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ABSTRACT12

Despite continued efforts into improving biosecurity protocol, Campylobacter continues to be detected in the majority of

commercial chicken flocks across Europe. Using an extensive data set of Campylobacter prevalence within a chicken breeder

flock for over a year, multiple Bayesian models are presented to explore the dynamics of the spread of Campylobacter in

response to seasonal variation, species-specificity, bird health and total infection prevalence. It was found that birds within

the flock varied greatly in their response to bacterial challenge, and that this phenomena had a large impact in the overall

prevalence of different species of Campylobacter. Campylobacter jejuni appeared more frequently in the summer, while

Campylobacter coli persisted for a longer duration, amplified by the most susceptible birds in the flock. Our study suggests that

strains of Campylobacter that appear most frequently likely possess no demographic advantage, but are instead amplified due

to the health of the birds that ingest it.

13

Introduction14

Poultry meat has been decisively attributed as the leading infection route for campylobacteriosis in humans1. With an estimated15

450,000 cases a year in the UK, approximately ten percent of which result in hospitalisation2, Campylobacter presents a16

significant public health challenge, and an estimated £50 million economic burden to the UK3. An investigation by Public17

Health England has revealed the extent to which Campylobacter spp. dominate the commercial poultry industry: seventy-three18

percent of supermarket chicken carcasses were found to contain Campylobacter and seven percent of the outer packaging was19
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similarly contaminated4. As such, reducing the number of infected broiler flocks (chickens grown specifically for meat) at20

slaughter presents itself as an urgent endeavour, so as to prevent the spread of the bacteria to human hosts5.21

22

Current attempts at tackling outbreaks of Campylobacter have focused around on-farm biosecurity measures, however,23

little impact has been seen in reducing outbreak incidence6. This is predominantly due to the aggressive rate of proliferation24

once Campylobacter has entered a flock, and further complicated by uncertainty in the exact route of primary infection.25

Specifically designed prevention methods are also marred by genetic variation and plasticity of Campylobacter spp.7.26

27

Once an initial bird has become infected with Campylobacter, full colonisation of the flock occurs very rapidly89. From28

the introduction of one infected bird, it can take only a single week for an entire broiler flock to become infected10. The29

bacteria are spread via the faecal-oral route. After becoming infected, the newly-infected host broiler spends a brief period in a30

non-infectious incubation period, before excreting the bacteria in its faecal and cecal matter. Surrounding susceptible broilers31

are then exposed to this via coprophagy11.32

33

Understanding of the spread of Campylobacter is hindered primarily by a lack of knowledge surrounding the transmis-34

sion dynamics of the bacteria at farm level. Multiple strains of Campylobacter are found to simultaneously inhabit broiler35

flocks12, with some strains appearing to dominate the flock at different points in time1314. It has been theorised that these36

dynamical behaviours are driven by the appearance of demographically superior strains that can outcompete other strains15
37

within the gut. However, another study suggests that strains are instead lost or transmitted randomly, regardless of their38

genotypic differences16. Indeed recent mathematical modelling approaches have demonstrated that stochastic simulations can39

effectively capture the broad dynamical differences between strains of equal demographic ability17.40

41

An area of more recent study is the role played by ‘super shedders’, birds who consistently shed high amounts of Campylobacter42

in their faeces, in the transmission dynamics of Campylobacter within a flock. The impact of ‘super shedders’ has been well43

documented as a key factor in the rapid spread of Salmonella throughout chicken flocks1819, and yet the impact on the dynamics44

of Campylobacter spread within broiler flocks is not well-studied. These ‘super-shedders’ have been found experimentally to45

have fewer circulating heterophilic cells, but this does not appear to be a genetically acquired trait, nor the result of differences46

in adaptive immunity20. The presence of such super shedders in broiler flocks has been observed in an experimental study47

measuring Campylobacter prevalence21, and it is reasonable to assume that this could have significant implications for the48

transmission dynamics of a flock.49

50

Some factors affecting transmission are, if not understood, at least well-reported. The effect of seasonal variation on both the51

carriage rate, and number of Campylobacter found in the caeca of infected chickens has been reported22, with an increase often52
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noticed in the spring or summer. The exact timing of these peaks however is often varied between (and within) countries23, and53

