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Abstract  

Oncogenic mutations in the kinase domain of the B-Raf protein have long been associated with cancers 

involving the MAPK pathway. One constitutive MAPK activating mutation in B-Raf, the V600E (valine to 

glutamate) replacement occurring adjacent to a site of threonine phosphorylation (T599) occurs in many 

types of cancer, and in a large percentage of certain cancers, such as melanoma. Because ATP binding 

activity and the V600E mutation are both known to alter the physical behavior of the activation loop in 

the B-Raf ATP binding domain, this system is especially amenable to comparative analyses of molecular 

dynamics simulations modeling various genetic and drug class variants. Here, we employ machine 

learning enabled identification of functionally conserved protein dynamics to compare how the binding 

interactions of four B-Raf inhibitors impact the functional loop dynamics controlling ATP activation. We 

demonstrate that drug development targeting B-Raf has progressively moved towards ATP competitive 

inhibitors that demonstrate less tendency to mimic the functionally conserved dynamic changes 

associated with ATP activation and leading to the side effect of hyperactivation (i.e. inducing MAPK 

activation in non-tumorous cells in the absence of secondary mutation). We compare the functional 

dynamic impacts of V600E and other sensitizing and drug resistance causing mutations in the regulatory 

loops of B-Raf, confirming sites of low mutational tolerance in these regions. Lastly, we investigate 

V600E sensitivity of B-Raf loop dynamics in an evolutionary context, demonstrating that while sensitivity 

has an ancient origin with primitive eukaryotes, it was also secondarily increased during early jawed 

vertebrate evolution.  

Keywords – oncogene, mutational tolerance, B-Raf inhibitor, hyperactivation, molecular dynamics, 

molecular evolution, machine learning 
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List of abbreviations  

ATP – adenosine triphosphate 

BRAF – B-Raf gene sequence 

B-Raf – protein product of BRAF gene 

BRAFi – B-Raf inhibitor 

CC – canonical correlation 

CR1 CR2 CR3 – conserved region 1, 2, or 3 

DNA – deoxyribonucleic acid 

dFLUX – change in atom fluctuation or rmsf 

DROIDS – software acronym for ‘detecting outlier impacts in dynamic simulation’, our software package 

for comparative protein dynamics simulation  

FDM - functional dynamic mimicry 

GPU – graphic processor unit 

KD – kinase domain 

KL divergence – Kullback-Leibler divergence 

MAPK – mitogen-activated protein kinase 

maxDemon – software acronym for ‘Maxwell’s demon’, our machine learning application for DROIDS 

MD - molecular dynamic (simulation) 

NCBI – National Center for Biotechnology Information 

PDB – Protein Data Bank 

P-loop – ATP stabilizing loop 

rmsf – root mean square fluctuation 

V600E – valine to glutamic acid mutation and position 600 
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Introduction  

From both a patient’s and doctor’s perspective, perhaps the most dreaded aspect of many cancers are 

their ability to undergo recurrence following therapeutic intervention. The recurrence of cancer can 

have obvious negative impact on patient psychology (Andersen et al., 2005; Yang et al., 2008), doctor-

patient relations (Janz et al., 2017) and questions the very concept of a ‘cure’ for cancer. The molecular 

mechanisms and somatic evolutionary processes that underlie the phenomena of recurrence are 

complex and do not act singularly within any given tumor, thereby greatly exacerbating the clinical 

difficulty of treatment and post-treatment monitoring. There are currently three molecular mechanistic 

frameworks for potentially explaining cancer recurrence. The traditional view of ‘mutational 

deregulation’ invokes a progressive molecular evolutionary Fisherian or ‘runaway’ process whereby 

tumor progression begins with one or several ‘driver mutations’ that start a cascade of secondary 

mutation and subsequent deregulation of growth and proliferation followed by eventual chromosomal 

disruption through aneuploidy and chromothrypsis (Brown et al., 2019). Under this conceptual 

framework, cancer progression is largely due to a mutational process that progressively deregulates cell 

proliferation and frames cancer recurrence as a problem analogous to a ‘whack a mole’ game that gets 

more difficult as the game progresses. A second molecular evolutionary perspective that has gained 

recent popularity invokes Darwinian natural selection at the somatic level of the tumor 

microenvironment (Gatenby et al., 2019; Zhang et al., 2017a). Under this view, the cancer treatment 

regime, in creating a local tumor microenvironment that is selectively detrimental to the survival and 

proliferation of cancer cells, is thought to create a selective microenvironment that favors more robust 

and treatment-resistant cancers that can recur if therapy is not modulated accordingly. Cancer 

recurrence under this new paradigm is framed as a game of strategy like chess, where the competitive 

environment changes fluidly with the progression of the game. Both of these conceptual frameworks for 

our understanding of cancer recurrence rely upon disruption of mutation-selection balance at a tissue 

level (Bürger, 1989; Hartl, 1977) acting through the complementary mechanisms of somatic mutation 

and apoptosis (Nunney, 2003).  

A third and less common cause of cancer recurrence, known as the ‘hyperactivation paradox’ 

does not rely upon disruption of selection-mutation balance and can be invoked to explain cancer 

recurrence in the absence of secondary mutations. Hyperactivation is observed when some cancer 

inhibitors have opposing effects in tumor and normal wildtype cells, repressing growth pathways in 

tumor tissues while paradoxically activating them in normal healthy tissue (Hatzivassiliou et al., 2010; 

Poulikakos et al., 2010; Villanueva et al., 2011). The mechanism of hyperactivation may be less of a 

paradox when one considers that small molecule inhibitors are often targeting the binding sites of 

natural agonists (i.e. signal pathway activators) in both tumor and wildtype cells. In growth activated 

tumor cells, these drugs will competitively bind the target protein, thus blocking the functional role of 

the natural agonist in the pathway. However, in growth deactivated cells, these drugs might mimic 

certain functional aspects of the agonist, allowing partial activation of growth pathways in the presence 

of the drugs. While not a ‘game’ that most would choose to play, this effect of functional mimicry in 

some drugs might be analogous to ‘poking a sleeping bear’, where cancer recurrence can be caused in 

the absence of secondary mutation by a drug’s unintended signal activation of the growth pathway in 

nearby normal cells.   
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Proteins involved in growth signaling pathways, such as mitogen-activated protein kinases 

(MAPK), are often very labile in structure, involving highly dynamic regions of intrinsic disorder (e.g. 

activation loops) that facilitate complex dynamic shifts between functional states that ultimately govern 

interactions with other proteins on the pathway (Montagut and Settleman, 2009; Wan et al., 2004). 

Mutations that potentially alter function in highly dynamic loop regions are often implicated in many 

cancers. A well-studied oncogenic system exists in the ATP binding domain of the B-Raf protein, a 

serine/threonine-protein kinase that activates the MAPK (i.e. RAF-MEK-ERK) growth pathway (Figure 1). 

