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Abstract 
 
Bariatric surgeries such as the Vertical Sleeve Gastrectomy (VSG) are invasive, but 

provide the most effective long-term metabolic improvements in obese and Type 2 

diabetic patients.  These powerful effects of manipulating the gastrointestinal tract point 

to an important role of gastrointestinal signals in regulating both energy balance and 

metabolism. To that end, we have used mouse models of VSG to identify key gut 

signals that mediate these beneficial effects.  Preliminary data from our rodent model of 

VSG led us to hypothesize a potential role for the hormone Fibroblast-Growth 

Factor15/19 (mouse/human ortholog) which pharmacologically can regulate many 

aspects of energy homeostasis and glucose handling. FGF15 is expressed in ileal 

enterocytes of the small intestine and is released postprandially. Like many other gut 

hormones, postprandial plasma levels in humans and ileal FGF15 expression in mice 

increase after VSG. We generated intestinal-specific FGF15 knock out (VilCreERT2; 

Fgf15f/f) mice and controls, which were maintained on 60% high-fat diet. Interestingly, 

ablation of intestinal FGF15 in adult mice results in little change to body weight or 

glucose regulation when challenged with a high-fat diet.   Unlike what we had predicted, 

intestinal-specific FGF15 knock out mice lost more weight after VSG and this was a 

result of increased lean tissue loss compared to control mice.  Further, the loss of bone 

mineral density observed after VSG in control mice was increased in intestinal-specific 

FGF15 knock out mice. Finally the effect of VSG to reduce hepatic cholesterol was also 

absent in intestinal-specific FGF15 knock out mice.   These data point to an important 

role for intestinal FGF15 to protect the organism from deleterious effects of rapid weight 

loss that occurs after VSG.   
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Introduction 
 
Obesity has become a growing epidemic, where associated complications such as 

cardiovascular morbidity, type 2 diabetes and insulin resistance pose major health care 

challenges worldwide (Afshin et al., 2017). Current pharmacological treatments for 

obesity include less than ten FDA approved drugs, all of which demonstrate modest 

effect sizes and substantial liabilities for patients including cardiac and gastrointestinal 

distress (Saltiel, 2016).  Although invasive, bariatric surgery is the most effective 

treatment for sustained weight loss, and also improves glycemic control and other 

comorbidities in patients better than conventional weight-loss therapies (Adams et al., 

2017; Schauer et al., 2017).   

The effectiveness of bariatric surgery to reduce body weight and improve glucose 

metabolism has highlighted the important role that the gastrointestinal tract has in 

regulating a wide range of metabolic processes. One weight-independent effect of 

bariatric surgery is the alteration of enterohepatic bile acid circulation resulting in 

increased plasma bile levels as well as altered bile acid composition in rodents (Kohli et 

al., 2010; Myronovych et al., 2014) and humans (Patti et al., 2009; Pournaras et al., 

2012). While it remains unclear why both VSG and RYGB can alter bile acids, it is 

possible that these changes are important mediators of the effects of surgery.  We have 

previously identified bile acid signaling through the nuclear ligand-activated farnesoid X 

receptor (FXR) as a potential link for mediating the beneficial effects of elevated bile 

acids following bariatric surgery. We have shown that bile acids are increased after 

VSG and that FXR is essential for the positive effects of bariatric surgery on weight loss 

and glycemic control (Myronovych et al., 2014; Ryan et al., 2014). Unlike wild-type 

mice, FXR-/- mice do not maintain body weight loss and do not have improved glucose 

tolerance after VSG or after bile diversion to the ileum (Albaugh et al., 2019; Ryan et al., 

2014). These studies have highlighted the importance of the enterohepatic circulation in 

the metabolic effects following bariatric surgery.  

Downstream of FXR is the gut-derived hormone Fibroblast Growth Factor 15 (the 

human ortholog is termed FGF19).  Pharmacological administration of FGF15/19 has 

potent effects to reduce bile acid secretion at the level of both the liver and the 

gallbladder (Kir et al., 2011; Potthoff et al., 2011) and has potent effects on body weight 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.130278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.130278


page 4 
	

and glucose maintenance (Lan et al., 2017). In the ileum, bile acids activate intestinal 

FXR and its downstream target FGF15/19. FGF15/19 is expressed in ileal enterocytes 

of the small intestine and is released postprandially in response to bile acid absorption 

(Inagaki et al., 2005). Once released from the ileum, FGF15/19 enters the portal venous 

circulation and travels to the liver where FGF15/19 binds to its receptor FGFR4 and 

represses de novo bile acid synthesis and gallbladder filling (Inagaki et al., 2005). 

Therefore, bile acids and FGF15/19 both act as ligands to regulate bile acid synthesis 

and facilitate communication between the liver and small intestine. The actions of 

FGF15/19 resemble that of insulin in stimulating protein and glycogen synthesis and 

reducing gluconeogenesis.  However, unlike insulin, FGF15/19 decreases hepatic 

triglycerides and reduces cholesterol. This notable difference has made FGF19 a 

potential therapeutic target to aid insulin’s actions while avoiding some pitfalls of insulin 

therapy (DePaoli et al., 2019; Harrison et al., 2018).  

Consistent reports demonstrate that pharmacologically elevating Fibroblast 

Growth Factor FGF15/19 levels in preclinical models of metabolic disease results in 

multiple metabolic benefits including increased energy expenditure, reduced adiposity, 

and improved lipid and glucose homeostasis (Fu et al., 2004; Miyata et al., 2011; 

Morton et al., 2013; Ryan et al., 2013; Tomlinson et al., 2002).  Circulating FGF19 levels 

are reduced in individuals with metabolic disorders and nonalcoholic fatty liver disease 

(NAFLD). FGF19 levels are lower in obese patients, without strong association to 

glucose metabolism or insulin sensitivity (Gallego-Escuredo et al., 2015; Gomez-

Ambrosi et al., 2017; Haluzikova et al., 2013; Mraz et al., 2011; Renner et al., 2014). 

Other studies report that basal FGF19 levels are inversely correlated to glucose 

metabolism or insulin sensitivity (Barutcuoglu et al., 2011; Sonne et al., 2016) and 

nonalcoholic fatty liver disease (NAFLD) (Eren et al., 2012; Jiao et al., 2018). Most 

importantly, fasting and postprandial plasma FGF19 levels in humans (Belgaumkar et 

al., 2016; DePaoli et al., 2019; Gomez-Ambrosi et al., 2017; Haluzikova et al., 2013; 

Mulla et al., 2019; Sachdev et al., 2016) and ileal FGF15 expression in mice (as shown 

in these studies) increase after VSG. These data point to FGF15/19 as a potential target 

to mediate the effects of weight loss and improved glucose tolerance following VSG. To 

test the hypothesis of whether FGF15 plays a role in the metabolic improvements after 
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bariatric surgery, we used a mouse model of VSG, which has increased ileal expression 

of FGF15 in VSG compared to Sham mice. We generated a novel mouse model of 

intestinal-specific FGF15 knock out (VilCreERT2; Fgf15f/f) and controls, which were 

maintained on 60% high-fat diet before and after undergoing Sham or VSG surgery. 

Intestinal-derived FGF15 is necessary for the improvement in peripheral blood glucose 

regulation, to preserve muscle mass and bone mass, and for the decrease in hepatic 

cholesterol after VSG-induced weight loss. These finding point to an important role for 

FGF15 in the regulation of multiple metabolic parameters following VSG.  
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Results 
 
Intestinal FGF15 expression increases and prevents muscle mass loss after VSG 
in mice 
Circulating FGF19 levels are lower in obese patients (Gallego-Escuredo et al., 2015; 

Gomez-Ambrosi et al., 2017; Haluzikova et al., 2013; Mraz et al., 2011; Renner et al., 

2014) and patients with impaired glucose metabolism or insulin sensitivity 

(Barutcuoglu et al., 2011; Sonne et al., 2016) and nonalcoholic fatty liver disease 

(NAFLD) (Eren et al., 2012; Jiao et al., 2018). This highlights the relationship of FGF19 

with body weight and metabolism. Numerous reports have also shown that plasma 

FGF19 levels increase after weight-loss surgeries (Belgaumkar et al., 2016; DePaoli et 

al., 2019; Gomez-Ambrosi et al., 2017; Haluzikova et al., 2013; Mulla et al., 2019; 

Sachdev et al., 2016). Due to the lack of commercially available and validated FGF15 

assays, we were unable to measure circulating FGF15 levels after VSG in mice 

(Angelin et al., 2012; Montagnani et al., 2011). However, our data show that ileal 

FGF15 expression increases after VSG in mice (Figure 1A). These data point to 

FGF15/19 as a potential target to mediate the effects of weight-loss surgery. 