some experimental work has been unable to detect such an effect24. Less investigated is the impact of different species of Campy-54

lobacter competing within a flock. C. jejuni, the most common species, has been found in approximately 90% of British chicken55

flocks by Jorgensen et al. (2011), compared with C. coli appearing in 10% of flocks25. This ratio has been similarly reported by56

other studies in broiler flocks26, with species rarely both being present in a flock at the same time. It is as yet not understood57

whether this is due to established strains suppressing new strains from emerging, demographic differences, or the short-lifespan58

of commercial broiler flocks not providing enough time for multiple species to colonise a flock. Under lab conditions, C. coli59

has been shown to have lower growth rates, motility, and invasiveness than C. jejuni27, potentially explaining its rarer ap-60

pearance in chicken flocks. There is also some suggestion that C. coli is more commonly isolated from older, free-range, birds28.61

62

This study explores the impact of multiple factors on the transmission of multiple sequence types (STs) of Campylobac-63

ter within a flock of broiler breeders, the birds used to breed the chickens then used for meat production. We use a robust64

data set from Colles et al. (2015)29 monitoring the infection prevalence in a flock of birds across 51 weeks. Through a65

Bayesian modelling approach we show the range of receptiveness to infection throughout the flock, and highlight the role that66

more-susceptible, ‘super-shedder’, birds play in driving disease. The impact of seasonal variation is also investigated, and67

specific attention is given to differences between species of Campylobacter, so as to understand how certain strains persist at68

higher levels throughout the flock. Seven exploratory models are presented, each investigating a specific research question,69

analysing the transition probabilities at both a flock-wide, and individual level.70

71

A Bayesian approach is considered for this study due to the methodology’s innate strengths in analysing incomplete data30, and72

enabling efficient inference of missing data. Numerical computations were carried out using the Just Another Gibbs Sampler73

(JAGS) program31, a Markov chain Monte Carlo (MCMC) sampling program utilising Gibbs sampling. Specifically the model74

was called and analysed within R by using the rjags package32.75

Data76

The field data used for this study was originally presented in Colles et al.29. Within a flock of 500 broiler breeders, 200 birds77

were labelled with leg-rings and monitored for a total of 51 weeks. Each week, 75 unique birds were picked at random from the78

labelled 200, and a swab was taken of the cloacal opening. These swabs were then tested for the presence of Campylobacter79

through standard culture methods, and positive samples were then genotyped by multi-locus sequence typing (MLST) of80

seven house-keeping genes, enabling the sequence type (ST) and species of the Campylobacter isolate to be specified. Further81

experimental details can be found in the original publication29.82

83

As such we build a dataset providing information on real-time evolution of Campylobacter prevalence and diversity throughout84
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the flock. This is shown below in Figure 1, with all positive samples classified by species of Campylobacter.85

Figure 1. Histogram showing the count of positive and negative samples from a breeder flock for different species of
Campylobacter. White ’NA’ counts represent samples that were negative for Campylobacter.

86

Within each species, multiple STs are recorded. In figures 2 and 3 below we plot the five week moving averages of total positive87

samples for each species. Beneath each point we plot a histogram showing how this average is split between the competing STs.88

We notice from figures 2 and 3 that there are more significant STs of C. jejuni than C. coli, despite both species existing at89

roughly equal levels. We also see that C. jejuni appears to peak in the summer, around the August period, coinciding with a dip90

in the population of C. coli STs. Within each species we can observe that different ST populations grow and shrink across91

the study period. For example, within figure 2 we see that the summer peak is dominated by the prevalence of ST 51 and 53,92

however by November/December, this population shrinks, and instead ST 607 rapidly increases in population.93

94

Figures 2 and 3 effectively illustrate the key research questions tackled by this study. Namely, why do some STs seem95

to exist at higher quantities and persevere better than other STs which may die out? Do the dynamical behaviours of species96

and STs correlate to any particular trait? We investigate what mechanisms are dynamically driving these observed differences97
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Figure 2. The five-week rolling average number of positive samples for Campylobacter jejuni, with both the total number
and separate ST averages. STs that appear less than twenty times throughout the entire experiment are amalgamated into a
group "Low Count".