B-Raf is a member of the Raf family of serine/threonine kinases, along with A-Raf and C-Raf, and is the 

member with the highest basal activity of the three (Roskoski, 2010). B-Raf is a 766 amino acid protein 

with gene on chromosome 7 (7q34). There are 3 primary conserved domains for B-Raf, CR1, 2, and 3. 

CR3 (residues 443-735) is the domain that contains the enzymatic ATP kinase domain (KD, residues 457-

714). B-Raf regulation functions primarily by the changes in the position and dynamics in several loop 

regions upon interaction of ATP with the hydrophobic binding pocket formed by V471, A481, L514, 

T529, W531, and C532. Within the KD, the glycine-rich P-loop (ATP-phosphate stabilizing loop) spans 

residues 464-471 and functions to anchor ATP during enzymatic activity. The activation segment or 

activation loop (residues 594-623) within the KD is partially disordered and contains the serine and 

threonine phosphorylation sites (S602 and T599). Thus, the loop regions primarily affected by ATP 

binding interaction are the ATP phosphate stabilizing P-loop at residues 464-471, the catalytic loop at 

residues 574-581 that captures and transfers the ATP γ-phosphate, and the activation loop segment and 

DFG motif at residues 594-623 which breaks hydrophobic interactions with the P-loop (i.e. activating the 

KD) with negative charge during phosphorylation of T599. Activating mutations in the KD can often lead 

to disrupted conformation and constitutive ERK activation and many mutations in this region are 

associated with loss of regulatory function and/or abnormal dimerization (Durrant and Morrison, 2018). 

In particular, a V600E mutation in the activation loop causing the constitutive activation of the B-Raf 

signaling is one of the most common mutations in many type of cancer, as well as a high percentage of 

certain cancers like melanoma. B-Raf mutants appear in multiple cancers, notably in melanoma, and 

colorectal, but also less frequently in non-small cell lung cancer, breast, ovarian, and several others 

(Davies et al., 2002; Rezaei Adariani et al., 2018; Wan et al., 2004). Greater than 50% melanomas harbor 

B-Raf activating mutations, and of these 90% involve the three bases of codon 600, and of these 90% are 

the single nucleotide missense mutation at position 1799 resulting in V600E substitution (although V600 

K, D, R have also been less commonly observed (Ascierto et al., 2012)).  

Several first generation B-Raf inhibitors designed to target V600E mutants cells have been 

recently discovered to induce hyperactivation in normal wildtype cells in the absence of V600E 

(Hatzivassiliou et al., 2010; Poulikakos et al., 2010; Villanueva et al., 2011). Now, a new generation of B-

Raf inhibitors that break the hyperactivation paradox are currently under development and clinical trial 

(Zhang et al., 2015a). Raf inhibitors are generally designed to occupy the ATP binding pocket preventing 

phosphorylation. Why this region suffers from such low mutational tolerance, and why some Raf 

inhibitors prove vulnerable to hyperactivation while others do not, are currently open questions. A 

comparative analysis of the all-atom molecular dynamics (MD) of the B-Raf KD in both its wildtype and 

various mutant states during interaction with small molecule variants of this drug class could prove 

illuminating with regard to the problems of B-Raf hyperactivation and mutational tolerance more 

generally. Three B-Raf inhibitors are currently in use. These include sorafenib, a potent hyperactivation 

inducer in normal cells, (Zhang et al., 2015b, 2017b) as well as dabrafenib and vemurafenib, two more 

modern inhibitors that also show potential problems with hyperactivation (Karoulia et al., 2016; Wan et 
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al., 2004; Zhang et al., 2015a). PLX7904, a modern hyperactivation paradox breaker is currently in 

preclinical development (Zhang et al., 2015a) while its analogue PLX8394 is in clinical trials. Here, we 

employ machine learning enhanced comparative analyses of MD simulation (Babbitt et al., 2018a, 2020) 

to identify functionally conserved loop dynamics connected to normal ATP binding. We examine how 

the V600E mutation breaks the natural regulatory loop dynamics of the B-Raf protein. We compare the 

ability of each of these four B-Raf inhibitors (see Appendix A) to mimic functionally conserved loop 

dynamics (i.e. creating functional dynamic mimicry (FDM) in their B-Raf targets), and we quantify the 

impacts of known sensitizing and drug resistant mutations on these dynamics. We also examine the 

V600E sensitivity of loop dynamics in two ancient phylogenetically reconstructed protein models, so as 

to determine what evolutionary process may have led to unusual functional vulnerability of this 

important signaling protein to the V600E mutation. 

Methods  

PDB structure preparation and ligand force field modification 

Structures of the ATP binding domain of B-Raf bound to various Raf inhibitors were obtained 

from the Protein Data Bank (PDB). These were PDB ID 1uwh (wildtype B-Raf bound to sorafenib), 4rzv 

(vemurafenib bound to V600E mutant), 4xv1 (PLX7904 bound to V600E mutant), 4xv2 (dabrafenib 

bound to V600E mutant). Loop modeling and refinement were conducted on the activation loop where 

needed using Modeller in UCSF Chimera (Fiser et al., 2000; Pettersen et al., 2004; Sali and Blundell, 

1993; Webb and Sali, 2016). Complementary mutant (V600E in 1uwh) and wildtype structures (E600V in 

4rzv, 4xv1,4xv2) were computationally induced in UCSF Chimera 1.13 (Pettersen et al., 2004) by first 

swapping amino acids using optimal configurations in the Dunbrack rotamer library, then using 2000 

steepest gradient descent steps of energy minimization to relax the regions around the amino acid 

replacement. To obtain ATP bound versions of wildtype B-raf and the V600E mutant, the sorafenib 

inhibitor was deleted from 1uwh and 1uwj, then ATP was docked using the AutoDock Vina program 

(Trott and Olson, 2010) after reducing both structures (adding H). ATP docking positions most closely 

overlapping sorafenib were chosen. Unbound forms of all the structures were obtained by deleting the 

ligands in the bound structure and performing energy minimization for 5000 steps. Prior to molecular 

dynamic simulation in Amber18, the GAFF2 force field modifications for ATP and the small molecule 

ligands were generated using sqm, a semiempirical and DFTB quantum chemistry program employed by 

the Antechamber (Ambertools18) software suite (Wang et al., 2006, 2004). 

MD simulation protocols 

Large ensembles of graphic processing unit (GPU) accelerated molecular dynamic simulations were 

prepared and conducted using the particle mesh Ewald method employed by pmemd.cuda in Amber18 

(Case et al., 2005; Salomon-Ferrer et al., 2013) via the DROIDS v3.0 interface (Detecting Relative Outlier 

Impacts in Dynamic Simulation)(Babbitt et al., 2018a, 2020). Simulations were run on a Linux Mint 19 

operating system mounting two Nvidia Titan Xp graphics processors. Explicitly solvated protein systems 

were prepared using tLeAP (Ambertools18) using the ff14SB protein force field (Maier et al., 2015) in 

conjunction with modified GAFF2 small molecule force field (Wang et al., 2004). Solvation was 

generated using the Tip3P water model (Mao and Zhang, 2012) in a 12nm octahedral water box and 

subsequent charge neutralization with Na+ and Cl- ions. After energy minimization, heating to 300K, and 

10ns equilibration, an ensemble of 200 MD production runs each lasting 0.5 ns of time were created for 
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both ligand bound and unbound B-Raf. Each MD production run was preceded by a single random 

length short spacing run selected from a range of 0 to 0.25ns to mitigate the effect of deterministic 

chaos (i.e. sensitively to initial conditions) in the driving ensemble differences in the MD production runs 

(Babbitt et al., 2018b). All MD was conducted using an Andersen thermostat (Andersen, 1980) under 

constant pressure. Root mean square atom fluctuations (rmsf) were calculated using the atomicfluct 

function in CPPTRAJ (Roe and Cheatham, 2013).        

