BCR) within five years 397 

after prostatectomy. The outcome phenotypic value for a patient was defined as 1 if either 398 

this patient had not relapsed within five years or the time to first BCR was more than five 399 

years; otherwise, the outcome phenotypic value was calculated by dividing the time to first 400 

BCR by five, yielding a continuous score variable. Note that the greater the RFS score, the 401 

higher the probability of RFS (or the better the outcome). The newly defined outcome trait, 402 

which represented the probability of being RFS in five years (RFS5YR) after surgery, was 403 

most clinically relevant to disease prognosis. 404 

In order to refine an optimal multi-omics signature for the prediction of RFS, we 405 

developed a novel stepwise forward selection strategy by leveraging the highly efficient 406 

BLUP-HAT method and the TCGA-PRAD multi-omics datasets. Similarly, we sorted all 407 

of the genes in descending order based on their absolute Pearson’s correlation coefficients 408 

with RFS. The initial BLUP-HAT model included the top two genes from the sorted list. 409 

In each following step, the next gene in the list was added to the current model for a 410 

calculation of the RFS predictability; this gene was retained if the addition of it increased 411 

the RFS predictability, otherwise, this gene was discarded. This selection process was 412 

repeated until all genes in the sorted list were sequentially tested, which yielded a refined 413 

160-gene signature (GENE160) for predicting RFS. The same selection strategy was 414 

applied to the miRNA data to derive a refined 65-miRNA signature (MIR65) for predicting 415 

RFS. 416 

In the TCGA-PRAD training set, three BLUP prognostic models (GENE160, MIR65, 417 

and GENE160+MIR65) were built using the selected genes and/or miRNAs for the 418 
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prediction of the RFS scores. An RFS score was calculated for each patient via Leave-one-419 

out cross validation (LOOCV), and the median value of these RFS scores was used to 420 

dichotomize the TCGA-PRAD cohort into a high-risk group (RFS scores less than the 421 

median value) and a low-risk group (RFS scores greater than the median value). The 422 

CoxPH regression analysis indicated that the scores calculated using all of the three 423 

signatures were significantly associated with RFS in the TCGA-PRAD training set (Figure 424 

5A). The KM survival analysis showed that the patients in the low-risk group had 425 

significantly higher survival probability than those in the high-risk group (Figure 5B). 426 

 427 

Figure 5. Cox Proportional-Hazards (CoxPH) and Kaplan-Meier (KM) survival analyses of 428 

relapse-free survival (RFS) using the GENE160, MIR65, and GENE160+MIR65 signatures in the 429 

TCGA-PRAD training dataset. (A) Forest plot visualizing the hazard ratio (HR), 95% confidence 430 

intervals, and p value of CoxPH survival analysis. (B) KM curves visualizing the survival 431 

probabilities over time for high and low risk groups classified based on the median predicted RFS 432 

scores in the cohort 433 

 434 
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We further validated the prognostic performance of the GENE160 and 435 

GENE160+MIR65 signatures using six independent cohorts. Note that these additional six 436 

datasets were not created using the same platform as the TCGA-PRAD data; thus, certain 437 

predictor variables of small number, either from 160 genes or from 65 miRNAs, were 438 

missing in some datasets (Supplementary Table S4). While validating the signatures and 439 

the methodology with each dataset, we only employed the available genes and/or miRNAs 440 

in a BLUP regression analysis. LOOCV was also used to calculate the RFS scores for the 441 

patients in each validation cohort. The CoxPH regression analysis and the KM analysis 442 

were then utilized to evaluate the association between the calculated RFS scores and the 443 

observed RFS outcomes. Although the RNAs were collected from different types of tissues 444 

(i.e., fresh frozen tumor tissue or FFPE) and the RNA abundance data were profiled using 445 

a variety of platforms (i.e., four different gene microarrays and RNAseq), the CoxPH 446 

regression analysis and the KM survival analyses indicated that the GENE160 signature 447 

alone was able to robustly predict RFS or differentiate high-risk patients from low-risk 448 

patients in these six datasets (Figure 6). Note that for the cohort of MSKCC2010, the 449 

CoxPH regression analysis rendered a significant result (p = 0.02), while the KM analysis 450 

only showed prognostic tendency (p = 0.15). Since the miRNA data is available for the 451 

MSKCC2010 dataset, we tested the multi-omics model with the integration of GENE160 452 

and MIR65 signatures, which showed a significantly increased prognostic ability in this 453 

validation set. The p value for the CoxPH regression analysis has been improved from 0.02 454 

(GENE160) to 5.76e-03 (GENE160+MIR65), while the result for the KM analysis became 455 

statistically significant (p = 0.019). 456 
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 457 

Figure 6. Cox Proportional-Hazards (CoxPH) and Kaplan-Meier (KM) survival analyses of 458 

relapse-free survival (RFS) using the GENE160 and GENE160+MIR65 panels in six independent 459 

validation datasets. (A) Forest plot visualizing the hazard ratio (HR), 95% confidence intervals, 460 

and p value of CoxPH survival analysis (B) KM curves visualizing the survival probabilities over 461 

time for high and low risk groups classified based on the median predicted RFS scores in each 462 

cohort. 463 

 464 

 465 

 466 
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Discussion 467 

Due to the cost of gene testing and the convenience of modeling, establishment of a 468 

prognostic test only using dozens of gene expression profiles has been the rule of thumb in 469 

the past decades. In our study, the predictabilities of three commercial panels of PCa 470 

prognosis were significantly higher than those of randomly selected gene sets, suggesting 471 

that the genes in these panels are indeed associated with disease progression. For example, 472 

