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Abstract

As exome and whole-genome sequencing cohorts grow in size, the data they produce
strains the limits of current tools and data structures. The Variant Call Format (VCF)
was originally created as part of the 1,000 Genomes project. Flexible and concise
enough to describe the genetic variations of thousands of samples in a single flat file, the
VCF has become the standard for communicating the results of large-scale sequencing
experiments. Because of its static and text-based structure, VCFs remain cumbersome
to parse and filter in an interactive way, even with the aid of indexing. Iterating on
previous concepts, we propose here a pipeline for converting VCFs to simple SQLite
databases, which allow for rapid searching and filtering of genetic variants while
minimizing memory overhead. Code can be found at
https://github.com/tkoomar/VCFdbR

Introduction 1

The Variant Call Format is a well-specified and flexible way to describe genetic variants 2

identified by sequencing, along with annotations describing those variants. These 3

annotations are a particularly powerful feature of the VCF, and set it apart from more 4

efficient formats of expressing genetic variants, like PLINK and BGEN. Unfortunately, 5

despite advances in processing VCFs [3] as a flat text file, searching and filtering 6

variants in a VCF based on its annotations is slow and cumbersome. 7

When studying genetics of larger cohorts, it is often necessary to begin with 8

exploratory analyses – which require rapid iteration and changes to filtering schemes. 9

Data from these studies are often so large that they cannot be read directly into RAM, 10

and writing subsets of variants to a hard disk repeatedly is slow and introduces 11

overhead that does not scale well. Therefore, faster methods of identifying variants of 12

interest from sequencing data are needed, such as databases or datastores. 13

For example, the GenomicsDB format, a datastore developed by GATK team and 14

Intel [5], is fast, scaleable and efficient. However, it is currently only widely used for the 15

merging of gVCFs produced by GATK, and much work is still needed to make it a 16

standard that can replace the VCF. The Hail data-analysis library [10] does a good job 17

of implementing GenomicsDB, but attempts to be an end-to-end solution. This requires 18

learning its own interface and is not compatible with the tools many computational 19

geneticists already use – particularly R [9] and Bioconductor [4] packages. 20

The Gemini database [8] is a somewhat more flexible alternative that takes the 21

approach of converting a VCF to an SQLite database that can be manipulated with any 22
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suitable interface. SQLite is a single-file database that does not require a server, making 23

it suitable for working on high performance computing clusters that are available and 24

widely used by computational geneticists in academic institutions. However, Gemini 25

compresses genotypes to save space, which slows down queries. Users can opt not to 26

compress genotypes with Gemini, but this creates 1 column per sample (i.e. ’wide’ 27

format), which can rapidly exceed the column limit of an SQLite database. Additionally, 28

this is not scaleable to very large cohorts which might result in databases which violate 29

file system limits on the size of single file. 30

Many researchers would benefit from a method for converting a VCF to an SQLite 31

database that is suitable for large cohorts. This requires genotypes to be stored in the 32

more database-friendly ’long’ format as well as an option to save genotypes to external 33

files to avoid hitting single-file size limits. Such a method should also avoid operations 34

that require writing intermediate files to disk and the requirement to learn bespoke 35

interfaces. The R language is widely used by computational geneticists, and has the 36

excellent general-purpose SQL database interface provided by the dbplyr package [11]. 37

Additionally, R is under-served in this realm, as both Gemini and Hail utilize 38

Python-based interfaces. For these reasons, we propose a relatively simple pipeline for 39

converting a VCF to an SQLite database, which we call VCFdbR. 40

The VCFdb Table Schema 41

Overview 42

SQLite is a server-less, single-file relational database composed of one or more ’tables’, 43

which may be linked by shared ’keys’. In a VCFdb created by VCFdbR, this ’key’ is a 44

integer that uniquely identifies each variant in the VCF. Specific columns within a given 45

SQLite table may also be indexed, so that they may be searched rapidly. 46

Information describing each variant of a VCF is divided among up to three tables of 47

a VCFdb. Core information and INFO columns are stored in a table called 48

variant_info. If annotations produced by the Variant Effect Predictor (VEP) [6] are 49

present, they are in a table called variant_impact. Genotypes are stored in a 50

variant_geno table if the database is created in ’Table-GT mode’, or as individual files 51

in a separate directory if created in ’File-GT mode’. Table-GT databases are simpler, 52

producing a single portable database file. File-GT databases require care to move after 53

creation, but allow for a database to be created for tens or hundreds of thousands of 54

individuals (assuming sufficient disk space). 55

Core Tables and Files 56

variant info The variant_info table contains all of the core information that 57

uniquely describes a variant. The columns that appear here depend on the annotations 58

provided in the input VCF. To save disk space, it is recommended to remove all 59

unneeded INFO columns from the VCF, e.g. with bcftools annotate --remove. 60

Each variant appears in this table exactly once. 61

Table 1. variant info table schema

variant id chr start end ref alt qual filter an ac ...
1 chr22 16050075 16050075 A G 100 PASS 50 8 ...
2 chr22 16050115 16050115 G A 100 PASS 50 12 ...
... ... ... ... ... ... ... ... ... ... ...