Comparative dynamics of bound and unbound functional states 

The signed symmetric Kullback-Leibler (KL) divergence (i.e. relative entropy) between the distributions 

of atom fluctuation (i.e. root mean square fluctuation or rmsf taken from 0.01 ns time slices of total MD 

simulation time) on ligand bound and unbound B-Raf were computed using DROIDS v3.0 (Babbitt et al., 

2020, 2018a). This difference measure for rmsf has an advantage over a simple average or mean rmsf 

difference in that it captures comparative differences in the spread or deviation as well as the shape or 

skew of the rmsf distributions in addition to mean. The KL divergence between the vibrational states of 

two homologous atoms from two simulations, each representing a functional state of the protein, can 

be given by  

𝐾𝐿𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = ∑ 𝑟𝑚𝑠𝑓0 ∗ log
𝑟𝑚𝑠𝑓0

𝑟𝑚𝑠𝑓1

𝑡

𝑖=1

𝑡⁄  (1) 

 

where rmsf represents the average root mean square deviation of a given atom over time t and 0 and 1 

represent the two ensembles that are compared (i.e. in this case, the unbound and ATP bound protein 

states respectively). More specifically rmsf is a directionless root mean square fluctuation sampled over 

an ensemble of MD runs with similar time slice intervals. Because mutational events in evolution replace 

entire residues, this calculation is more useful if applied to resolution of single amino acids rather than 

single atoms. Because only the 4 protein backbone atoms (N, Cα, C and O) are homologous between 

residues, the following equation was applied. Because the remaining atoms all attach to this backbone, 

rmsf still indirectly samples the dynamic effect of amino acid sidechain replacement.  

𝐾𝐿𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = ∑ ∑ [(𝑟𝑚𝑠𝑓0 ∗ log
𝑟𝑚𝑠𝑓0

𝑟𝑚𝑠𝑓1
) + (𝑟𝑚𝑠𝑓1 ∗ log

𝑟𝑚𝑠𝑓1

𝑟𝑚𝑠𝑓0
)]

4

𝑖=𝑁,𝐶,𝐶𝛼 ,𝑂

/8 𝑇⁄

𝑇

𝑡=50𝑝𝑠

 (2) 

 

Finally, this KL divergence is made symmetric by averaging it with the KL divergence obtained when the 

rmsf0 is interchanged with rmsf1. Then the KL divergence is signed + or – depending upon whether the 

average atom motion (mean rmsf) is amplified or dampened when compared. This signed symmetric KL 

divergence was color mapped to the protein backbone with individual amino acid resolution to the 

bound structures using a temperature scale (i.e. where red is amplified fluctuation and blue is 

dampened fluctuation). More details of rmsf calculation can be found in our DROIDS v3.0 software 

publication (Babbitt et al., 2020). Here, the reference state of the protein is unbound while the query 

state is bound. Therefore, this pairwise comparison is used to represent the functional impact of ligand 

binding on the protein’s normal unbound motion, where it is expected that ligand contacts would 

typically dampen the fluctuation of atoms around the ATP binding pocket to some degree. As ATP 
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binding acts to destabilize the activation loop and P-loop regions of B-Raf, this analysis will allow 

quantification of dynamic impacts that amplify loop motions as well.  

Machine learning performance and detection of conserved dynamic function 

We applied machine learning classification to the dynamics of each amino acid backbone segment to 

differentiate functionally conserved ATP binding dynamics from unbound dynamics in repeated MD 

validation runs on the model of wildtype B-Raf. We then compare these results to a similar analysis of 

ATP binding in V600E mutants to ascertain how this mutation alters functionally conserved dynamics in 

the B-Raf protein system. The detection of functionally conserved protein dynamics in wildtype B-Raf 

followed the machine learning-based method maxDemon v1.0 outlined in our previous software paper 

(Babbitt et al., 2020). In summary, a stacked machine learning model implementing seven classification 

methods (K nearest neighbors, naïve Bayes, linear/quadratic discriminant analysis, support vector 

machine, random forest and adaptive boosting) was individually trained upon each amino acid’s rmsf 

data that was pre-classified to the ligand bound and the unbound dynamic states (Figure 2A). These 

learners were deployed upon the identical amino acids within two new 5ns MD simulations of the ligand 

bound structure and classifications of atom fluctuation (i.e. rmsf calculated for 500 x 0.01 ns time slices) 

where 0 = unbound and 1 = bound states were averaged to obtain a learning performance value for 

each amino acid. Average learning performance profiles (i.e. accuracy and precision) are generated 

along the protein from N to C terminus (Figure 2B top). Therefore, the machine learning performance at 

a given residue position L is given by the frequency of classification (c) where ci = 0 or ci = 1 taken over t 

time slices on MD simulation. 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑒 = ∑ 𝑓(𝑐, 𝐿)

𝑡

𝑖=1

 (3) 

Note that a value of 0.5 at a given position would indicate that the learning model could not 

differentiate between bound and unbound dynamics at that residue. Performance profiles are 

generated within a 20 residue sliding window for each of the seven machine learning methods to create 

a composite line plot for a given MD validation or MD variant run. Local significant canonical correlations 

in learning performance profiles between the two 5ns MD validation runs on the ATP ligand bound 

structure indicate where any position-dependent molecular dynamics that is functionally conserved with 

regards to the ATP binding interaction has occurred(Figure 2B middle). The regions of significant 

functional dynamics on the B-Raf structure were called where the p-value derived from Wilk’s lambda 

from the local canonical correlation analysis was less than 0.01 (Figure 2B bottom). These regions are 

also presented with local r value from the CCA as well. Thus,  

𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 = (𝜆 | 𝑝 < 0.01) (4) 

 

The central philosophy here is that if any atom motion is specific to a given functional state (i.e. 

in this case, B-Raf protein bound to ATP), then after training, the machine learners will be able to 

successfully classify this motion whenever it is observed in subsequent identical validation MD runs. 