Global ablation of FGF15 in FGF15-/- mice resulted in impaired glucose 

tolerance (Kir et al., 2011; Potthoff et al., 2011), but in our hands these mice are 

surprisingly protected against diet-induced obesity (data not shown). FGF15 is highly 

expressed in the developing mouse brain (Gimeno et al., 2003; Gimeno et al., 2002; 

McWhirter et al., 1997). We speculate that the total body knockouts have impaired 

development of the CNS, which likely contributes to their reduced weight gain on a high-

fat diet. Expression of FGF15 in the adult mouse becomes limited to the distal intestine 

and dorsal medial hypothalamus (Fon Tacer et al., 2010; Inagaki et al., 2005; Picard et 

al., 2016). These issues make it difficult to use the total body knockout to determine 

critical aspects of FGF15 function in the adult animals.  Due to this weight difference on 

HFD and great difficulty breeding whole body knockouts, we generated a novel FGF15 

flox/flox mouse to test specific hypotheses about the tissue-specific role of FGF15 in 

metabolism after VSG. The FGF15 flox/flox mice, were built using CRISPR-Cas9 with 

LoxP sites flanking exon 2 of the FGF15 gene. We bred these mice to VilCreERT2 mice 
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and administered tamoxifen (intraperitoneal, 3 doses/150 mg/kg; Figure 1B) to 

FGF15INT-KO (VilCreERT2; FGF15 flox/flox) and Controls (6 VilCreERT2, 4 FGF15 

flox/flox and 4 FGF15 flox/+ were combined for comparisons). 

After the studies were completed, we validated exon 2 excision within ileal 

mucosa (where FGF15 is most highly expressed) in all mice (Supplemental Figure 1). 

All mice received tamoxifen at the same time, and a week later were placed on 60% 

high fat diet (HFD; Figure 1B). Prior to surgery, Control and FGF15INT-KO mice had 

similar body weight increase in response to HFD, without differences in food intake, fat 

and lean mass (Figure 1C, D, F, G).  

After 8 weeks of being on HFD, each mouse underwent either a Sham or VSG 

procedure and were returned to HFD four days after surgery. As expected, Control mice 

receiving VSG lost a significant amount of body weight compared to Control Sham 

mice, and that weight loss came mostly from loss of fat mass (Figure 1E, F). Control 

VSG mice maintained their lean mass even after surgery, as we have shown before 

(Patel et al., 2018). FGF15INT-KO VSG mice also lost a significant amount of weight, but 9 

weeks post-surgery their body weight was significantly lower compared to Control VSG 

(Figure 1E). Although FGF15INT-KO VSG mice lost fat mass, surprisingly they also lost a 

significant amount of lean mass and this loss was significantly greater than when 

compared to Control VSG and both Sham groups (Figure 1F, G).  

Cumulative food intake and the average energy efficiency (change in body 

weight divided by food intake) for the 8 weeks after surgery showed that the body 

weight loss observed in FGF15INT-KO VSG mice was not a result of decreased food 

intake (Figure 1H, I). In fact, although Control VSG mice had reduced cumulative food 

intake for the 8 weeks post-surgery (with the largest difference observed in the first few 

weeks after surgery), FGF15INT-KO VSG mice had no significant reduction in food intake 

(Figure 1H). This introduced the possibility that the loss of intestinal FGF15 leads to 

increased malabsorption following VSG.  We measured the absorbed energy by bomb 

calorimetry 11 weeks after surgery. The average daily food intake was not different 

between the groups (Figure 1J). However, the fecal energy output was reduced in 

FGF15INT-KO VSG mice compared to Control VSG and FGF15INT-KO Sham mice (Figure 
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1K). Given that all mice were on the same diet, FGF15INT-KO VSG mice had increased 

their absorption of calories from ingested food (Figure 1L).  

 

Loss in muscle mass is accompanied by decreased strength and skeletal muscle 
fiber size in FGF15INT-KO VSG mice 
Previous data has shown that exogenous administration or genetic overexpression of 

FGF19 decreases body weight and adiposity (Fu et al., 2004; Lan et al., 2017; Miyata et 

al., 2011; Morton et al., 2013; Ryan et al., 2013; Tomlinson et al., 2002), but prevents 

muscle mass wasting by enlarging muscle fiber size and protecting muscle from atrophy 

(Benoit et al., 2017). In addition to significant loss of muscle mass in FGF15INT-KO VSG 

mice (Figure 1G), we observed a trend of decreased grip strength (9 weeks post-

surgery) and soleus muscle fiber size in these mice (Supplemental Figure 2A, B). 

Moreover, a distribution analysis of the fiber size showed that FGF15INT-KO VSG mice 

have a rightward shift towards an increased number of smaller, and a lower number of 

larger soleus fibers (Supplemental Figure 2C).  

To further examine the atrophy-related pathways in soleus muscle, we measured 

circulating Myostatin (GDF8) and Activin A levels and the soleus muscle expression of 

their downstream targets, muscle-specific E3 ubiquitin ligases Atrogin 1 and MuRF1. 

We did not observe any differences in the plasma Myostatin and Activin A levels, nor 

the RNA expression of Atrogin 1 and MuRF1 in soleus muscle (Supplemental Figure 

2D-G). Next, we examined plasma levels of IGF1 and FGF21 as anti and pro-atrophy 

mediators in skeletal muscle. Twelve weeks after surgery postprandial plasma levels of 

IGF1 were decreased in FGF15INT-KO VSG mice compared to Control VSG 

(Supplemental Figure 2H). Studies have indicated that FGF21 levels increase with 

fasting and FGF21 is necessary for the fasting-induced muscle mass and force loss 

(Oost et al., 2019). FGF15INT-KO VSG mice had increased plasma levels of FGF21 

compared to Control VSG and FGF15INT-KO Sham mice (Supplemental Figure 2I). 

Additionally, there was a significant correlation between muscle mass and plasma 

FGF21 levels (Supplemental Figure 2J). 

FGF15INT-KO VSG mice did not show differences in small bowel biometry 

(Supplemental Figure 3A-C). The large bowel weight was significantly less in FGF15INT-
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KO VSG compared to FGF15INT-KO Sham mice (Supplemental Figure 3D). However, there 

was also a trend toward decreased large bowel weight in Control VSG compared to 

Control Sham mice, suggesting that decrease in large bowel weight could be related to 

decreased body weight of the VSG groups (Supplemental Figure 3D) (Mao et al., 2013). 

The ratio of large bowel weight/length was significantly reduced in both VSG groups 

compared to Control Sham, but was not significantly different compared to FGF15INT-KO 

Sham mice (Supplemental Figure 3F). Further analysis of ileum cross-sections showed 

no differences in villi height, crypt depth or the ratio of villi height/crypt depth 

(Supplemental Figure 3G-I). 

 
Intestinal-derived FGF15 partially preserves bone and bone marrow adipose 
tissue (BMAT) loss following VSG  
Previous studies in our lab have shown that loss of bone and BMAT (bone marrow 

adipose tissue) following VSG is independent of body weight and diet (Li et al., 2019). In 

the current study, VSG caused a precipitous loss of trabecular and cortical bone loss in 

FGF15INT-KO mice. Specifically, FGF15INT-KO VSG mice had decreased trabecular bone 

volume fraction (Tb. BV/TV), trabecular bone mineral density (Tb. BMD), and trabecular 

connective density (Conn. Dens) (Figure 2A-D). Although the thickness of the trabecular 

bone (Tb. Th) was not altered, the trabecular number (Tb. N) was decreased, while 

spacing between trabeculae was increased (Tb. Sp) in FGF15INT-KO VSG mice (Figure 2 

E-G). Cortical thickness (Ct. Th), bone area (Ct. BA/TA) and bone mineral density (Ct. 

BMD) were reduced by VSG and further decreased by lack of intestinal-derived FGF15 

(Figure 2H-K).  

Consistent with our previous studies, both “regulated” bone marrow adipose 

tissue, BMAT (rBMAT) in proximal tibia and “constitutive” BMAT (cBMAT) in distal tibia 

were decreased by VSG (representative images Figure 2M, N) (Li et al., 2019; Scheller 

et al., 2015). Interestingly, loss of intestinal FGF15 caused a baseline reduction of 

rBMAT in proximal tibia ranging from growth plate (GP) to tibia/fibula junction (T/F J), 

with nearly complete depletion after VSG (Figure 2M, O, P). Although the distal tibial 

cBMAT of Sham mice was unaffected by loss of intestinal FGF15, this BMAT depot was 
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more thoroughly depleted in FGF15INT-KO VSG mice compared to Control VSG mice 

(Figure 2N, Q). 