Figure 3. The five-week rolling average number of positive samples for Campylobacter coli, with both the total number and
separate ST averages. STs that appear less than ten times throughout the entire experiment are amalgamated into a group "Low
Count".

5/33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.132191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132191
http://creativecommons.org/licenses/by-nc-nd/4.0/


through querying the probability of chickens transitioning from different infection states using a series of Bayesian models98

presented below.99

Model Development100

In this section we discuss the general methodology behind all of our models. A general step-by-step process to model

formulation is also presented in Box 1. Each model begins by classifying each of the datapoints into certain state labels. For

example, at the simplest level each reading can be classified as either “State 1: Uninfected" or “State 2: Infected”. Other

models may use more states to further distinguish infections by species or ST. After doing this, we are able to convey this

classification data in the form of a matrix S[c, t] where c ∈ {1,2, ...,200} is the index denoting which chicken is considered,

and t ∈ {1,2, ...,51} is the index denoting which week is considered. Therefore each element of S will be a number conveying

the state classification of that particular data point. For example, S[3,7] = 1, would indicate that on week 7, chicken number 3

was classified as state 1; uninfected. Because only 75 of the 200 chickens were tested at random each week, many of these

matrix elements are undefined, and as such are marked as ‘NA’.

Once the matrix is defined, each model uses a Bayesian process to find the transition probabilities between these states.

Formally we seek the matrix π , where πi, j = P(S[m,n] = j | S[m,n−1] = i), for every m ∈ {1,2, ...,200} and n ∈ {2,3, ...,51}.

In short, πi, j is the probability that a chicken moves from state i to state j across a week. The exact choice of how to formulate

the expressions is where our models vary, as different formulations are able to investigate different relationships governing

these transition probabilities. For example, at the simplest level, we could define

π1,1 = α1 (1)

π1,2 = 1−π1,1

π2,1 = α2

π2,2 = 1−π2,1

where we seek to find the values α1 ∈ [0,1] and α2 ∈ [0,1] that best fit the data S. Note that we have bounded πi, j between 0

and 1, as each value represents a probability. Likewise each row of π must sum to 1, as these probabilities cover all transition

possibilities. In the example of equations (1) above, when starting from state 1, one can transition to state 2 (π1,2), or remain in

state 1 (π1,1), hence π1,1 +π1,1 = 1. Different models below will use more complex definitions for π to explore the impact of

time, density dependence, and chicken health on transitions between different states.

A Bayesian statistical model provides a way to iteratively deduce parameters of interest in regards to given data. The
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process is derived from Bayes’ theorem:

P(θ |D) =
P(D|θ)P(θ)

P(D)
, (2)

where θ is the parameter/s we wish to discover, and D is the data provided. In short, equation (2) reads that when starting from101

an initial, prior, belief in what values θ may take (P(θ )), one may obtain an updated, posterior, probability distribution for102

these possible values given some provided data (P(θ |D)). A more thorough introduction to Bayesian modelling is provided in103

Appendix 1. In our case, the parameters we seek, θ , are the ones used in our definition of π , such as α1 and α2 in the example104

above. The data, D, we use is the matrix S.105

106

Box 1 - Model construction process

1. Decide state classifications.

Choose how data should be classified, and construct matrix S containing all state classifications for each data point.

2. Decide formulation of transition matrix.

Choose how model will define transition probabilities and dependencies.

3. Run Bayesian model.

Define prior probability distributions for model parameters. Program and run Bayesian model using JAGS, to acquire a

posterior probability distribution for all model parameters defined in step 2.

4. Assess convergence.

Investigate model output to assure posterior distribution is well-constructed and has converged.

5. Present results.

Plot the transition probabilities, πi, j, and interpret the results.
107

Below we present a series of case studies presenting our different models and their results. All models were run using JAGS31
108

from within R using the run.jags package32.109

Case Studies110

Model 1: Time dependence111

Our first model investigates how time affects the transition probabilities between states. Following the process outlined in Box

1, we choose to initially classify our data as one of two states: “state 1: uninfected" and “state 2: infected".

To assess how the transition probabilities vary through time we must ensure that we define our transition probabilities

such that they depend on time. One way would be to adapt equations (1) above such that π1,1 was a function of α + β t.