Prolaris consists of 31 cell cycle progression (CCP) genes, many of which are functionally 473 

relevant to PCa recurrence [2]. Genes representing multiple biological pathways in 474 

Decipher are associated with PCa progression and have been reported to be differentially 475 

expressed throughout PCa progression [3]. The selected genes in Oncotype have also been 476 

verified to be related to PCa aggressiveness [4]. These several dozens of genes included in 477 

the commercial panels are no doubt biologically critical in PCa. However, these genes, 478 

even with major effects, may not be the best or complete set of predictors for PCa prognosis, 479 

which may be indicated by the results shown in Figure 3, i.e., all the sequentially evaluated 480 

models had better predictabilities than the three commercial gene panels. This may be 481 

ascribed to two major reasons: (1) due to the heterogeneity of PCa tumors, the major genes 482 

in one cohort may not necessarily be major players in another cohort, and (2) models with 483 

a large number of genes, including both major players and minor genes, may render a better 484 

prediction of outcomes than a panel with only ‘major genes’. 485 

The rapid advancement in biotechnology has significantly reduced operational cost, 486 

allowing us to develop improved tests by including a large number of genes, a practice 487 

previously limited by economic constraints. However, conventional statistical methods 488 

cannot efficiently handle highly saturated models with 𝑝 ≫ 𝑛, i.e., the number of predictor 489 
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variables is much larger than the number of observations. Robust GS models such as BLUP 490 

and Bayesian methods (i.e., BayesA, BayesB, and BayesC, etc.) have been proposed and 491 

applied to handle saturated linear regression models in plant and animal breeding. However, 492 

the computational advantages of these advanced methods have been rarely applied to 493 

cancer prognosis and warrant investigation. In this study, we took advantage of 494 

transdisciplinary expansion to adapt these powerful GS methodologies from agricultural 495 

sciences to human cancer research. The results indicated that BLUP outcompeted other 496 

rival methods in both predictive ability and computational efficiency. When many 497 

thousands of prediction models need to be compared, BLUP-HAT may further reduce the 498 

computational cost by avoiding lengthy CV. 499 

The computationally efficient BLUP-HAT model was utilized to evaluate tens of 500 

thousands of models in regard to their performance in predicting clinical outcomes of PCa. 501 

The results from these comparisons demonstrated that, when compared with the currently 502 

used commercial panels with a limited number of genes, inclusion of many more genes 503 

with minor effects on the disease may collectively improve the overall RFS predictability. 504 

The BLUP-HAT model also enjoyed the easiness of combining multi-omics data into a 505 

single model, which allowed for a further improvement of the predictive ability. 506 

We established a novel stepwise forward selection BLUP-HAT method to facilitate 507 

searching available multi-omics data for predictor variables with predictive potential. 508 

Using the TCGA data as a training set, we developed a 160-gene signature and a 65-509 

miRNA signature for predicting the RFS of PCa. The GENE160 signature alone was 510 

successfully validated in all six independent cohorts, and the GENE160+MIR65 multi-511 

omics signature showed significantly improved predictability compared with GENE160 512 
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signature in the only test set where miRNA data was available. Certain genes or miRNAs 513 

were missing in some validation sets because different platforms were used for generating 514 

these independent datasets. The RFS predictabilities in these validation analyses might 515 

have been increased if the missing genes/miRNAs were added back to the prognostic 516 

models. The validation was also successful when FFPE samples were analyzed 517 

(GSE116918 and GSE54460). These results indicated that the signatures and the 518 

methodology were robust even when the quality of RNA samples was relatively low, 519 

suggesting a great potential in clinical application. A limitation of the study is that the size 520 

of the training set (n = 153) and six validation sets (n < 100 in general) were small, which 521 

was quite different from studies of plants or animals. An improved prognostic model for 522 

an accurate prediction of RFS for PCa patients can be developed when data for large 523 

cohorts become available in the future. 524 

In summary, we demonstrated that (1) a large number of disease-relevant genes render 525 

better prediction of PCa outcomes than a few dozen major genes, and (2) the combination 526 

of multi-omics predictor variables can further increase the predictability. We developed a 527 

novel SFS-BLUPH methodology which can efficiently search multi-omics data for 528 

predictor variables with prognostic potential. This method may be applied to any private 529 

database for the development of clinically useful tests for PCa prognosis. The new method 530 

may also be extendedly applied to different cancers or other types of human diseases. 531 

 532 

 533 

 534 

 535 
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Key points 536 

• We adopted genomic selection methods from the agricultural sciences and applied 537 

these to cancer research. 538 

• We systematically evaluated the performance of six genomic selection methods 539 

using three omics data and their combinations in predicting prostate cancer 540 

outcomes, and found that the Best Linear Unbiased Prediction (BLUP) method 541 

outperformed the other models in terms of trait predictability and computational 542 

efficiency. 543 

• With the more computationally efficient BLUP-HAT methodology, we 544 

demonstrated that (1) prediction models using expression data of a large number of 545 

genes selected from the transcriptome outperformed the clinically employed tests 546 

which only considered a small number of major genes, and (2) the integration of 547 

other omics data (i.e., miRNAs) in the model will further increase the predictability. 548 

• We developed a novel stepwise forward selection BLUP-HAT (SFS-BLUPH) 549 

method to search multi-omics data for predictor variables to predict relapse-free 550 

survival of prostate cancer patients. The methodology has been successfully 551 

validated using six independent cohorts. 552 

 553 

Data Access 554 

All the scripts used in this study, including data preprocessing, genomic selection model 555 

evaluation, implementation of BLUP-HAT method, development and validation of the 556 

SFS-BLUPH model, as well as data visualization are freely available at 557 

https://github.com/rli012/BLUPHAT. 558 
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