When the learners are able to repeatedly identify any ATP-bound functional state dynamics that locally 

associate with any given position on the protein, this will create strongly correlated profiles in learning 

performance as a 20 residue site sliding window sweeps across functional regions. As our machine 
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learning model is a stacked model, incorporating seven learning algorithms, it is more robust to artifacts 

related to any single method, and the resulting correlation is therefore canonical as well. We can label 

the dynamics as ‘functionally conserved’ if the machine learning model can consistently identify the 

functional dynamic states upon which it trained across multiple and independent validation runs that 

are of adequate length (i.e. many nanoseconds). Two or more identically prepared validation runs are 

used to examine whether statistically significant canonical correlations (i.e. conserved dynamics) are 

locally identifiable by a significant local Wilk’s lambda value for a local canonical correlation coefficient.      

Method of genetic and drug variant impact assessment 

The local impacts of mutations and drug class variants were obtained by first deriving the canonical 

correlation of the learner performance profile of a given variant to the wildtype B-Raf in its normal 

functionally bound state (= CCvariant). This also uses a 20 residue sliding window. The impact metric is 

generated by comparing canonical correlation of the variant (CCvariant) to the self-similar dynamic 

correlation (CCself) defining functionally conserved dynamics above, using the common definition of 

relative entropy below. 

𝑅𝐸𝑣𝑎𝑟𝑖𝑎𝑛𝑡 = ∑ 𝐶𝐶𝑠𝑒𝑙𝑓 ∗ log
𝐶𝐶𝑠𝑒𝑙𝑓

𝐶𝐶𝑣𝑎𝑟𝑖𝑎𝑛𝑡

𝑟

𝑖=1

(13) 

Effectively, this impact metric captures the entropy difference in conserved dynamics between the 

wildtype ligand bound state (i.e. ATP bound) and the variant states of binding created by genetic 

mutation or different drug class ligand molecules. This occurs on the same scale as that used to 

differentiate bound from unbound states during the earlier training of the stacked learning model. More 

details regarding our methodological approach to identifying functionally conserved dynamics and 

subsequent impacts of genetic and drug class variants can be obtained in our prior publication (Babbitt 

et al., 2020). The error bars shown in relation to drug class and genetic variants impacts across athe 

protein are derived by 1000 bootstrapped samples of the local machine learning classifier outputs (i.e. 0 

or 1) taken at all amino acid residue sites.  

The relative impacts of four B-Raf inhibitors, sorafenib, dabrafenib, vemurafenib and PLX7904 

were assessed after initially training the stacked machine learning model on ATP bound and unbound B-

Raf (Figure 2C) within both the wildtype and the V600E mutant genetic background. Several drug 

affecting genetic mutants were also examined after training the learning model on normal functional 

binding interaction of each drug in the wildtype genetic background. These drug resistant and drug 

sensitizing mutations were identified using the Variant Interpretation for Cancer Consortium (VICC) 

Meta-Knowledgebase (Wagner et al., 2018). Variants were selected that contained literature support for 

the functional impact on at least one of the four B-Raf inhibitors (Supplemental Table 1).  

Phylogenetic analysis of B-Raf sensitivity to V600E 

A set of 27 BRAF ortholog sequences were obtained using the National Center for Biotechnology 

Information (NCBI) ortholog finder tool. These sequences were aligned using MEGA 7.0 (Kumar et al., 

2016) Clustal multiple sequence alignment tool and then manually trimmed to contain only the ATP 

binding domain. Phylogenetic model selection was also conducted in MEGA to identify the most likely 

(best fitting) evolutionary substitution model. This was identified via both Bayesian and Akaike 

Information Criterion to be the Kimura 2-parameter model with extra terms for both gamma correction 
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for multiple same site substitution and correction for invariants sites (i.e. K2+G+I). A minimum evolution 

tree and a maximum likelihood tree bootstrapped 500 times confirmed the same tree topology with 

high confidence. Amino acid replacements distributed on this topology identified three protein variants, 

one each for tetrapods, ray-finned fish and insects. Amino acids differences from tetrapods identified 9 

amino acid replacements since a common ancestor with ray-finned fish and 95 replacements since a 

common ancestor with insects. Structural models for the two ancestral protein variants were manually 

generated in UCSF Chimera using swapaa commands to find non-clashing Dunbrack library rotamer 

configurations. These models were then subsequently relaxed with 2000 steps of energy minimization 

via steepest gradient descent. A V600E variant was subsequently created from the wildtype ray-finned 

fish model and an A600E variant was created from the wildtype insect model. DROIDS software was 

used to train upon ATP binding interaction in the wildtype tetrapod model (comparing ATP bound and 

unbound dynamics as described above). DROIDS 3.0 and maxDemon 1.0 machine learning analysis 

(described above) was then used to identify functionally conserved dynamics in tetrapod B-Raf and 

subsequently compare mutational impacts on B-Raf dynamics for both the ancestral wildtype and 

mutant backgrounds in ray-finned fish and insects.        

The author’s software can be accessed at the software landing website and GitHub repository link 

https://people.rit.edu/gabsbi/ 

https://github.com/gbabbitt/DROIDS-3.0-comparative-protein-dynamics 

All data for the analyses and Figures are available at Zenodo (search title of paper), an open access data 

repository hosted at CERN. 

Results  

Shifts in B-Raf loop dynamics upon ATP binding in wildtype and V600E mutant background 

The comparative analysis of wildtype B-Raf dynamics (rmsf) in both its ATP-bound and unbound form 

revealed upon binding, a significant dampening of atom fluctuation in the ATP binding pocket associated 

with highly pronounced increase in fluctuation in the region of the activation loop as well as upstream 

toward the C terminal approximately affecting residues 599-625 (Figure 3A, 2C, Supplemental Figure 1A-

C). Note: this shift in dynamics was indicated by decreased rmsf or negative dFLUX defined by the KL 

divergence in rmsf. Shifts in dynamics were significant according to multiple test corrected Kolmogorov-

Smirnov tests at four major regions (Supplementary Figure 1C) including the binding pocket, the 

catalytic + activation loops and at two regions centered at residue 550 and 660. When color mapped to 

the ATP bound structure, these dynamics exhibit a large physical separation between the activation loop 

and P-loop (i.e. open active conformation for the protein) (Figure 3A).  

Comparative dynamics analysis of same ATP binding interaction in the presence of the V600E 

mutation exhibited clear and striking differences in dynamic shift (i.e. KL divergence) compared to the 

wildtype background. ATP binding in this mutant not only stabilized the regions around the P-loop and 

ATP binding pocket, but also massively and significantly stabilized the dynamics of the region of the 

catalytic + activation loop and a large region from residue 650-680 (Figure 3B, 2D, Supplemental Figure 2 

A-C) serving to apparently freeze the activation loop into an open configuration characteristic of the 

V600E mutant (Figure 3B). 
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Functionally conserved B-Raf loop dynamics upon ATP binding in wildtype and V600E mutant 

background 

Our machine learning model trained to recognize functional binding interaction dynamics in ATP bound 

wildtype B-Raf revealed clear non-random patterns of learning performance at specific residue locations 

on the protein that were highly correlated across the two MD validation runs. Significant and strong 

canonical correlations in learning performance on the MD validation runs indicated conserved binding 

dynamics across the regions connecting the ATP binding pocket to both the tip of the P-loop and a large 

region surrounding the catalytic and activation loops (Figure 4A and 4C). High R values in these regions 

indicate that the learning algorithms identified dynamics characteristic of B-Raf’s interaction with ATP 

over 65% of the total time of simulation, in spite of the thermal fluctuation that is always present. The 

plots of local learning performance of each algorithm in each of the two validation runs also indicates 

that characteristic functional ATP binding dynamics in B-Raf corresponded well with the known 

functional regions of the protein as well as the C terminal region approximately from residue 625-675.    