However, this would impose structure upon the transition probabilities, enforcing them to change linearly with time. Ideally
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a model formulation should allow as much freedom as possible to fit to the data. As such, we shall instead construct π as a

three-dimensional array. In essence this means that each time period can be described by its own transition matrix. Formally we

write this as,

π1,2,t = ilogit(α1 +C1[t]), (3)

π1,1,t = 1−π1,2,t ,

π2,1,t = ilogit(α2 +C2[t]),

π2,2,t = 1−π2,1,t ,

for t ∈ {1,2, ...,51}. Here ilogit() is the inverse logit function defined by ilogit(x) = ex

1+ex . This function is bounded between 0112

and 1, scaling the argument so that our probabilities, πi, j,t remain correctly bounded. The underlying theory is that we assume113

there is some mean probability for πi, j,t across all t. These mean probabilities are described by α1 and α2. We then assume that,114

for each t, there is some “correction term" away from the mean unique to each week. These correction terms are captured by115

C1[t] and C2[t] for each t.116

117

Now that we have decided on our model formulation, we move to step 3 and run the model to find the posterior distri-118

butions for α1, α2, C1 and C2. First we define our prior probability distributions for each of the model parameters. This119

distribution represents our initial assumptions on what value our variables may take, and is often informed by expert opinion.120

Since we do not have any initial assumptions on what values our variables may take, we use wide noninformative priors. For α1121

and α2 we choose a prior distribution of U(0,25) for each, a uniform distribution between 0 and 25. For C1 and C2, we wish122

each element of these vectors to be a small perturbation away from the mean of α1 or α2. As such, we would ideally have these123

elements drawn from a normal distribution with mean 0, and some, yet to be determined, standard deviation. This represents a124

hierarchical model formulation (discussed further in Appendix 1), where we instead define priors on the two standard deviations125

for these two normal distributions associated with C1 and C2. Following the advice of Gelman (2016)33 for noninformative126

improper priors, we use a uniform distribution between 0 and 50 for the prior distribution of each of these standard deviation127

parameters. The model was then run using two chains, with a burn-in period of 5,000 iterations, and then a final sample of128

25,000 iterations to build the posterior distributions.129

130

Convergence was considered well-achieved via investigation of the trace plots of the chains, the effective sample size (ESS) and131

Monte Carlo Standard Error (MCSE) of the variables. The Gelman-Rubin statistic, or ‘shrink factor’, is the most commonly132

used metric for convergence, with a value close to 1 signifying effective convergence. Heuristically, any shrink factor below133

1.1 is considered by Kruschke (2014)34 to signify sufficient convergence. The presented model run resulted in a multivariate134

potential scale reduction factor (mpsrf) of 1.0059.135
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136

The results for this model are presented below in figure 4. The median values of the transition probabilities for (4A)137

π1,1,t , (4B) π1,2,t , (4C) π2,1,t , (4D) π2,2,t are plotted, and a linear regression is fit to these outputs using the lm function in R.138

The probability of transitioning from state 1 (plots 4A and 4B) was not significantly correlated against time (t-test, p = 0.135),139

however transitions from state 2 (plots 4C and 4D) against time were statistically significant (t-test, p < 0.01).140

Figure 4. Transition probabilities between two states, ‘uninfected’ and ‘infected’. Plots show (A) π1,1,t , (B) π1,2,t , (C) π2,1,t
and (D) π2,2,t against time. Each point is the calculated transition probability for that time point. Also plotted is a linear
regression against these points in blue, with a shaded region depicting the 95% confidence interval of the regression. (C) and
(D) are significant (p < 0.01).

These findings suggest that infected chickens were more likely to remain infected, and less likely to clear infection, as time141

progressed.142

Model 2: Species dependence143

For the next model we investigate transition differences between the two species present in the study; C. jejuni and C. coli. As

such, this time we classify our data as belonging to one of three states; ‘state 1: uninfected’, ‘state 2: infected with C. jejuni’

and ‘state 3: infected with C. coli. Therefore our transition matrix will be of size 3×3. We define each row of the transition

matrix by a 3-variable Dirichlet distribution (the multivariate generalisation of the Beta distribution), ensuring each row sums to
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1. As such, we infer the transition probabilities directly, using prior distributions of

(π1,1,π1,2,π1,3) = Dirichlet(1,1,1),

(π2,1,π2,2,π2,3) = Dirichlet(1,1,1),

(π3,1,π3,2,π3,3) = Dirichlet(1,1,1).