 

Loss of intestinal FGF15 increases circulating total GLP-1 levels and increases 
gastric emptying after VSG  
Four-hour fasted blood glucose concentrations were not different among any of the four 

groups, but insulin concentrations were lower in FGF15INT-KO VSG compared to 

FGF15INT-KO Sham (Figure 3A, B). Six and nine weeks after surgery, intraperitoneal 

glucose tolerance was improved in Control VSG mice as compared to their sham 

controls (Figure 3C, D).  As expected, we saw a significant improvement in glucose 

tolerance in Control VSG compared to Control Sham mice six and nine weeks post-

surgery (Figure 3C, D). To our surprise, there was no difference in glucose tolerance 

between FGF15INT-KO VSG and FGF15INT-KO Sham mice (Figure 3C, D).  

Next, we challenged mice with a mixed meal for the assessment of postprandial 

glucose excursion, insulin and GLP-1 response.  Acetaminophen, which is rapidly 

absorbed once it leaves the stomach was added to the mixed meal to assess gastric 

emptying rate. FGF15INT-KO Sham mice had a similar glucose excursion curve, but 

decreased gastric emptying rate compared to Control Sham mice (Figure 3E, F). Both 

VSG groups responded to the mixed meal with similar glucose excursion curves (Figure 

3E), significantly higher than their Sham controls as a result of increased gastric 

emptying rate (Figure 3F). Despite similar glucose excursion, FGF15INT-KO VSG mice 

showed significantly higher gastric emptying rate (indicated by the greater plasma 

acetaminophen levels) compared to Control VSG mice (Figure 3F). Basal and 

postprandial insulin levels were increased in both VSG groups compared to Sham 

controls (Figure 3G). Interestingly, basal and postprandial total GLP-1 levels were 

significantly higher in FGF15INT-KO VSG mice compared to all other groups (Figure 3H).  

 
Loss of intestinal FGF15 results in aberrant hepatic lipid and glycogen 
metabolism following VSG 
FGF15INT-KO VSG had increased liver to body weight ratio (Figure 4A). Assessment of 

glycogen stores revealed that FGF15INT-KO VSG have decreased liver glycogen and a 
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trend toward higher skeletal muscle (tibialis anterior) glycogen content (Supplemental 

Figure 4A, B). Postprandial plasma alanine aminotransferase, ALT levels (predictor of 

liver injury) and plasma cholesterol levels were reduced in both VSG groups compared 

to Sham controls (Figure 4B, C), without significant changes in plasma free fatty acids 

or plasma triglycerides (Figure 4D, E).  

Analysis of hepatic lipids revealed an increased cholesterol and esterified 

cholesterol levels in FGF15INT-KO VSG mice (Figure 4F, G). Hepatic triacylglycerols were 

decreased in Control VSG compared to Control Sham mice, but remained at similar 

levels between FGF15INT-KO Sham and FGF15INT-KO VSG mice (Figure 4H). There was a 

trend toward decreased hepatic free fatty acids in both VSG groups compared to Sham 

controls (Figure 4I). Surprisingly, the cholesterol synthesis rate limiting gene, 3-hidroxy-

3-methil-glutaryl-coenzyme A reductase, Hmg-CoA reductase (Hmcgr), was 

upregulated in FGF15INT-KO Sham compared to Control Sham mice, but reduced after 

VSG in FGF15INT-KO VSG mice (Figure 4J). Next, we measured the expression in 

hepatic cholesterol efflux pump-ATP-binding cassette, sub-family G, members 5 and 8 

(Abcg5 and Abcg8) and found that their expression was decreased in FGF15INT-KO VSG 

mice (Figure 4K, L). These data suggest that despite decreased cholesterol synthesis, 

there is attenuated cholesterol export leading to elevated liver cholesterol content in 

FGF15INT-KO VSG mice. 

Hepatic expression of Farnesoid X receptor (FXR) was similar in Control and 

FGF15INT-KO mice (Supplemental Figure 5A). We did see a trend of decreased 

expression of FXR in both VSG groups compared to their respective Sham groups 

(Supplemental Figure 5A). Fatty acid oxidation and lipid metabolism genes fatty acid 

synthase (FAS) and peroxisome proliferator-activated receptor alpha (PPAR alpha) 

were decreased in FGF15INT-KO VSG mice compared to FGF15INT-KO Sham controls 

(Supplemental Figure 5B, C). Although not significant, there was a trend of decreased 

expression of these genes in Control VSG compared to Control Sham mice 

(Supplemental Figure 5B, C). PPAR alpha target gene, Carnitine palmitoyltransferase 1 

A (Cpt1a) essential for converting long-chain fatty acids into energy (lipogenesis), 

showed a trend toward decreased expression after VSG in FGF15INT-KO but not Control 

mice (Supplemental Figure 5D). Interestingly, cluster of differentiation 36 (CD36), a cell 
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surface protein that imports fatty acids, was increased in FGF15INT-KO VSG compared to 

Control VSG mice (Supplemental Figure 5E).  

 
Intestinal FGF15 regulates enterohepatic bile acid metabolism following VSG 
FGF15 is expressed in ileal enterocytes of the small intestine and released 

postprandially in response to bile acid absorption. Once released from the ileum, FGF15 

enters the portal venous circulation and travels to the liver where FGF15 binds to its 

receptor FGFR4 and represses de novo bile acid synthesis (Inagaki et al., 2005). 

Consistent with this role to inhibit bile acid production, plasma and cecal content 

concentrations of bile acids are higher in mice lacking intestinal FGF15 (Figure 5A, B).  

VSG has been shown to alter both the concentration and composition of bile acids.  

Therefore, we assessed the role that FGF15 might play in the effect of VSG to alter bile 

acids.   Lack of FGF15 in the FGF15INT-KO Sham mice resulted in slight increase of 

circulating bile acid levels and a significant increase in the cecum content bile acid 

levels compared to Control Sham (Figure 5A, B). However, FGF15INT-KO VSG mice had 

higher plasma bile acid levels, but normal cecum content bile acid levels when 

compared to Control VSG and FGF15INT-KO Sham mice (Figure 5A, B). Not surprisingly, 

lack of intestinal FGF15 resulted in higher expression of bile acid synthesis gene 

Cyp7a1 in FGF15INT-KO Sham compared to Control Sham mice (Figure 5C). However, 

despite the fact that FGF15INT-KO VSG mice lack intestinal FGF15 and have increased 

plasma bile acid levels, their expression of hepatic bile acid synthesis genes cholesterol 

7a-hydroxylase (Cyp7a1), sterol 12-alpha-hydroxylase (Cyp8b1) and sterol 27-

hydroxylase (Cyp27a1) were decreased (Figure 5C, D, E).  

Next, we measured the expression of hepatic and ileal bile acid uptake 

transporters. The expression of Slc10a1 (coding for liver bile acid transporter 

LBAT/Ntcp) and Oatp4 was decreased in FGF15INT-KO VSG mice (Figure 5F, G). We did 

not see differences in the expression of bile acid transporter Slc10a2 (coding for apical 

sodium-dependent bile acid transporter, Asbt) in the ileum (Figure 5H). These data 

suggest that bile acid uptake by liver is reduced in FGF15INT-KO VSG mice, potentially 

contributing to the increased plasma bile acid levels. 
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Intestinal FGF15 modulates microbiota in cecal content  
Changes in gut microbiota composition are considered a potential contributor to the 

metabolic benefits of bariatric surgery (Basso et al., 2016; Liou et al., 2013; Sanmiguel 

et al., 2017). We investigated whether intestinal FGF15 modulates shifts in the microbial 

communities by VSG. To determine the effects of FGF15 on VSG-induced gut 

microbiota alteration, we performed 16S ribosomal RNA (rRNA) gene sequencing on 

cecal content samples collected 12 weeks after surgery (collected at time of sacrifice). 

Chao1 and Shannon index were used to estimate with-in sample richness and diversity, 

respectively. The former represents the total number of microbes present in one single 

sample, while the latter accounts for both richness and evenness of the microbes. We 

did not see significant changes in richness (Chao1 index) and diversity (Shannon index) 

(Figure 6A, B). However, there was a trend toward increased richness in both VSG 

groups compared to their respective Sham controls. Additionally, we observed a trend 

of decreased cecal diversity in FGF15INT-KO Sham compared to Control Sham mice 

(Figure 6B).   

Linear discriminant analysis (LDA) effect size (LEfSe) analysis showed 

taxonomic differences in the microbiota composition of the cecal content between 

Control Sham and FGF15INT-KO Sham groups (Figure 6C). Firmicutes and Bacteroidetes 

are the most abundant phyla in fecal microbiota. The relative proportion of Firmicutes 

and Bacteroidetes has been reported to be affected differently by obesity and high-fat 

feeding Firmicutes at the phylum level, Erysipelotrichales at class level, and 

Allobaculum and Ruminococcus at the family level showed a trend of decreased 

abundance in FGF15INT-KO Sham compared to Control Sham (Supplemental Figure 6B, 

E, H, I). However, Lachnospiraceae at the family level and Bacteroides at the genus 

level were increased in FGF15INT-KO Sham compared to Control Sham (Supplemental 

Figure 6F, G).  