961 chr22 16136747 16136751 TATTA T 100 PASS 50 22 ...
... ... ... ... ... ... ... ... ... ... ...
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variant impact The variant_impact table is created if the input VCF has been 62

annotated with VEP (i.e. it has an INFO field named CSQ). This information is placed 63

into its own table because each variant may have multiple effects or affect multiple 64

genes/transcripts. Thus, each variant may appear in variant_impact multiple times.

Table 2. variant impact table schema

variant id consequence impact symbol ...
840 upstream gene variant MODIFIER LA16c-60H5.7 ...
840 intron variant MODIFIER NBEAP3 ...
840 non coding transcript variant MODIFIER NBEAP3 ...
... ... ... ... ...

65

Genotypes 66

Table-GT: variant geno When a VCFdbR is run in ’table’ mode, the resulting 67

Table-GT database will have a table called variant_geno. Each entry of this table 68

describes the genotype (as dosage) of one individual for one variant, along with 69

additional columns for all FORMAT fields from the VCF. With a moderate to large 70

number of samples, this portion of the database takes up the most disk space. To save 71

substantial space, it is recommended to remove all unneeded FORMAT fields from the 72

VCF before database creation, e.g. with bcftools annotate --remove!. If the input 73

VCF contains n samples and m variants, then this table will have rows equal to n×m. 74

Table 3. variant geno table schema

variant id sample gt gt raw gq dp ...
840 HG00096 0 0|0 35 20 ...
840 HG00097 2 1|1 19 14 ...
840 HG00098 1 0|1 47 40 ...
... ... ... ... ... ... ...

File-GT: geno directory When a VCFdbR is run in ’table’ mode, the resulting 75

FILE-GT database will not have a variant_geno, instead one file per variant will be 76

saved to a write-protected directory. The absolute path to these files will be saved to a 77

geno column on the variant_info table. These files may be read in to R with the 78

read.rds() or read_rds() commands, and otherwise have an identical layout to the 79

genotypes of a Table-GT database. This separation of the genotypes from the 80

annotations (which remain in the database) makes it possible to move the database to a 81

faster but smaller disk for quicker filtering (e.g. a local SSD) while keeping the 82

genotypes on a larger be slower disk (e.g. a network-connected hard disk). 83

Table 4. variant info table schema for a File-GT database

variant id chr start ... geno
1 chr22 16050075 ... /path/prefix-genos/1.rds
2 chr22 16050115 ... /path/prefix-genos/2.rds
... ... ... ... ...

961 chr22 16136747 ... /path/prefix-genos/961.rds
... ... ... ... ...
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Additional Table and Files 84

Miscellaneous Tables Additional tables will be created based on the full content of 85

the VCF header. For example, a sample table will list all samples, while an INFO table 86

will contain the descriptions for each INFO column provided in the input VCF. 87

gene map If VEP annotations were provided on the input VCF, an additional 88

gene_map table will be produced in the final database. This is a terse mapping of all of 89

the genes and genomic elements which actually appear in the database. This table can 90

be useful for identifying the universe of genes or other annotations which are present in 91

the database. 92

Table 5. gene map table schema

symbol source canonical ... feature type
LA16c-4G1.3 Ensembl YES ... Transcript

NBEAP3 Ensembl YES ... Transcript
... ... ... ... ...

Genomic Ranges After database creation, VCFdbR creates a GenomicRanges 93

representation of each variant. The GenomicRanges data structure is the bedrock of 94

many Bioconductor genomics packages. This file can be used to identify variants of 95

interest based on annotations external to the database, or even to generate new columns 96

to be added to the variant_info table. This is a minimal representation of the 97

variants, and only includes the position, REF/ALT alleles, and possibly the path to the 98

corresponding variant files (for File-GT databases only). 99

Database Creation 100

Input Requirements 101

Input VCFs should conform to the format standard, be gzipped/tabixed indexed, and 102

must have multi-allelic sites split, e.g. with 103

bcftools norm -m - 104

A VCF which has been annotated with VEP should be passed through 105

sed /^#/\! s/;;/;/g 106

to ensure proper parsing of the annotations when read into R. Finally, VCFdbR requires 107

an up-to-date version of R, preferably greater than version 3.5. Specific package 108

requirements can be found on the GitHub repo. 109

Pipeline Overview 110

To accommodate RAM limits, VCFdbR operates by reading in chunks of the input VCF 111

and writing to the database iteratively. To identify chunks of variants, minimal 112

information from the VCF is read into R with the VariantAnnotation [7] package, and 113