The model was run with two chains and an initial burn-in period of 5,000 iterations. Posterior distributions were built from a144

sample of 10,000 iterations. Convergence was once again well-achieved with a mpsrf of 1.0035. The results are plotted below145

in figure 5. Results show slight variations between species across the entire experiment. General transition probabilities from

Figure 5. Transition probabilities between three states, ‘uninfected’, ‘infected with C. jejuni’ and ‘infected with C. coli’.
Plots show the median values of the posterior distributions and the 95% highest density intervals (HDIs).

146

each state are very similar, however one can note that a chicken is more likely to be infected with C. coli when transitioning147

from a state of already being infected with C. coli. We also see that a chicken infected with C. coli is less likely to transition to148

being uninfected than a chicken infected with C. jejuni.149

Model 3: Time and species dependence150

We now combine the previous two models together, to investigate how the transitions between species alter across time. We

once again therefore classify our data into three categories, as per the previous model.

We will be constructing a three-dimensional array once again for our transition probabilities, with each time period be-
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ing described by a separate 3×3 transition matrix. To ensure each row of these matrices sums to 1, we start by framing the

transition probabilities as an unbounded array p, before scaling these into our final array π . p is defined as

p1,1,t = exp(α1), p1,2,t = exp(α2 +C1[t]), (4)

p1,3,t = exp(α3 +C2[t]), p2,1,t = exp(α4),

p2,2,t = exp(α5 +C3[t]), p2,3,t = exp(α6 +C4[t]),

p3,1,t = exp(α7), p3,2,t = exp(α8 +C5[t]),

p3,3,t = exp(α9 +C6[t]).

The exponential function here assures that, like in our initial model, our α parameters will describe the average transition value

across time, with the C parameters describing a small perturbation away from this mean. C values only need to be implemented

on two probabilities in each row, as we will next scale these so that each row sums to 1, meaning that two free correction terms

are sufficient to describe the distribution of the row. Our scaling is then performed like so,

π1,1,t =
p1,1,t

p1,1,t + p1,2,t + p1,3,t
, π1,2,t =

p1,2,t

p1,1,t + p1,2,t + p1,3,t
, (5)

π1,3,t =
p1,3,t

p1,1,t + p1,2,t + p1,3,t
, π2,1,t =

p2,1,t

p2,1,t + p2,2,t + p2,3,t
,

π2,2,t =
p2,2,t

p2,1,t + p2,2,t + p2,3,t
, π2,3,t =

p2,3,t

p2,1,t + p2,2,t + p2,3,t
,

π3,1,t =
p3,1,t

p3,1,t + p3,2,t + p3,3,t
, π3,2,t =

p3,2,t

p3,1,t + p3,2,t + p3,3,t
,

π3,3,t =
p3,3,t

p3,1,t + p3,2,t + p3,3,t
.

We choose priors of N(0, 1000) for all our α values (normal distributions with mean 0 and standard deviation 1000). Like the151

first model, we shall construct a hierarchical dependency such that our Ci[t] are all drawn from a normal distribution for each t.152

Motivated by the correlation observed in the first model, we actually set these six Ci terms to all be drawn from a 6-variable153

multivariate normal distribution, with mean (0,0,0,0,0,0) and a covariance matrix as our parameter to be defined. JAGS154

requires the input of a precision matrix (the inverse of the covariance matrix) for its formulation of the multivariate normal155

distribution, so we set a prior distribution on the precision matrix of Wishart(I6, 6), where I6 is the 6×6 identity matrix.156

157

The model was run with two chains for an initial burn-in period of 5,000 iterations, and then a posterior distribution was built158

from a sample of 250,000 iterations, thinned at a rate of 1 in 5, meaning only 1 in every 5 iterations was used for the posterior159

distribution so as to reduce autocorrelation. Results are plotted below in figure 6.160

Of the 9 transition probabilities presented, five were found to be statistically significant for correlation against time: π1,3,t , π2,1,t ,161