Linear discriminant analysis (LDA) effect size (LEfSe) analysis showed 

taxonomic differences in the microbiota composition of the cecal content between Sham 

and VSG in both genotypes groups (Figure 6D, E). To further define bacteria 

characteristic of enrichment of Sham and VSG in each genotype, we also performed a 

random forest model. Lactobacillus species have been suggested to confer beneficial 
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effects in a broad spectrum (Crovesy et al., 2017; Wells and Mercenier, 2008). At the 

genus level, Lactobacillus, with an importance score of 0.301 determined by the 

decrease in the classification accuracy when it was ignored, was identified as the top-

ranked discriminator for the Control VSG vs. Control Sham gut microbiota. On the other 

hand, Enterococcus genus was identified as the top discriminator for FGF15INT-KO VSG 

vs. FGF15INT-KO Sham gut microbiota, with Lactobacillus genus having an importance 

score of 0.088. (Figure 6F, G). 
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Discussion 
 
While obesity rates continue to rise, most treatment strategies such as dietary and 

lifestyle interventions are hampered by limited long-term efficacy. Weight loss surgeries, 

such as Roux-en-Y gastric bypass (RYGB) and Vertical Sleeve Gastrectomy (VSG), 

cause more weight loss and higher rates of diabetes resolution than other available 

therapies (Schauer et al., 2017). Increased circulating bile acids are one of the 

hallmarks of bariatric surgery, and our group and others have identified bile acid 

signaling through FXR as a molecular link mediating the beneficial metabolic effects of 

elevated bile acids following VSG (Albaugh et al., 2019; Ryan et al., 2014). Secretion of 

FGF15/19 is a key response to FXR activation. Consistent with human data that show 

increased circulating levels of FGF19 after bariatric surgery (DePaoli et al., 2019; 

Gomez-Ambrosi et al., 2017; Haluzikova et al., 2013; Mulla et al., 2019; Sachdev et al., 

2016), VSG in mice upregulates FGF15 expression in the ileum (Figure 1). Here we 

demonstrate that FGF15 has important effects on metabolic, morphologic and 

bacteriologic responses to VSG. 

To study the specific role of intestinal FGF15 in the response to VSG, we built a 

mouse model that allowed for specific deletion of FGF15 from the intestine in the adult 

animal (see Figure 1 and methods).  Compared to control animals, these mice have 

similar body weight, body fat, food intake and glucose regulation when challenged on a 

high-fat diet.  These data argue that intestinally derived FGF15 is not necessary for 

physiologic regulation of energy balance and glucose levels in diet-induced obese 

animals without bariatric surgery. However, when FGF15INT-KO mice have VSG they 

actually lose considerably more weight than the control mice with surgery (Figure 1).  

Moreover, while we have consistently observed that mice given a VSG lose little or no 

lean mass, FGF15INT-KO lose 25% of their lean tissue, much more than the control VSG 

mice (Figure 1).  We have previously reported that wild type obese mice do not lose 

significant amount of lean body mass after VSG (Patel et al., 2018). Thus, while FGF15 

does not mediate reductions in body fat after VSG, it is essential to protect from 

deleterious loss of lean mass with the rapid weight loss that occurs after VSG. Loss of 

muscle mass is a major concern in the setting of rapid weight loss interventions such as 

very-low calorie diets and bariatric surgery (Choksi et al., 2018; Gregory, 2017; 
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Kenngott et al., 2019; Stein and Silverberg, 2014). In particular, loss in muscle mass 

can greatly inhibit the proper disposal of glucose; this may account for the failure of 

VSG to improve IP glucose tolerance in the FGF15INT-KO mice (Figure 3).  

A second component of lean tissue loss in the FGF15INT-KO VSG mice was due to 

reduced bone mass (Figure 2).  Bariatric procedures including VSG can result in bone 

loss beyond the normal response to reduced loading from weight loss, or calcium 

deficiency from diminished absorption (Gregory, 2017; Kim et al., 2015a; Li et al., 2019).  

In FGF15INT-KO mice this effect of surgery is amplified and results in a diffuse pattern of 

osseous abnormality including both trabecular and cortical bone (Figure 2). In humans, 

reduction in bone density after bariatric surgery can predispose to fractures (Gregory, 

2017). It remains to be seen whether this post-surgical metabolic bone disease can be 

accounted for by FGF15/19 signaling as suggested by our findings.  

A recent study reported that exogenous FGF19 induces skeletal muscle 

hypertrophy and blocks muscle atrophy induced by glucocorticoid treatment, sarcopenia 

and obesity (Benoit et al., 2017). The mechanism behind the loss of muscle and bone 

mass in our FGF15INT-KO VSG mice is not entirely clear and may include several 

scenarios. FGF21 levels were increased in FGF15INT-KO mice (especially after VSG; 

Supplemental Figure 2). FGF21 levels are tighly regulated to nutrional status, and it has 

been well established that FGF21 levels increase in fasting and after ketogenic and low-

protein diets (Badman et al., 2007; Inagaki et al., 2007; Pezeshki et al., 2016). The lack 

of FGF15, which is a postprandial hormone, could be altering the gut-liver 

communication and leading to the liver sensing a “fasting state” and increasing FGF21 

levels. Alternatively, other tissues, including muscle, could be responsible for the 

increased FGF21 levels in FGF15INT-KO VSG mice (Tezze et al., 2019).  This is 

consistent with the observation that elevated plasma FGF21 levels have been linked to 

decreased muscle mass (Oost et al., 2019) and reduced bone mineral density and 

BMAT (Bornstein et al., 2014; Fazeli et al., 2015; Wei et al., 2012). Therefore, increased 

FGF21 levels could be responsible for the muscle and bone loss in FGF15INT-KO VSG 

mice.  

The critical point, however, is that increased levels of intestinal-derived FGF15 

protect from potential deleterious effects of rapid weight loss including loss of muscle 
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and bone.  These data are important in the context of patients undergoing weight-loss 

surgery. Current strategies to mitigate these effects include adjustments in diet, weight 

resistance training as well as calcium and vitamin D supplementation before and after 

surgery (Krez and Stein, 2020). Our data suggest that bariatric surgery patients with low 

FGF19 levels may be at a higher risk for bone and skeletal muscle loss. More research 

is warranted to determine if FGF19 can act as a biomarker to identify patients that are at 

high risk for excessive muscle and bone loss following bariatric surgery.  Understanding 

this relationship would allow physicians to optimize treatment strategies for at risk 

patients.   

We did not see a difference in glucose excursion between Control Sham and 

FGF15INT-KO Sham mice, suggesting that intestinal-derived FGF15 does not play a role 

in peripheral glucose tolerance, at least under high-fat diet conditions (Figure 3). As 

expected, we saw an improvement in glucose tolerance in Control VSG compared to 

Control Sham mice after intraperitoneal glucose challenge (ipGTT; Figure 3). To our 

surprise, there was no difference in glucose tolerance between FGF15INT-KO VSG and 

FGF15INT-KO Sham mice, despite the large body weight loss in FGF15INT-KO after VSG 

(Figure 3). Loss in muscle mass as seen in FGF15INT-KO VSG can greatly inhibit the 

proper disposal of glucose, leading to glucose intolerance. Recent studies reported that 

patients who experience post-bariatric postprandial hypoglycemia have increased 

postprandial levels of FGF19, linking the levels of FGF15/19 to glucose regulation after 

weight-loss surgery (Mulla et al., 2019). Despite glucose intolerance, FGF15INT-KO VSG 

mice had lower hepatic glycogen content compared to FGF15INT-KO Sham mice 

(Supplemental Figure 5). This suggests that the liver is sensing a relative state of 

starvation. Interestingly, we also observed a trend of increased glycogen content in 

skeletal muscle of FGF15INT-KO VSG mice (Supplemental Figure 4). This points toward 

the physiological importance of intestinal FGF15 on glycogen metabolism in liver and 

muscle after VSG. As mentioned, the literature has been clear on the positive role of 

FGF15 on hepatic glycogen content (Kir et al., 2011). However, it is unclear whether 

lack of FGF15 in VSG mice directly affects skeletal muscle glycogen content or if our 

observations are secondary to the decreased lean muscle mass in these mice.  
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Reduced expression of FGF15 in mice leads to increased gastrointestinal 

motility, increased plasma levels of bile acids and increased luminal water content, 

similar to human bile acid diarrhea (Lee et al., 2018). However, gastric emptying was 

lower in FGF15INT-KO Sham compared to Control Sham mice (Figure 3). These 

differences in gastric emptying rates change after VSG. FGF15INT-KO VSG had 

increased gastric emptying compared to Control VSG mice (Figure 3). Consistent with 

previous reports, we also saw an increased total GLP-1 postprandial response in 

Control VSG mice after a mixed meal. The increase in total GLP-1 after VSG has been 

attributed to the rapid entry of ingested glucose and nutrients into the small intestine 

(Jorgensen et al., 2015). However, the GLP-1 (basal and postprandial) in FGF15INT-KO 

VSG mice were much higher than Control VSG (Figure 3). This points to a more 

complicated regulation of GLP-1 secretion beyond nutrient presentation.  Strong 

evidence links bile acid activation of TGR5 to increased GLP-1 secretion (Katsuma et 

al., 2005; Potthoff et al., 2013; Thomas et al., 2009).  Consequently, elevated levels of 

bile acids in FGF15INT-KO mice given VSG may act to increase TGR5 signaling and drive 

increased GLP-1 secretion.  Interestingly, despite the elevated GLP-1 levels, FGF15INT-

KO mice given VSG do not have improved glucose tolerance pointing to a potentially 

more central role of FGF15 as compared to GLP-1. 