GenomicRanges corresponding to 1,000 variants each are written to a file. The number 114

of variants per chunk can be reduced based on memory constraints at the expense of 115

some processing time. 116

The header of the VCF is then parsed and written to the miscellaneous tables of the 117

database. For each chunk, the VCF’s INFO field is then parsed and searched for a CSQ 118
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field. Then, the genotypes are parsed, converting them to ’long’ format. Once the data 119

INFO, CSQ and FORMAT are fully parsed, they are appended to the corresponding 120

database tables (variant_info, variant_impact and variant_geno, respectively). If 121

operating in File-GT mode, the parsed FORMAT fields are written to the file system 122

instead of the database. 123

After all VCF chunks have been processed, the database tables are indexed. 124

Indexing always includes the variant_id, and new indexes can be added by the user at 125

any time. Finally, the GenomicRanges representation of the database is written to disk 126

and the gene_map table is created (if the input VCF had VEP annotations). 127

Benchmarks 128

Database Creation 129

For benchmarking, three databases were prepared from phase 3 of the 1,000 Genomes 130

Project [1]. First, a File-GT database from the whole genome sequences of all 2,504 131

subjects from the project was created. Then, both File-GT and Table-GT databases 132

were created from the exome-captured variants for first 1,000 samples. A summary of 133

the time required for each of the major steps of database creation (chunking, building, 134

and indexing) can be seen in Table ??. All databases were created with a chunk size of 135

10,000, and the File-GT databases were written with four threads. This – and all other 136

benchmark steps – were carried out on server-grade compute nodes and NFS-networked 137

disks on the high performance computing cluster at the University of Iowa. 138

Dataset Samples Variants VCF Size Mode Componant Size Step Time

exome 1,000 1,417,043 693 MB table

chunk 2 min
database 22.6 GB build 1 hr 32 min
geno files index 20 min

total 22.6 GB total 1 hr 54 min

exome 1,000 1,417,043 693 MB file

chunk 2 min
database 2.8 GB build 2 hr 3 min
gene files 34.4 GB index 12 min

total 37.2 GB total 2 hr 17 min

genome 2,504 85,211,481 29.7 GB file

chunk 2 hr 19 min
database 64.8 GB build 218 hr 8 min
geno files 2.55 TB index 5 hr 56 min

total 2.61 TB total 225 hr 23 min

Variant Filtering 139

Because the filtering of variants based on annotations of interest occurs entirely within 140

the database, it can be extremely fast. This requires all annotations used for filtering to 141

be indexed, but is generally worth the time and small increase in database size since the 142

time to query an indexed column is on the log scale. 143

To illustrate this, the time to filter variants to those with an alternate allele 144

frequency less than 5% and within each gene in both the genome and exome databases 145

prepared from 1,000 Genomes Phase 3 is plotted in Figure 1. Although this requires 146

filtering the variants on both the variant_impact (for gene) and variant_info (for 147
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alternate allele frequency) tables, genes with 10,000 qualifying variants typically take 148

less than 1.5 seconds to identify and read into memory (Figure 1.B). 149
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Figure 1. The time to identify variants of interest based on indexed columns
is nonlinear with the number matching variants. The filtering here is performed
on both numeric (allele frequency) and text (gene name) columns in both exome data
(A) and whole-genome (B) data.

Because this example performs no filtering based on genotypes or other FORMAT 150

fields, there is no effective difference between File-GT and Table-GT databases. If 151

substantial filtering is needed on FORMAT fields, there is a significant increase in the 152

speed of filtering for Table-GT databases (provided the variant_geno table is 153

appropriately indexed). 154

Genotype Pulling 155

Though computationally trivial, reading genotypes into memory is by far the most I/O 156

intensive part of working with a VCFdb. This process can be sped up somewhat 157

through the use of multiprocessing across more than one processor core. However, disk 158

and network limitations mean that using more threads may have diminishing returns 159

even before the principles of Amdhal’s Law [2] become relevant. 160

To illustrate this, random subsets of variants from each of the three 1,000 Genomes 161

databases described above were generated, ranging in size from 50 to 5,000 variants. 162

The genotypes for these variant sets were then read in to memory using a range of cores 163

for multiprocessing. The time taken for each subset of variant across each database and 164

number of multiprocessing cores is illustrated in Figure 2. On the particular hardware 165

used for these benchmarks, there was little improvement in speed when using more than 166

4 threads to read genotypes simultaneously, and virtually no difference between using 8 167

and 16 threads. This indicates that disk or network speeds likely saturated when using 168

around 4 cores. Performing this sort of benchmarking is recommended when running on 169

new hardware to ensure resources are used as efficiently as possible. 170
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Figure 2. Reading genotypes with many simultaneous processes has limited
benefit. In benchmarks of (A): a Table-GT exome database with 1,000 samples, (B): a
File-GT exome database with 1,000 samples, and (C): a File-GT whole genome database
with 2,504 samples, speed gains from using more than 4 simultaneous processes is
minimal.
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