π2,3,t , π3,1,t and π3,3,t (t-tests, p < 0.0005, p < 0.05, p < 0.05, p < 0.0005 and p < 0.0005 respectively). Given the spread of162
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Figure 6. Transition probabilities between three states, ‘uninfected’, ‘infected with C. jejuni’ and ‘infected with C. coli’.
Plots show (A) π1,1,t , (B) π1,2,t , (C) π1,3,t , (D) π2,1,t , (E) π2,2,t , (F) π2,3,t , (G) π3,1,t , (H) π3,2,t and (I) π3,3,t against time. Each
point is the calculated transition probability for that time point. Also plotted is a linear regression against these points in blue,
with a shaded region depicting the 95% confidence interval of the regression. Five transition probabilities were found to be
statistically significant for correlation against time: π1,3,t , π2,1,t , π2,3,t , π3,1,t and π3,3,t (t-tests, p < 0.0005, p < 0.05, p < 0.05,
p < 0.0005 and p < 0.0005 respectively).

the data in figure 6, we also tested for statistical significance against a quadratic regression. A quadratic fit would be a strong163

argument for the existence of seasonal variation, by capturing a difference in the middle of the time series as the time axis164

moves to summer, before returning to winter. Recall again that this time period plotted is in weeks from February to February.165

Only one transition probability was found to be statistically significant however, the transition from infection with C. jejuni to C.166

coli, π2,3,t (t-test, p < 0.05). This quadratic regression is presented in figure 7 below. This would correlate with the behaviour167

observed in figures 2 and 3, whereby C. jejuni appears to be most prevalent in the summer, and C. coli most prevalent in the168

winter.169

Model 4: ST perseverance170

For this model, we extend model 2 to now capture species-specific ST perseverance within a chicken. To do this, we re-classify

the data into five different states: ‘S1: uninfect’, ‘S2: new C. jejuni ST’, ‘S3: same C. jejuni ST as previous week’, ‘S4: new C.

coli ST’ and ‘S5: same C. coli ST as previous week’. To further clarify the meaning of state 2 and state 4, we mean a ST of

either C. jejuni or C. coli that was not present in the previous week for the chicken in question. For example, if one chicken had

the following infection data for ten days: {“Uninfected", “Infected with C. coli ST 1089", “Infected with C. coli ST 1090",

“Infected with C. coli ST 1090", “NA", “Infected with C. coli ST 1090", “Infected with C. jejuni ST 958", “Infected with C.
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Figure 7. Transition probabilities between state 2 ‘infected with C. jejuni’ and state 3 ‘infected with C. coli’ against time.
Each point is the calculated transition probability for that time point. Also plotted is a quadratic regression against these points
in blue, with a shaded region depicting the 95% confidence interval. The transition probability was found to be statistically
significant for correlation against time (t-test, p < 0.05).

jejuni ST 958", “Infected with C. jejuni ST 1257", “Uninfected" }, then this row of ten would be classified as { 1, 4, 4, 5, NA, 4,

2, 3, 2, 1 }. Because, by definition, one can only transition to state 3 from state 2 or state 3, we can fix π1,3 = π4,3 = π5,3 = 0,

and likewise for transitions to state 5: π1,5 = π2,5 = π3,5 = 0. The non-zero transition probabilities can then be calculated by

drawing each row from a 3 or 4 variable Dirichlet distribution. Formally we set a prior on each row of,

(π1,1,π1,2,π1,4)∼ Dirichlet(1,1,1), (6)

(π2,1,π2,2,π2,3,π2,4)∼ Dirichlet(1,1,1,1),

(π3,1,π3,2,π3,3,π3,4)∼ Dirichlet(1,1,1,1),

(π4,1,π4,2,π4,4,π4,5)∼ Dirichlet(1,1,1,1),

(π5,1,π5,2,π5,4,π5,5)∼ Dirichlet(1,1,1,1).