When deployed upon V600E mutant model simulations, the multi-machine learning algorithm 

generally failed to find conserved ATP binding dynamics (Figure 4B and 4D) typical of normal wildtype B-

Raf. In this malfunctional genetic background, low r values and lack of significance in the canonical 

correlation analysis of learning profiles indicate that our machine learning model fails to identify any 

functionally conserved dynamics of ATP binding, except in a very small part of the region (650-680) that 

freezes to hold the activation loop (Figure 4D). The local machine learning performance was generally 

poorer across the whole domain (i.e. closer to 0.5) indicating that functional dynamics played a far less 

important functional role in the V600E mutant background than in wildtype (Supplemental Figure 3). 

Taken altogether this result is likely indicative of how B-Raf’s very low tolerance to V600E destroys the 

functional dynamics of ATP binding in B-Raf.             

Effects of Raf inhibitors on conserved B-Raf loop dynamics in wildtype and V600E mutant background  

Because we theorized that the hyperactivation of cancer in wildtype cells by certain B-Raf inhibitors 

could be due to their potential to mimic the natural agonist of MAPK (i.e. ATP), we deployed our multi-

machine learning model, already trained upon dynamic differences caused by functional ATP interaction 

in wildtype B-Raf, upon models of wildtype B-Raf bound to four specific B-Raf inhibitors. These inhibitors 

included sorafenib, a potent inducer of hyperactivation and PLX 7904, a hyperactivation paradox 

breaker, currently in pre-clinical stages of research. We also include two modern B-Raf inhibitors, 

currently used in combination in clinical settings. We find sorafenib closely mimics ATP both in its 

pattern of functionally conserved dynamics (Figure 5A) and in the magnitude of its dynamic impacts on 

conserved dynamics of the total protein (Figure 5B). Here, the more modern inhibitors, vemurafenib, 

dabrafenib and PLX7904 show fewer regions with significantly conserved dynamics and higher 

associated impacts on conserved dynamics. The highest dynamic impact was in PLX7904, a potent 

‘breaker’ of the ‘paradox of hyperactivation’, suggestive that unlike sorafenib, its binding to wildtype B-

Raf may even serve to render B-Raf unrecognizable to the MAPK pathway. Plots of these conserved 

dynamic regions and their representative local r values are shown in Supplemental Figure 4. Local plots 

of relative impacts of each inhibitor in both wildtype and V600E mutant background are shown in 

Supplemental Figure 5. Comparative dynamic analysis of rmsf for B-Raf bound to each of the four 

inhibitors within wildtype backgrounds (Supplemental Figure 6) also indicates that sorafenib most 

closely mimics ATP via its interaction with the binding pocket and subsequent amplifications of dynamics 
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of the activation loop (i.e. see similarity between Figure 2B and Supplemental Figure 6A). While the 

modern inhibitors have KL divergence profiles somewhat similar to that of ATP in wildtype backgrounds, 

they all differ in key respects. Vemurafenib and dabrafenib also seem to affect P loop dynamics in ways 

that are very different than ATP (position 460-468 in Supplemental Figure 6B and 6C), while 

vemurafenib and PLX7904 exhibits more global disruption and dampening of dynamics across the whole 

B-Raf binding domain (indicated by widespread negative KL divergence in Supplemental Figure 6B and 

6D).  We note that PLX7904, as the paradox breaking inhibitor, shows substantially less activity near 

the V600 region and activating segment in general, as it was constructed to disrupt overall B-Raf 

structure and affect dimerization, particularly targeting the L505 position, in order to affect the helix 

there. In our study, we find that the region near 490-505 appear to be selectively affected by disruptions 

to dynamics, suggesting a dynamic mechanism for its previously observed hyperactivation paradox 

breaking behavior.    

      As the V600E mutant does not exhibit high levels of functionally conserved dynamics regarding 

ATP (Figure 4B), we would not expect B-Raf inhibitors to exhibit high levels of disruption to conserved 

dynamics upon binding in the V600E mutant. This is confirmed by the observation that the impacts of 

the four B-Raf inhibitors on conserved dynamics were roughly equivalent to that of ATP in the mutant 

background (Figure 5C). Comparative plots of KL divergence in rmsf of the four B-Raf inhibitors in the 

V600E mutants (Supplemental Figure 7) indicated that sorafenib globally destabilized B-Raf upon 

interaction with the ATP binding pocket (Supplemental Figure 7A). This effect was larger toward the C 

terminal regions of the protein. In the mutant background, Vemurafenib appeared to mimic the 

functional effect of ATP binding similar to wildtype, but too a much larger degree, confirming a potential 

indication of its well-known selectivity to mutant B-Raf (Supplemental Figure 7B). Upon its interaction 

with the binding pocket, Dabrafenib induced strong stabilization in the area of the catalytic and 

activation loops, locking B-Raf into its open confirmation and perhaps enhancing its well-known effect as 

an ATP competitor (Supplemental Figure 7C). Alternatively, upon binding the mutant, PLX7904 exhibited 

large destabilizations of the P-loop, ATP binding pocket and the regions extending from the activation 

loop and the region of residue 650-680 that freezes the open confirmation in the absence of the drug 

(Supplemental Figure 7D).  

In summary, the hyperactivation-breaking compound, PLX7904, while also causing similar dynamics 

shifts to the activation loop, fails to produce hardly any dynamic changes that are identified as 

functional according to our machine learning classification method. Thus, it appears that while PLX7904 

is a potent competitive binder to mutant B-Raf, it also may have the benefit of potentially disrupting any 

characteristic dynamics related to ATP binding that could allow stable interactions with other 

components of the MAPK pathway. Our analysis of mutational impacts on functional dynamics also 

support this, and suggest that changes in PLX7904 efficacy caused by mutation are likely independent of 

the normal evolutionary conserved function of B-Raf. Analysis of vemurafenib shows some similarity to 

sorafenib, suggesting that it is also prone to mimic the functional dynamics of ATP binding but with 

softening of the P-loop as well. Similar analysis of dabrafenib indicates a hardening of P-loop dynamics 

and a pattern of less coordinated impact on conserved dynamics that fails to connect the ATP binding 

pocket to the activation loop, supporting our hypothesis that more modern Raf inhibitors are less like 

ATP in their overall effect on functional shifts in B-Raf dynamics during binding. 