Another weight-independent effect of bariatric surgery is the changes in 

enterohepatic bile acid circulation resulting in increased plasma bile levels as well as 

altered bile acid composition in rodents (Kohli et al., 2010; Myronovych et al., 2014) and 

humans after bariatric surgery (Patti et al., 2009; Pournaras et al., 2012). FGF15/19 is 

released postprandially in response to bile acid absorption (Potthoff et al., 2011). Once 

released from the ileum, FGF15/19 enters the portal venous circulation and travels to 

the liver where FGF15/19 binds to its receptor FGFR4 and represses de novo bile acid 

synthesis through suppression of the rate limiting enzyme cholesterol 7a-hydroxylase 

(Cyp7a1). Therefore, bile acids and FGF15 inhibit further bile acid synthesis and 

facilitate communication between the liver and small intestine. As predicted, lack of 

FGF15 resulted in increased plasma bile acids and cecal bile acid content in FGF15INT-

KO Sham mice (Figure 5). After VSG, plasma bile acids were further increased in 

FGF15INT-KO VSG mice, but cecal bile acids levels were suppressed (Figure 5). This 
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suggests that VSG directly alters the compartmental-specific bile acid pool 

independently of FGF15.  

Patients with NAFLD have increased hepatic Cyp7a1 levels (DePaoli et al., 

2019). Exogenous administration of FGF19 and the analog NGM282 did not correct 

hyperglycemia in diabetic patients, but caused a rapid and sustained reduction in 

hepatic Cyp7a1 levels and liver fat content in NAFLD patients (DePaoli et al., 2019). 

Consistent with these observations, we saw increased hepatic expression of Cyp7a1 in 

FGF15INT-KO Sham mice compared to Control Sham (Figure 5). However, hepatic 

Cyp7a1 was significantly downregulated in FGF15INT-KO VSG (Figure 5). We speculate 

that the drastic increase in plasma bile acid levels in FGF15INT-KO VSG mice 

downregulates hepatic Cyp7a1 expression as a negative feedback, despite lack of 

circulating FGF15 (Agellon and Cheema, 1997; Baker et al., 2000). We also speculate 

that these pathways are independent of FXR. A recent study showed that FGF19 

analog modulates bile acid homeostasis even when administered to FXR knock out 

mice (Gadaleta et al., 2020). Bile acids induce PPAR alpha transcription via induction of 

FXR and we did not see difference in the RNA levels of either in FGF15INT-KO compared 

to control mice (Supplemental Figure 5) (Pineda Torra et al., 2003). We also did not see 

FGF15-dependent regulation of Cyp8b1 expression, as it has been suggested before 

that its expression is regulated by FXR/SHP signaling and not FXR/FGF15/FGFR4 

pathway (Figure 5)(Kim et al., 2007).  

Future studies will need to dissect the signaling pathways responsible for the 

decreased Cyp7a1 expression in FGF15INT-KO VSG mice. Understanding the pathways 

that suppress Cyp7a1 would also be useful for cancer treatments that aim to block 

FGFR4.  FGF19 signaling has been implicated in the development of hepatocellular 

carcinoma, making FGFR4 antagonists attractive candidates for treating this disease 

(Schadt et al., 2018). Blockade of FGFR4 signaling inhibits the FGF19-induced bile acid 

brake.  The resulting elevation in hydrophobic bile acids that act as detergents and 

disrupt cell membranes may lead to liver damage (Perez and Briz, 2009). Although we 

see significantly elevated levels of bile acids in the FGF15INT-KO VSG compared to 

Control VSG mice, we do not observe signs of liver damage as noted by normal 

circulating levels of ALT in FGF15INT-KO VSG mice (Figure 4).  The VSG-induced 
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reduction of Cyp7a1 may prevent further increase in bile acid levels and subsequent 

bile acid toxicity that is noted with reduced FGF4R signaling. Additionally, VSG and lack 

of FGF15 (FGF15INT-KO Sham and VSG mice; Figure 5) showed reduced levels of 

hepatic Slc10a1 (encoding for Ntcp), which has been recently shown as a potential 

target for the treatment of obesity and fatty liver disease (Donkers et al., 2020). 

These data show that intestinal FGF15 is necessary for the reduction in hepatic 

cholesterol content after VSG. FGF15INT-KO VSG mice had increased liver weight 

(normalized to body weight), despite decreased hepatic glycogen content (Figure 4 and 

Supplemental Figure 5). Although plasma cholesterol levels were decreased in both 

groups after VSG, FGF15INT-KO VSG mice had increased hepatic total and esterified 

cholesterol levels (Figure 4). The cholesterol synthesis rate limiting gene, Hmg-CoA 

reductase (Hmcgr), was upregulated in FGF15INT-KO Sham compared to Control Sham 

mice, but surprisingly reduced after VSG in FGF15INT-KO VSG mice (Figure 4). Hepatic 

cholesterol efflux pump-ATP-binding cassette, sub-family G, members 5 and 8 (Abcg5 

and Abcg8) expression was decreased in FGF15INT-KO VSG mice (Figure 4). These data 

suggest that despite decreased cholesterol synthesis there is attenuated cholesterol 

export leading to elevated liver cholesterol content in FGF15INT-KO VSG mice. Although, 

hepatic expression of lipogenic genes FAS, PPAR alpha and lipolytic gene Cpt1a were 

lower in FGF15INT-KO VSG compared to FGF15INT-KO Sham mice, CD36 was increased 

in FGF15INT-KO VSG versus Control VSG liver (Supplemental Figure 5). Overexpression 

of the lipogenic gene CD36 is associated with lipoprotein uptake and increased 

steatosis in the liver of patients with NAFLD (Bechmann et al., 2010). Exogenous 

FGF19 suppresses hepatic CD36 increase, contributing to its role in lipid-mediated 

cellular stress and liver injury (Alvarez-Sola et al., 2017).  

Clinical and mouse studies have reported increased plasma FGF21 levels in 

patients and animal models of NAFLD (Dushay et al., 2010; Li et al., 2010; Zhang et al., 

2008). Consistent with these data, we believe that plasma FGF21 is increased in 

FGF15INT-KO mice as compensatory mechanism to attenuate liver injury and hepatic lipid 

accumulation (Kim et al., 2015b). Importantly, we did not observe increased hepatic 

cholesterol levels in FGF15INT-KO Sham mice compared to Control Sham (despite 

increased hepatic expression of Hmcgr). It is possible that the hepatic cholesterol in 
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these mice is directed towards their increased plasma bile acid levels. It is also possible 

that increased FGF21 levels in FGF15INT-KO Sham were sufficient to counteract the 

hepatic lipid accumulation and liver damage. Our hypothesis is that the weight loss 

surgery dependent increase in plasma/intestinal FGF15 and plasma bile acids has a 

role in mediating the surgery’s potent effect on enterohepatic metabolism, specifically 

the regulation of bile acids and hepatic lipid synthesis.  

The gut microbiota is an important regulator of bile acid metabolism, regulating 

the synthesis of bile acids and production of secondary bile acids (Swann et al., 2011). 

The primary bile acids (chenodeoxycholic acid and cholic acid) are actively reabsorbed 

in the ileum, but those that escape reabsorption are deconjugated to deoxycholic acid 

and lithocholic acid by colonic bacteria and reabsorbed through the portal system. The 

colonic bacteria involved in the deconjugaton of bile acids are mostly Bacteroides 

species, which studies have found to be decreased in bariatric surgery patients 

(Damms-Machado et al., 2015; Dewulf et al., 2013) and rodents (Ryan et al., 2014) and 

this change is correlated with decreased adiposity and improved glucose control. 