The model was run with 2 chains for a burn-in period of 5,000 iterations before building posteriors from a final sample of171

10,000 iterations. Chains were well-mixed and convergence well-achieved with an mpsrf of 1.0037. Results are plotted below172

in figure 8.173

The most notable difference is seen in the perseverance of C. coli STs compared to C. jejuni STs. Comparing columns 3 and 5174
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Figure 8. Transition probabilities between five states, ‘uninfected’, ‘newly infected with C. jejuni ST’, ‘infected with same C.
jejuni ST as previously’, ‘newly infected with C. coli ST’ and ‘infected with same C. coli ST as previously’. Plots show the
median values of the posterior distributions and the 95% highest density intervals (HDIs).

of figure 8, we see that, an infection with a new ST of eitherC. coli or C. jejuni have a roughly equal chance of persevering to175

the next week. However, once a ST has carried over for one week, C. coli infections are then considerably more likely to further176

persist for later weeks. In fact, a repeated instance of infection with a C. coli (state 5) is more likely to continue in subsequent177

weeks than to transition to any other state (seen by comparing the pink lines in figure 8).178

Model 5: chicken dependence179

Whereas model 1 considered how transition probabilities vary across time, we now consider how transition probabilities vary

across different chickens. We follow a very similar framework to model 1, beginning by classifying all data as one of two states:

‘S1: uninfected’ or ‘S2: infected’. We then, like model 1, consider some average transition probability that each chicken is

close to, and then consider some small “correction term" unique to each chicken, which may make them more or less likely to

transition to a certain state. Formally, we write,

π1,2,t = ilogit(α1 +C1[c]), (7)

π1,1,t = 1−π1,2,t ,

π2,1,t = ilogit(α2 +C2[c]),

π2,2,t = 1−π2,1,t ,
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for c ∈ {1,2, ...,200}. We set a noninformative prior distribution for α1 and α2 of N(0, 1000). Our chicken correction terms,180

C1[c] and C2[c], are each drawn from a two-variable multivariate normal distribution for each c, with mean (0,0) and covariance181

matrix to be calculated. Like described in model 3, we therefore set a prior distribution on the precision matrix for this182

multi-variate normal distribution of Wishart(I2,2), where I2 is the 2×2 identity matrix.183

184

The model was run with two chains for an initial burn-in period of 20,000 iterations, before posteriors were then con-185

structed from a sample of 50,000 iterations. Convergence was well-achieved, with all chains well-mixed and all parameters186

sampled with a high ESS and MCSE < 0.01. The mpsrf was unable to be calculated due to the high number of stochastic nodes,187

however there were no signs to suggest invalid convergence.188

189

Upon calculating our transition probabilities for each bird, we plot the values for π1,2 against the value of π2,1 for each190

bird and investigate the correlation. Figure 9 shows these results overlaid with a contour of the associated multivariate normal191

distribution, indicating the probability density of the transition probabilities for the flock.192

Figure 9. Transition probabilities for each bird in the flock from a state of infected to uninfected (y-axis) against the transition
probability from uninfected to infected (x-axis). Contours show the fit of a multivariate normal distribution to the output.

193
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The strong linear relation observed reveals the presence of distinct sub-groups within the flock of birds who are infected often,194

and those who are infected very rarely.195

Model 6: chicken and species dependence196

We now alter the previous model to consider the differences in transition between species of Campylobacter across all birds.197

As such, the data is instead classified into the three states: ‘state 1: uninfected’, ‘state 2: infected with C. jejuni’ and ‘state198

3: infected with C. coli. This model is formulated the same way as in model 3 above. The transition probabilities follow199

the same structure as equations (4) and (5), except that our correction terms Ci[c] are corrections for each chicken in the200

flock (c ∈ {1,2, ...,200}) as opposed to each time step. As such we craft a 3×3 transition matrix for each chicken. A prior201

distribution of N(0,1000) is used for each αi parameter, and the six chicken correction terms, Ci[c] are drawn from a six-variate202

multivariate normal distribution for each c, with mean (0, 0, 0, 0, 0, 0) and a precision matrix as a parameter to find. The prior203

distribution for this precision matrix is Wishart(I6, 6), where I6 is the 6×6 identity matrix.204

205

The model was run with two chains for an initial burn-in period of 10,000 iterations, before posterior distributions were206

constructed from a sample of 50,000 iterations, thinned at a rate of 1 in 25, meaning only one iteration was kept in every 25.207