Comparison of impacts of drug sensitivity and resistant mutations on B-Raf loop dynamics 
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To further investigate the effect of both genetic and drug class variation on functional B-raf loop 

dynamics, we compared the dynamic impacts on B-Raf for a variety of drug sensitizing and drug 

resistance linked mutations for each of the four Raf inhibitors, sorafenib, vemurafenib, dabrafenib, and 

PLX7904 (Supplemental Table 1, Figure 6). The V600E mutation which sensitizes sofafenib targeting to B-

Raf, was found to more greatly impact loop dynamics when compared to validation runs with no and 

corroborating its large impact on functional dynamics in general. The three remaining drug resistant 

mutations (G464V, G469E, G469V) show less impact, but are collectively larger than validation, 

suggesting that mutations disrupting dynamics of the P loop are key in creating drug resistance to 

sorafenib (Figure 6A). It should be noted that our bootstrapping did not find these differences to be 

significant. In the PLX 7904 hyperactivation breaker, it is noted that while not many drug affecting 

mutations have been discovered, they are mostly congruent with the mutationally intolerant region 

(V600) (Figure 6B). In more modern inhibitors, a survey of 18 drug impacting mutations does not show 

any clear trend except that mutational impacts are significantly largest in regions affecting either the P-

loop or the activation loop (Figure 6C and 6D). Mutations affecting dabrafenib function also appear to be 

largely confined to P-Loop and activation loop, with the exception of L514V, a site whose side-chain 

actively engages ATP during normal B-Raf function.   

Phylogenetic analysis of V600E sensitivity regarding B-Raf loop dynamics 

A minimum evolution tree (Figure 7A) and maximum likelihood tree (supplemental Figure 8) was used to 

identify protein level variants for tetrapod (= human), ray-finned fish, and insect. The wildtype genetic 

backgrounds incorporating 9 amino acid replacements (fish) and 95 replacements (insect) show no 

elevated dynamic impacts over the validation run (wildtype tetrapod). However, V600E/A600E mutants 

both demonstrate elevated disruption of conserved ATP binding dynamics (Figure 7B) indicating that B-

Raf sensitivity to this mutation likely has an ancient Eukaryotic origin. The very large increase in dynamic 

impact of V600E in ray-finned fish over that of A600E in insects also strongly indicates a subsequent 

increase in V600E sensitivity in early jawed vertebrate evolution as well (Figure 7B). Local mapping of 

these impacts (Figure 7C) indicates involvement of all three functional regions (P-loop at position 13-25, 

ATP binding pocket at position 60-100, and activation loop at position 153-190) in the functional 

evolution of this sensitivity.  

Discussion  

Given their involvement in a variety of cellular processes, protein kinases, specifically serine/threonine 

kinases play a role in all of the major cancers. Many serine/threonine kinases have altered expression in 

tumors (Capra et al., 2006). Given that this class of enzyme is a proven putative and attractive target for 

the development of cancer therapies, our study of the function and evolution of the molecular dynamics 

of the serine/threonine kinase B-Raf has the potential to guide future studies and experiments aimed at 

elucidating efficacy and rationale design of therapeutics. Through our novel high performance 

computing approach to machine learning applied to comparative functional molecular dynamics 

simulations, we have demonstrated that ATP binding to the CR3 domain of B-Raf protein induces 

evolutionarily functionally conserved changes in dynamics that physically connect ATP binding pocket 

with both the P-loop and activation segment. The region just downstream of the mutation intolerant 

valine codon 600 is especially affected in its dynamics by ATP binding remotely on the structure of the 

protein KD. The V600E mutation massively disrupts these evolutionary conserved shifts in dynamics that 

are obviously a key complex functional feature of BRAF signaling and MAPK regulation.  
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Hyperactivation inducing drugs, especially the first generation drug sorafenib, appears to mimic 

functionally conserved dynamics of natural ATP binding function in the CR3 domain, inducing almost the 

same spatial pattern of functionally conserved protein dynamics in our simulations as ATP itself. 

Vemurafenib and dabrafenib show less of this tendency, but still induce functional dynamics in the 

region joining the ATP binding pocket to the P-loop and activation loop segment of B-Raf. In contrast, 

the hyperactivation breaking drug PLX7904 shows almost no such propensity for mimicry of dynamics of 

the ATP agonist. Our survey of single amino acid replacements most affecting patient drug sensitivity or 

resistance to the four inhibitors indicates that mutations impacting the three hyperactivation inducing 

drugs (i.e. sorefenib, vemurafenib and dabrafenib) appear to target functionally conserved aspects of P-

loop and activation loop dynamics. This might be expected under a somatic mutation-selection regime 

induced by therapeutic treatments of tumors where functional B-Raf dynamics are still potentially in 

play, albeit likely subverted into a malfunctional state from the standpoint of the patient. However, 

PLX7904 currently has very few known sensitizing or resistant mutations, an observation that may 

reflect lack of experimentation with the new compound, but may also prove consistent with our 

demonstration that it largely avoids inducing the same sort of dynamic changes as ATP upon binding the 

same location.  

Finally, our molecular evolutionary study, indicates that B-Raf sensitivity (i.e. mutational 

intolerance) to V600E has a likely ancient origin, perhaps as old as the Raf kinase protein family itself. 

However, the sensitivity of functionally conserved B-Raf dynamics to V600E, appears to have greatly 

increased sometime during early jawed vertebrate evolution, as represented by extant sequences across 

all modern ray-finned fishes. As a modulator of multicellular growth, B-Raf likely has origins in early 

eukaryotes, however poor alignment quality to putative orthologs in C. elegans and S. cerevisiae 

prevented us from exploring this possibility further.  

Conclusion 

We propose that functional dynamic mimicry (FDM), as observed here in B-Raf inhibitors, is an 

important risk factor to consider in future rational drug design. This an especially important 

consideration when targeting sites of natural agonists involved in signal activation in pathways like 

MAPK which are typically downregulated after early embryonic development, and a subsequently 

problematic in all cancers. Pharmaceuticals that avoid FDM while effectively targeting and binding active 

sites of proteins in these pathways, are most likely disrupting the functional dynamics of protein 

domains to the extent that they are no longer recognized by the pathways in which they normally 

participate. In the case of pathways downregulated after early development, this affect is ideal, as it 

destroys signal transduction. Our computational software (Babbitt et al., 2019, 2018b) can allow for 

inexpensive screening against unintended effects of FDM, potentially producing better patient products 

while saving pharmaceutical industry wasted time, effort and money in preclinical development and 

clinical trial. We also conclude that a more evolutionary and biophysical perspective around complex 

problems like FDM that are potentially linked to naturally evolved tolerances to protein mutation are 

greatly needed in future biomedical research. This cannot be easily addressed by the combination of 

DNA sequence-based bioinformatics and cell/animal-based experimental research alone. Proteins are 

nanometer sized machines operating in the complex context of soft matter dynamics. They are often 

imperfect in their interactions with other proteins and incompletely optimized in terms of their 

functional evolution. The development of modern drug therapies could benefit by embracing a more 
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functional evolutionary perspective of putative protein targets in addition the more automated and 

comprehensive high-throughput exploration of small molecule space currently underway. B-Raf’s 

apparently ancient intolerance to position 600 mutation along with its clear and singular role in tumor 

progression and drug resistance might imply that evolution has had ample enough time to explore 

protein space near this site, with no success in finding a more robust solution to MAPK regulation. But it 

also implies that perhaps it is time for humanity to consider re-engineering somatic protein targets to 

better tolerate existing therapeutics and common mutations, rather than to endlessly search through 

variations of small molecule drugs that are not ever guaranteed to potentiate cures.     