FGF15INT-KO Sham mice had increased abundance of Bacteroides in cecal microbiota, 

which was reduced after VSG (Figure 6 and Supplemental Figure 6). The increased 

cecal bile acids observed in FGF15INT-KO Sham were also reduced after VSG (Figure 5). 

We hypothesize that the reduction in Bacteroides could contribute to the reduction in 

cecal bile acids in FGF15INT-KO after VSG, showing that VSG alters the gut microbiome 

in the absence of FGF15. We also saw a trend of increased Bacteroidetes and 

decreased Firmicutes at the phyla level in FGF15INT-KO Sham mice, similar to what has 

been reported in FXR knock out mice (Supplemental Figure 6)(Parseus et al., 2017). 

Additionally, Lachnospiraceae at the family level was increased in FGF15INT-KO Sham 

mice (Supplemental Figure 6). The changes in these taxa are consistent with resistance 

to diet-induced obesity (Lecomte et al., 2015). That is surprising since both Sham 

groups were nearly identical in body weight and glucose homeostasis. We also 

investigated how intestinal FGF15 modulates shifts in the microbial communities by 

VSG. Lactobacillus species have been suggested to confer beneficial effects in a broad 

spectrum of situations (Crovesy et al., 2017; Wells and Mercenier, 2008). Random 

forest test analysis showed that Lactobacillus was the main driver of the difference 
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between Control Sham and VSG at the order level, where it was much lower in 

importance in FGF15INT-KO groups (Figure 6D). Enterococcus was the main driver of 

difference between the FGF15INT-KO Sham and VSG groups at the genus level (Figure 

6D). Increase in Enterococcus species in the gut has been linked to decreased 

adiposity as a result of increased energy expenditure (Quan et al., 2019). A recent study 

showed that a probiotic cocktail of Lactobacillus and Enterococcus prevented diet-

induced inflammation and leaky gut by increasing bile acid hydrolase activity (Ahmadi et 

al., 2020).  Overall, this data supports the independent roles of FGF15 and VSG in the 

modulation of gut microbiota and future studies will dissect these roles on metabolism 

and energy expenditure.  

In conclusion, our findings point to an important role for FGF15 in the regulation 

of multiple metabolic parameters following VSG. Intestinal-derived FGF15 increases in 

mouse models of VSG and is necessary for the improvement in blood glucose 

regulation, to preserve muscle mass and bone mass, and for the decrease in hepatic 

cholesterol after VSG-induced weight loss. Our data also shows that the VSG-induced 

increase in intestinal FGF15 has a specific role in mediating the surgery’s potent effect 

on enterohepatic metabolism, specifically the regulation between bile acids, hepatic lipid 

synthesis and gut microbiome.  
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RESOURCE AVAILABILITY 
 
Lead Contact: Further information and requests for resources should be directed 

towards Dr. Randy J. Seeley (email seeleyrj@med.umich.edu). 
 

Materials Availability: Reagents and genetically modified mice developed in the 

context of this manuscript will be shared with investigators who request them in 

accordance with institutional guidelines using a simple Material Transfer Agreement. 

Mouse models prior to publication will be available to the requesting investigator as a 

collaboration (this would be determined on a case-by-case basis). Animals that have 

been published will be made available to the scientific community at-large upon request 

or through deposition into central repositories. 
 

Data and code availability: This study did not generate unique datasets or code. 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Study Approval: All protocols were approved by the University of Michigan (Ann Arbor, 

MI) Animal Care and Use Committees and were in accordance to NIH guidelines. 

 

Generation of FGF15 flox mouse: Gene sequence for the mouse FGF15 gene (4.4k 

base pair double strands DNA containing fgf15 exon) was downloaded from genebank. 

Guide RNAs were designed against the mouse sequence containing the region of 

interest for targeting (introns flanking FGF15 exon 2) using prediction algorithms 

available through http://crispor.tefor.net/.  Guides were selected based on the specificity 

score and predicted efficiency (Mor.Mateos). Selected single guide RNA (sgRNA) 

sequences were subcloned into plasmid pX330 and subsequently confirmed by 

sequencing. Targeting DNA oligonucleotides including the 34 base pairs loxP site and 

81-82 nucleotides of flanking sequence on either side were generated (IDT 

Technologies).  DNA oligonucleotides were designed to disrupt the sgRNA and PAM 

sequences so that Cas9 would not be able to cleave the inserted sequence after 
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incorporation into the genome. To test the ability of the sgRNAs to cut chromosomal 

DNA appropriately, each sgRNA was injected into fertilized eggs by the University of 

Michigan Transgenic Animal Core; zygotes were then allowed to develop into 

blastocysts in culture.  PCR amplification of the target region followed by sequencing 

was used to confirm Cas9 dependent DNA cutting in vivo. Cas9/sgRNA/oligo donor 

were then injected into 300 fertilized mouse eggs (C57BL/6x SJL) and transferred to 

pseudo-pregnant recipients for gestation. After delivery of potential founders, tail DNA 

was isolated and screened by PCR across the region of interest to identify genomic 

manipulations.  As founders are often mosaic for allelic changes, PCR products of 

genomic DNA were subcloned into topo vector and sequenced to characterize the 

genetic modification in the mice. 

 
Animals and Diet: The FGF15 flox/flox mice, were built using CRISPR-Cas9 

technology with LoxP sites flanking exon 2 of the FGF15 gene (described above). We 

bred these mice to VilCreERT2 mice and administered tamoxifen (intraperitoneal, 3 

doses/150 mg/kg) to VilCreERT2; Fgf15flox/flox and controls (VilCreERT2 and Fgf15 

flox/flox). We validated exon 2 excision within latter jejunal and ileal mucosa, where 

FGF15 is most highly expressed (Supplemental Figure 1). Male mice were single-

housed under a 12-hour light/dark cycle with ad libitum access to water and food.  A 

week after tamoxifen administration, FGF15INT-KO and Control male mice (all littermates) 

were placed on 60% HFD from Research Diets, Inc. (New Jersey, US; Catalog D12492) 

for 8 weeks. Mice underwent VSG or Sham surgery (described below) and returned to 

60% HFD four days after surgery until end of study.  

Animals were euthanized 12 weeks post-surgery. One Control Sham mouse 

accidently died during NMR measurements on the day before necropsy. The post-

necropsy data on metabolites and tissue gene expression for this Control Sham mouse 

was excluded. The rest of the mice were fasted overnight, administered oral mixed meal 

(volume 200 µl Ensure Plus spiked with a 40-mg dextrose) and sacrificed 90 minutes 

later. Plasma and tissues were collected and frozen immediately. All animals were 

euthanized using CO2. 
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Vertical Sleeve Gastrectomy (VSG) in mice and rats: Mice were maintained on a 

60% HFD for 8 weeks prior to undergoing Sham or VSG surgery, as described 

previously (Evers et al., 2019; Kim et al., 2019; Patel et al., 2018). Mice were fasted 

overnight prior to day of surgery. Animals were anesthetized using isoflurane, and a 

small laparotomy incision was made in the abdominal wall. The lateral 80% of the 

stomach along the greater curvature was excised in VSG animals by using an ETS 35-

mm staple gun (Ethicon Endo-Surgery). The Sham surgery was performed by the 

application of gentle pressure on the stomach with blunt forceps for 15 seconds. All 

mice received one dose of Buprinex (0.1 mg/kg) and Meloxicam (0.5 mg/kg) 

immediately after surgery. All mice received Meloxicam (0.5 mg/kg) for 3 days after 

surgery and Enrofloxacin (40 mg/kg) for 5 days after surgery. Animals were placed on 

DietGel Boost (ClearH2O; Postland ME) for 3 days after surgery. They were placed back 

on pre-operative solid diet (60% HFD) on day 4 post-surgery. Body weight and food 

intake as well as overall health were monitored daily for the first 7 days after surgery 

and once weekly until end of the studies.  

 
Metabolic Studies: Body weight was monitored monthly for 9 weeks prior and 12 

weeks after Sham/VSG surgery. Intraperitoneal glucose tolerance test (IPGTT) was 

performed by intraperitoneal (IP) injection of 50% dextrose (2g/kg) in 4-hour fasted male 

mice. Mixed-meal tolerance test (MMTT) was performed via an oral gavage of liquid 

meal (volume 200 µl Ensure Plus spiked with a 40-mg dextrose) in 4-hour fasted male 

mice. Blood was obtained from the tail vein and blood glucose was measured with 

Accu-Chek blood glucose meter (Accu-Chek Aviva Plus, Roche Diagnostics).  Ten 

weeks after surgery, the rate of gastric emptying was assessed as previously described 

(Chambers et al., 2014). Briefly, after 4-hour fast, we delivered liquid mixed meal orally 

(volume 200 µl Ensure Plus spiked with a 40-mg dextrose and 4-mg acetaminophen, 

Sigma-Aldrich). Blood was collected from the tail vein at baseline and 15 min after 

gavage in EDTA-coated microtubes. Plasma acetaminophen levels were measured 

using spectrophotometry (Sekisui Diagnostics). 