Figure Captions 

Figure 1. Overview of role of BRAF in mitogen-activated protein kinase pathway (MAPK) pathway. 

Growth factor/s binds to the receptor (EGFR) on the cell surface which leads to phosphorylation and 

subsequent activation. The scaffold proteins (GRB2 and SOS) facilitate the removal of GDP from RAS. RAS 

then binds GTP which leads to activation. Activated RAS undergoes a conformational change which leads 

to the phosphorylation and activation of BRAF, MEK and ERK. Activated ERK is shuttled to the nucleus 

where it is involved in recruiting transcription factors involved in the up regulation of genes involved in 

cell proliferation, cell survival, cell motility and cell invasion. The BRAF V600E mutation allows for 

constitutive activation of BRAF to facilitate downstream signaling through MEK and ERK circumventing 

upstream activation/regulation. 

Figure 2. Overview of machine learning method for detecting functionally conserved B-Raf dynamics 

and drug class and genetic variant impacts on the conserved dynamics. (A) Pre-classified machine 

learning training sets are generated by large ensembles of molecular dynamic simulation of wildtype B-

Raf in its two functional states; ATP bound and unbound. (B) A stacked machine learning model to 

identify functionally conserved molecular dynamics over two independent but identically prepared 

molecular dynamic validation runs on ATP bound wild type B-Raf. Position dependent machine learning 

performance is evaluated over time and plotted for each for each run machine learning method. The 

machine learning methods are listed in the center legend. Note that performance values close to 0.5 

indicate random classification (i.e. no preference for either 0 or 1 classifications over time). A canonical 

correlation analysis of machine learning performance between the two validation runs indicates where 

the local classifications of dynamic functional states (i.e. representing ATP bound or unbound dynamics) 

are consistently repeated or ‘functionally conserved’. (C) Impacts on dynamics are determined by 

deploying the learner on molecular dynamic simulations of variants and then calculating the relative 

entropy between the dynamics of each variant and the validation runs (from B). 

Figure 3. Effect of V600E mutation on rapid dynamics of ATP binding interaction in human BRAF kinase 

domain. Signed symmetric Kullback-Leibler (KL) divergences (i.e. relative entropy) in ATP-bound and 

unbound empirical distributions of local root mean square fluctuation (i.e. dFLUX) derived from large 

ensembles of nanosecond scale molecular dynamics simulations (300x0.5ns) are shown color mapped on 

the (A) ATP-docked wild type BRAF (ATP docked to PDB ID 1uwh receptor) and the (B) V600E mutant 

BRAF structure (ATP docked to PDB ID 1uwj receptor) with red indicating amplified dynamics upon ATP 

binding and blue indicating stabilized dynamics upon ATP binding. Plots of signed symmetric KL 

divergence for (C) wild type BRAF and (D) V600E mutant BRAF are also shown. Positive KL divergence 

indicates amplified dynamics upon ATP binding while negative values indicates stabilization upon 

binding. Colored circled regions (A-B) and bars (C-D) indicate the P-loop (red), ATP binding pocket (blue), 
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catalytic loop (green) and a highly flexible activation loop (yellow). Yellow arrows also indicate location 

of the start of the activation loop and highlight a highly pronounced increase in flexibility of this region 

during ATP binding in wild type BRAF that contrasts a dysfunctional stabilization of this region and areas 

downstream in the V600E mutant. 

Figure 4. Effect of V600E mutation on functionally conserved dynamics of ATP binding interaction in 

human BRAF kinase domain. (A) In wild type BRAF, the machine learning model identifies functionally 

conserved (i.e. correlated) molecular dynamics that clearly connect the ATP binding pocket (blue arrow; 

ATP structure is tan) to the activation loop (yellow arrow), p loop (red arrow) and surrounding structures. 

Significantly conserved local dynamic regions determined via Wilk’s lambda for the canonical correlation 

analysis are shown in dark gray. A 20 residue sliding window was used to the statistic. (B) In V600E 

mutant BRAF, the functionally conserved dynamics of ATP binding are almost completely absent. The 

local R values and significance are also plotted for (C) wild type BRAF and (D) V600E mutant BRAF. Again 

dark gray indicates regions of significant conservation.   

Figure 5. Comparisons of the effects of four BRAF inhibitors on functionally conserved dynamics of ATP 

binding interaction in human BRAF kinase domain. (A) Significantly functionally conserved dynamic 

regions are shown in dark gray for each of four BRAF inhibitors. The first generation inhibitor sorafenib 

seems to closely mimic ATP in its effect on wild type BRAF dynamics, while the hyperactivation paradox 

breaker, PLX7904 seems to mimic functional dynamics of ATP binding the least. Arrows indicate the ATP 

binding pocket (blue arrow; ATP structure is tan), the activation loop (yellow arrow),and the p loop (red 

arrow). (B) the sum of relative impacts on conserved dynamics across the wild type BRAF protein also 

indicates that sorafenib is most similar to ATP in its effect on wild type dynamics, while PLX7904 is least 

similar, with much more global disruption of conserved dynamics. (C) The same analysis conducted on 

the V600E mutants indicates that all four inhibitors are similar to ATP their impact on dynamics. Note 

that V600E will likely have eliminated conserved dynamics as in Figure 5B. Plots of the canonical 

correlation analysis are shown in supplemental Figure C. Mutual information matrices are shown in 

supplemental Figure D.    

Figure 6. Relative impacts of drug sensitizing and drug resistant mutations on functionally conserved 

binding dynamics in human BRAF kinase domain. (A) The impacts of four known drug sensitizing 

mutations for sorafenib are compared (V600E, G469V, G469E, G464V). (B)The impacts of three known 

drug sensitizing mutations (V600E, V600R, V600D) and one drug resistant mutation (G466E) in PLX7904 

are also compared. (C) The impacts of 18 known drug sensitizing and resistant mutations in vemurafenib 

10 known drug sensitizing and resistant mutations in dabrafenib and are also compared. See Table 1 for 

classifications.  

Figure 7. Comparative functional molecular dynamic analysis of ATP binding in wild type BRAF 

orthologs. Orthology was determined via phylogenetic analysis to derive a (A) minimum evolution tree 

bootstrapped 500 times using the Kimura 2 parameter model with Gamma correction for multiple hits 

and invariant sites. This best model was determined via multi-model inference (BIC, AICc). (B-C) With a 

goal of determining when V600E sensitivity first arose in this phylogeny, we compare the conserved 

region impacts of ATP binding on BRAF dynamics in wild type and V600E mutated genetic backgrounds 

of ray-finned fish and insect ortholog models after training on the functional ATP binding in wild type 

tetrapod (i.e. human) background. These impacts are shown both (B) globally and (C) locally, where 
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regions of low mutational tolerance are observed corresponding to the P-loop, ATP binding pocket, and 

activation loop and adjacent downstream residues (shaded yellow).  

Table 1. Genetic variants affecting drug activity of four Raf inhibitors (sorafenib, vemurafenib, 

dabrafenib, PLX7904).  

drug disease mutation response source 

sorafenib breast cancer 
 

G464V sensitivity http://www.ncbi.nlm.nih.gov/pubmed/18519791 

sorafenib cutaneous melanoma 
(disease) 
 

G469E sensitivity http://www.ncbi.nlm.nih.gov/pubmed/18794803 

sorafenib non-small cell lung 
carcinoma (disease) 
 

G469V sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27388325 

sorafenib thyroid cancer 
 

V600E sensitivity http://www.ncbi.nlm.nih.gov/pubmed/18682506 

PLX7904 melanoma (disease) 
 

G466E resistance http://www.ncbi.nlm.nih.gov/pubmed/27523909 

PLX7904 melanoma (disease) 
 

V600D sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27523909 

PLX7904 melanoma (disease) 
 

V600E sensitivity http://www.ncbi.nlm.nih.gov/pubmed/26466569 

PLX7904 melanoma (disease) 
 

V600R sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27523909 

vemurafenib cancer G464E resistant http://www.ncbi.nlm.nih.gov/pubmed/29320312 
 

vemurafenib cancer G464R resistant http://www.ncbi.nlm.nih.gov/pubmed/26343582 

vemurafenib melanoma (disease) 
 

G466E resistant http://www.ncbi.nlm.nih.gov/pubmed/27523909 
 

vemurafenib cancer G469L conflicting https://www.ncbi.nlm.nih.gov/pubmed/2620045
4 

vemurafenib cancer G469V resistant http://www.ncbi.nlm.nih.gov/pubmed/26343582 

vemurafenib cancer F595L resistant http://www.ncbi.nlm.nih.gov/pubmed/26582644 

vemurafenib colorectal cancer G596R resistant http://www.ncbi.nlm.nih.gov/pubmed/22180495 

vemurafenib cancer L597Q resistant http://www.ncbi.nlm.nih.gov/pubmed/26343582 
 

vemurafenib melanoma (disease) 
 

L597R sensitivity http://www.ncbi.nlm.nih.gov/pubmed/23715574 

vemurafenib cancer L597S sensitivity http://www.ncbi.nlm.nih.gov/pubmed/22798288 

vemurafenib cancer L597V resistant http://www.ncbi.nlm.nih.gov/pubmed/26343582 

vemurafenib cancer G606E No benefit http://www.ncbi.nlm.nih.gov/pubmed/29320312 
 

vemurafenib cancer K601N resistant http://www.ncbi.nlm.nih.gov/pubmed/26343582 
 

vemurafenib cancer K601T resistant http://www.ncbi.nlm.nih.gov/pubmed/26343582 
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vemurafenib melanoma (disease) 
 

V600D sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27523909 

vemurafenib melanoma (disease) 
 

V600E sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27297867 

vemurafenib melanoma (disease) 
 

V600K sensitivity http://www.ncbi.nlm.nih.gov/pubmed/20149136 

vemurafenib melanoma (disease) 
 

V600R sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27523909 

dabrafenib melanoma (disease) 
 

G466E resistant http://www.ncbi.nlm.nih.gov/pubmed/27523909 

dabrafenib non-small cell lung 
carcinoma (disease) 
 

G469A sensitivity http://www.ncbi.nlm.nih.gov/pubmed/29903896 

dabrafenib breast cancer 
 

G469V No benefit http://www.ncbi.nlm.nih.gov/pubmed/24885690 
 

dabrafenib breast cancer 
 

L514V resistant http://www.ncbi.nlm.nih.gov/pubmed/29880583 

dabrafenib melanoma (disease) 
 

L597S sensitivity http://www.ncbi.nlm.nih.gov/pubmed/29903896 

dabrafenib melanoma (disease) 
 

V600D sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27523909 

dabrafenib melanoma (disease) 
 

V600E sensitivity http://www.ncbi.nlm.nih.gov/pubmed/20818844 

dabrafenib melanoma (disease) 
 

V600K sensitivity http://www.ncbi.nlm.nih.gov/pubmed/21343559 
 

dabrafenib melanoma (disease) 
 

V600M sensitivity http://www.ncbi.nlm.nih.gov/pubmed/23031422 

dabrafenib melanoma (disease) 
 

V600R sensitivity http://www.ncbi.nlm.nih.gov/pubmed/27523909 
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Appendix A 

Supplementary information on the four inhibitors: The four B-Raf inhibitors (BRAFi) discussed in this 

manuscript are all small molecule compounds that are FDA approved for use: 1. in mutated BRAF in 

metastatic melanoma (Vemurafinib, Dabrafenib) or 2. in other carcinomas (Sorafenib, for advanced 

renal cell, thyroid, and hepatocellular carcinomas) as a more general kinase inhibitor (active against 

BRAF, VEGFR, etc).  PLX7904 is in preclinical development. 

Sorafenib (also, Nexavar, BAY 43-9006, MW: 464.8 g/mol): A member of the class of phenylureas that 

acts as a kinase inhibitor and angiogenesis inhibitor.  It is nonspecific, and does not distinguish 

between WT and mutant B-Raf forms, and has higher specificity for C-Raf compared to B-Raf.  It is 

known to potently induce hyperactivation, and leads to rapid development of drug resistance. 

Vemurafinib (also, PLX4032; Zelboraf; MW: 489.9 g/mol): An ATP-competitive kinase inhibitor selective 

for B-Raf V600E.  It functions to decrease signaling through the MAPK pathway by inhibiting the kinase 

domain of mutant BRAF, but is known to also induce hyperactivation in WT BRAF.  Shows increased 

specificity for B-Raf V600E relative to B-Raf WT or C-Raf. 

Dabrafenib (also, Tafinlar, GSK2118436; 519.6 g/mol): An ATP-competitive kinase inhibitor selective for 

B-Raf V600 (E/K/R) mutations, which acts to induce inhibition of phosphorylated extracellular signal-

regulated kinase (ERK). Often given in combination with MEK inhibitor Trametinib to achieve a more 

favorable resistance profile. 

PLX7904 (also PB04; MW: 512.5 g/mol): A selective B-Raf kinase inhibitor known to be a potent paradox-

breaker. able to efficiently inhibit activation of ERK1/2 in mutant BRAF melanoma cells but does not 

hyperactivate ERK1/2 in mutant RAS-expressing cells.  Was designed to interact with position 505 in B-

Raf, shifting the Raf dimer interface, and cause inhibition via long-range structural alterations.  Along 

with analogue PLX8394, is in development as BRAFi capable of uncoupling RAF blocking and MAPK 

pathway activation. 
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