 
METHOD DETAILS 
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ELISA and Metabolite Assays: Insulin (Crystal Chem) and total GLP-1 (MesoScale 

Discovery) were measured during experiments shown in Figure 3. Postprandial plasma 

obtained at termination of studies (see above for details) was used to measure IGF-1 

(R&D Systems), Activin-A (R&D Systems), Myostatin (GDF8) (R&D Systems), FGF21 

(R&D Systems); total bile acids in plasma and cecal samples was measured with Total 

Bile Assay (NBT Method) assay (GenWay Biotech Inc; San Diego, CA). Glycogen 

content was measured in liver and muscle (tibialis anterior) samples with Glycogen 

Assay kit (Sigma-Aldrich). All sampled blood was collected via tail vein in EDTA-coated 

tubes. All assays were performed according to the manufacturer’s instructions.  

 

Lipid Measurements: Liver lipids were extracted with Lipid Extraction Kit Chloroform 

Free (Abcam). Total and cholesterol ester (Millipore/Sigma-Aldrich), triglycerides 

(Abcam), free fatty acids (Pointe Scientific) were measured using the extracted liver 

lipids. Postprandial plasma obtained at termination of studies (see above for details) 

was used to measure total cholesterol (Pointe Scientific), triglycerides (Pointe 

Scientific), free fatty acids (Pointe Scientific), ALT (Pointe Scientific). All assays were 

performed according to the manufacturer’s instructions.  

 

Bone Parameters: Tissues were fixed in 10% neutral-buffered formalin for 24 hours 

and kept in Sorenson’s buffer (pH7.4) thereafter. Tibiae were placed in a 19-mm 

diameter specimen holder and scanned over the entire length of the tibiae using a 

microcomputed tomography (μCT) system (μCT100 Scanco Medical). Scan settings 

were as follows: voxel size 12 μm, 70 kVp, 114 μA, 0.5 mm AL filter, and integration 

time 500 ms. Density measurements were calibrated to the manufacturer’s 

hydroxyapatite phantom. Analysis was performed using the manufacturer’s evaluation 

software and a threshold of 180 for trabecular bone and 280 for cortical bone. Tibiae 

used for μCT scanning were decalcified in 14% EDTA for 3 weeks. Paraffin-embedded 

tissue sections were processed and stained with H&E. 

Bone Marrow Adipose Tissue Quantification by Osmium Tetroxide Staining and 

μCT: Mouse tibiae were decalcified in 14% EDTA for 2-3 weeks, and then put into 1% 
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osmium tetroxide solution (diluted by Sorenson’s buffer pH7.4) for 48 hours. Osmium 

tetroxide-stained bones were scanned by the same program as described above. A 

threshold of 400 Gy was used for BMAT quantification. The volume of BMAT was 

normalized by the total volume (TV) of bone and shown as percentage (%). 

Muscle Fiber Area and Ileal Crypt Depth/Villi Height Analysis: Soleus muscle and 

ileal section were dissected and fixed in 10% neutral buffered formalin overnight. Tissue 

was embedded in paraffin and sectioned onto slides, and stained for H&E following 

standard protocol. Photos, and analysis of muscle fiber area (in 100-250 muscle fibers), 

and ileal crypt depth and ileal villi height (in 25 villi and crypts) were acquired using 

Olympus IX73 fluorescence microscopy system (Olympus). Villus height was measured 

from the crypt-villus junction to the tip of the villus and crypt depth was measured from 

the base of the crypt to the crypt-villus junction. Images were analyzed using Olympus 

cellSens imaging software (Olympus).  

Grip Strength: Grip strength was measured with Columbus Instruments Grip Strength 

Meter, which assesses neuromuscular function by sensing the peak amount of force an 

animal applies in grasping specially designed pull bar assemblies. Metering was 

performed with precision force gauges in such a manner as to retain the peak force 

applied on a digital display. The dual sensor model was employed by first allowing the 

animal to grasp the forelimb pull bar assembly. The animal was then drawn along a 

straight line leading away from the sensor. The animal released at some point and the 

maximum force attained is stored on the display. Each animal was tested five times and 

the average force reported in the data. Grip strength test was performed by the 

University of Michigan Physiology Phenotyping Core. 

 
Absorbed Energy Content: Fecal energy was assessed by University of Michigan 

Animal Phenotyping core using Bomb Calorimeter, Parr 6200 and 1108P oxygen bomb, 

as previously described (Asai et al., 2013). Mice were single-housed in clean housing 

cages for one week. Food weight was determined for the same time period. All fecal 

samples are collected using forceps and weighed to determine "wet weight".  Prior to 

processing, fecal samples are dried overnight at 50°C. Samples are then removed from 
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the oven one at a time and weighed. Sample weights are recorded and fecal samples 

are then ground up individually. Samples are ground with mortar and pestle and 

carefully scooped into a dry tube. All instruments are washed with sparkleen and 10% 

bleach and completely dried using chem-wipes or paper towel between samples. New 

weighboats are used for each sample and weighed on the same scale as the pre-dried 

weights.  

 

Quantitative Real-Time PCR: RNA was extracted from tissue samples using RNeasy 

isolation kit (Qiagen). cDNA was synthesized by reverse transcription from mRNA using 

the iScript cDNA Synthesis Kit (Bio-Rad). Gene expression was performed by 

quantitative real time RT-PCR using Taqman gene expression assay was performed 

using StepOnePlus detection system (Applied Biosystems) with a standard protocol. 

Relative abundance for each transcript was calculated by a standard curve of cycle 

thresholds and normalized to RL32.  

 

Intestinal Biometry 
Following euthanasia, the entire gastrointestinal tract from the stomach to the rectum 

was removed, cleaned of mesenteric fat and gut weight and length determined. Small 

and large intestine/colon length was measured on a horizontal ruler after flushing with 

PBS. The entire small and large intestine/colon were then blotted to 

remove PBS before being weighed. 

 

Analysis of 16S rRNA Gene Sequences 
16S rRNA Sequencing: Cecal contents were added to individual Bead plate provided by 

the Microbiome Core at the University of Michigan. DNA was isolated using Qiagen 

MagAttract PowerMicrobiome kit DNA/RNA kit (Qiagen, catalog no. 27500-4-EP) on the 

EpMotion 5075 (Eppendorf) liquid handler. Extracted DNA was then used to generate 

16S rRNA libraries for community analysis.  The DNA libraries were prepared by the 

Microbiome Core as described previously (Seekatz et al., 2015). Briefly, DNA was PCR 

amplified using a set of barcoded dual-index primers specific to the V4 region of the 16S 

rRNA gene (Kozich et al., 2013). PCR reactions are composed of 5 µL of 4 µM 
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equimolar primer set, 0.15 µL of AccuPrime Taq DNA High Fidelity Polymerase, 2 µL of 

10x AccuPrime PCR Buffer II (Thermo Fisher Scientific, catalog no.12346094), 11.85 µL 

of PCR-grade water, and 1 µL of DNA template. The PCR conditions used consisted of 

2 min at 95°C, followed by 30 cycles of 95°C for 20 seconds, 55°C for 15 seconds, and 

72°C for 5 minutes, followed by 72°C for 10 min. Each PCR reaction is normalized using 

the SequalPrep Normalization Plate Kit (Thermo Fisher Scientific, catalog no. 

A1051001). The normalized reactions are pooled and quantified using the Kapa 

Biosystems Library qPCR MasterMix (ROX Low) Quantification kit for Illumina platforms 

(catalog no. KK4873). The Agilent Bioanalyzer is used to confirm the size of the 

amplicon library (~399 bp) using a high-sensitive DNA analysis kit (catalog no. 5067-

4626). Pooled amplicon library is then sequenced on the Illumina MiSeq platform using 

the 500 cycle MiSeq V2 Reagent kit (catalog no. MS-102-2003) according to the 

manufacturer's instructions with modifications of the primer set with custom read 1/read 

2 and index primers added to the reagent cartridge. The “Preparing Libraries for 

Sequencing on the MiSeq” (part 15039740, Rev. D) protocol was used to prepare 

libraries with a final load concentration of 5.5 pM, spiked with 15% PhiX to create 

diversity within the run. FASTQ files are generated when the 2 x 250 bp sequencing 

completes. 

 

Analysis: Following sequencing, microbiome bioinformatics were run using QIIME 2 

2020.2 (Bolyen et al., 2019). Briefly, non-singleton amplicon sequence variants (ASVs, 

100% operational taxonomic units (OTUs)) were generated from raw sequences after 

trimming with the cutadapt plugin denoising with the dada2 plugin. One Control VSG 

and one FGF15INT-KO Sham samples were excluded because of low OTUs. Taxonomy 

was then assigned to ASVs using the classify-sklearn alignment algorithm (Bokulich et 

al. 2018) against the Greengenes database (Release 13.8) of 99% OTUs reference 

sequences (McDonald et al. 2012). Alpha diversity metrics including Chao1 and 

Shannon, which estimate with-in sample richness and diversity respectively, were 

calculated using the diversity plugin. Chao1 index represents the number of ASVs 

present in one single sample, while Shannon index accounts for both abundance and 

evenness of ASVs present. Beta diversity metrics including weighted and unweighted 
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UniFrac distance matrix (Lozupone et al., 2007), which estimate between-sample 

dissimilarity, were scaled and visualized through principle coordinates analysis (PCoA), 

and further used to determine the significance of the clustering between groups via 

permutational multivariate analysis of variance (PERMANOVA). Linear discriminant 

analysis (LDA) effect size (LEfSe) with default parameters (Segata et al., 2011) and 

Random Forest Classifier with 10-fold cross-validations (Breiman, 2001) were computed 

to identify significantly different microbes in abundance between groups at different 

taxonomic levels.   

 
QUANTIFICATION AND STATISTICAL ANALYSIS 
The statistical analysis for comparisons between 2 groups was performed by unpaired 

(2-tailed) Student’s t test. Two-way ANOVA with post hoc Tukey's multiple comparisons 

test was used for comparisons among 4 groups. P values <0.05 were considered 

significant (GraphPad Prism 8.2.0). Microbiome analysis is described above. 
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Figure 1. Intestinal FGF15 expression increases and prevents muscle mass loss 
after VSG in mice. A. FGF15 RNA expression in duodenum, jejunum and ileum in Sham 
and VSG mice fed 60% HFD. Intestinal mucosa was collected 15 minutes post mixed 
meal gavage (n=6-7). B. Experimental timeline. C. Body weight and D. Food intake before 
surgery. E. Body weight after surgery. F. Fat body mass and G. Lean body mass before 
and after surgery. H. Cumulative food intake and I. Energy Efficiency for weeks 1-8 after 
surgery. J. Food intake, K. Fecal energy and L. Absorbed energy during week 11 after 
surgery. Animal number WT Sham (n=5-6), WT VSG (n=8), FGF15INT-KO Sham (n=8), 
FGF15INT-KO VSG (n=5). Data are shown as means ± S.E.M. *p<0.01 Control Sham vs. 
Control VSG; #p<0.01 FGF15INT-KO VSG and FGF15INT-KO Sham; ^p<0.01 Control VSG 
and FGF15INT-KO VSG. Panels A, C and D were analyzed with Student’s 2-tailed t test. 
Panels E-L were analyzed with 2-Way ANOVA with Tukey’s post-test). 
	
	
	
	 	



	

	
	
Figure 2. Intestinal-derived FGF15 partially preserves bone and BMAT loss 
following VSG. A. 3D images of trabecular bone. B. Trabecular bone volume fraction 
(Tb. BV/TV), C. Trabecular bone mineral density (Tb. BMD), D. Trabecular bone 
connective density (Conn. Des) and E. Trabecular number (Tb. N), F. Thickness of the 
trabecular bone (Tb. Th), G. Spacing between trabeculae (Tb. Sp). H. 3D images of mid-
cortical bone. I. Thickness of the cortical bone (Ct. Th). J. Cortical bone area (Ct. BA/TA) 
and K. Cortical bone mineral density (Ct. BMD). L. Tibial BMAT was visualized by osmium 
staining. M-N. Representative sections from proximal and distal tibiae were stained with 
H&E and are shown at ×100 magnification. Scale bars, 200 μm. L. Tibial BMAT was 
quantified relative to total bone volume after osmium staining within the indicated regions 
as shown in O. Proximal Tibia (①-②), P. Growth plate (G/P) to tibia/fibula junction (T/F 
J) (①-③), Q. Distal tibia is T/F J to distal end (③-④). Animal number Control Sham (n=5), 
Control VSG (n=8), FGF15INT-KO Sham (n=8), FGF15INT-KO VSG (n=5). Data are shown 
as means ± S.E.M. * p<0.05 (2-Way ANOVA with Tukey’s post-test). 
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Figure 3. FGF15INT-KO mice remain glucose intolerant despite significant body 
weight loss after VSG. A. Fasting (4 hours) blood glucose and B. Fasting (4 hours) 
insulin levels after surgery. C Intraperitoneal glucose tolerance test (ipGTT; 2g/kg) 
performed 6 weeks post-surgery and Area Under the Curve (AUC). D Intraperitoneal 
glucose tolerance test (ipGTT; 2g/kg) performed 9 weeks post-surgery and Area Under 
the Curve (AUC). E. Mixed meal tolerance test (MMTT) performed 10 weeks post-
surgery. F. Gastric emptying rate measured by acetaminophen levels at 15 minutes post 
gavage. G. Insulin levels at baseline and 15 minutes post gavage. H. Total GLP-1 levels 
at baseline and 15 minutes post gavage. Animal number Control Sham (n=5-6), Control 
VSG (n=8), FGF15INT-KO Sham (n=8), FGF15INT-KO VSG (n=5). Data are shown as means 
± S.E.M. *p<0.01 Control Sham vs. Control VSG; #p<0.01 FGF15INT-KO VSG and 
FGF15INT-KO Sham; ^p<0.01 Control VSG and FGF15INT-KO VSG (2-Way ANOVA with 
Tukey’s post-test).  
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Figure 4. Loss of intestinal FGF15 results in aberrant hepatic lipid and glycogen 
metabolism following VSG. A. Liver weight normalized to body weight. B. Alanine 
aminotransferase (ALT) plasma levels. C. Plasma cholesterol D. Plasma free fatty acids 
(FFA) and E. Plasma triglycerides (postprandial, 12 weeks post-surgery). F. Total hepatic 
cholesterol. G. Hepatic esterified cholesterol. H. Hepatic triglycerides. I. Hepatic free fatty 
acids. Hepatic RNA expression of cholesterol synthesis gene J. Hmcgr and cholesterol 
export genes K. Abcg5 and L. Abcg8. Animal number Control Sham (n=5), Control VSG 
(n=8), FGF15INT-KO Sham (n=8), FGF15INT-KO VSG (n=5). Data are shown as means ± 
S.E.M. *p<0.05 (2-Way ANOVA with Tukey’s post-test). 
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Figure 5. Intestinal FGF15 regulates enterohepatic bile acid metabolism following 
VSG. A. Total plasma bile acid levels. B. Cecal total bile acid levels. Hepatic RNA 
expression of bile acid synthesis genes C. Cyp7a1, D. Cyp8b1 and E. Cyp27a1. Hepatic 
RNA expression of bile acid uptake genes F. Slc10a1 (coding for Ntcp) and G. Oatp4. H. 
Ileum RNA expression of bile acid uptake gene Slc10a2 (coding for Asbt). Animal number 
Control Sham (n=4-5), Control VSG (n=8), FGF15INT-KO Sham (n=8), FGF15INT-KO VSG 
(n=5). Data are shown as means ± S.E.M. *p<0.05 (2-Way ANOVA with Tukey’s post-
test). 
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Figure 6
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Figure 6. Intestinal FGF15 modulates microbiota in cecal content. A. Chao1 
abundance and B. Shannon index diversity of the gut microbiota in the cecal contents. 
LEfSe analysis depicting nodes within the bacterial taxonomic hierarchy that are enriched 
in cecal microbiota from C. Control Sham versus FGF15INT-KO Sham and D. Control Sham 
versus VSG and E. FGF15INT-KO Sham versus VSG. Diagrams generated by LEfSe 
indicating differences at phylum, order, class, family, and genus levels between the two 
groups. F. Top ranked taxa at genus level identified by random forest analysis according 
to their ability to discriminate the microbiota of Sham and VSG mice per genotype in 
decreasing order of discriminatory importance. A comparison of the abundance of 
markers in VSG relative to Sham counterparts in each genotype. G. Differences in relative 
abundance of taxa at genus level. Animal number Control Sham (n=6), Control VSG 
(n=7), FGF15INT-KO Sham (n=7), FGF15INT-KO VSG (n=5). Data in A, B are shown as 
means ± S.E.M. *p<0.05 (2-Way ANOVA with Tukey’s post-test).	
	
 
 
 
 
	