208

The idea of this model is to assess how bird variation affects the transition of each species of Campylobacter. The pre-209

vious model revealed the existence of variation in bird resistance to infection throughout the flock. Figure 10 below plots the210

result of multiple transition probabilities against one-another. Each point on the graphs represents the transition probabilities211

for a specific chicken. Plots 10A to 10C use π1,1,c, the transition from uninfected to uninfected as the y-axis. This acts as a212

rough metric for “bird resilience to infection", as the more resistant birds are more likely to continue being uninfected. As such213

plots 10A to 10C depict how transitions related to each species vary according to host bird susceptibility. Plot 10D uses π3,3,c,214

the transition from C. coli to C. coli as the y-axis, to compare how the perseverance of C. coli affects the infection ability of C.215

jejuni. Linear regressions are fit to all plots in figure 10, and all were found to be statistically significant (t-test, p < 0.0001).216

It is interesting to note that the gradient of the lines in each plot are distinctly different from one another, highlighting how217

each species responds differently to variations in host bird health.218

Model 7: chicken and density dependence219

This model builds on model 5 by now considering how transition probabilities are affected by the number of total infections in

the previous week. Campylobacter is known to be transmitted via the faecal-oral route between chickens, so it seems likely that

a higher density of infections one week will cause an increased number of infections the following week. We classify our data

into two states, uninfected and infected.
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Figure 10. Transition probabilities for a three state system. In these plots, ‘U’ refers to being uninfected, ‘J’ refers to
infection with C. jejuni and ‘C’ refers to infection with C. coli. Each of the points is the transition probability for a specific bird
within the flock. Linear regression fits are plotted with a shaded region representing the 95% confidence intervals of the
regression. All regressions were statistically significant (t-test p < 0.0001). (A) The transition probabilities of J-to-J and
C-to-C against the transition probability of U-to-U. (B) The transition probabilities of C-to-J and J-to-C against the transition
probability of U-to-U. (C) The transition probabilities of U-to-J and U-to-C against the transition probability of U-to-U. (D)
The transition probabilities of J-to-J and U-to-J against the transition probability of C-to-C.

The model formulation is then as follows,

π1,2,c,t = ilogit

(
α1 +C1[c]+β1

(
51

∑
i=1

S[i, t]−1
Nt

))
, (8)

π1,1,c,t = 1−π1,2,c,t ,

π2,1,c,t = ilogit

(
α2 +C2[c]+β2

(
51

∑
i=1

S[i, t]−1
Nt

))
,

π2,2,c,t = 1−π2,1,c,t ,

where Nt is the number of birds that data is available for at time t. Here, as with previous models, αi represents some mean

transition probability that all birds are clustered around, and Ci[c] represents the slight correction for each bird c. Recall that the

matrix S is populated by elements ‘1’ denoting uninfected and ‘2’ denoting infected. Therefore the expression S[i, t]−1 for

every i and t shifts this to instead be captured as ‘0’ signifying uninfected, and ‘1’ signifying infected. Therefore, the expression

∑
51
i=1 S[i, t]−1 will be a tally of exactly how many birds are recorded as being infected at time t. Therefore, the expression

∑
51
i=1

S[i,t]−1
Nt

conveys the exact proportion of how many birds are currently infected. Note the use of Nt as, for most weeks 75
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birds are recorded for every t, however, as can be seen figure 1, occasionally a few more or less were recorded each week. Note

however, that during the Bayesian modelling process, values for each element of S will be imputed in the process, meaning that

we can choose to measure our density dependence using either just the provided data, or also the imputed data. There are merits

to both approaches, and so results are included for both below. Here βi then represents our parameters signifying the strength of

the density dependent effect.

The model was initialised with prior distributions of N(0,1000) for all αi and βi parameters. The chicken corrections

terms Ci[c] were, like above, drawn from a multivariate normal distribution of mean (0,0) whose precision matrix we seek. The

precision matrix was initialised with a prior distribution of Wishart(I2, 2) where I2 is the 2×2 identity matrix. The model was

run with two chains for an initial burn-in period of 6,000 iterations and then posterior distributions built from a sample of

25,000 iterations. This was done twice with two variations of the model. One where density dependence is calculated from

provided data, and one with the addition of imputed data. The posterior distributions of our model parameters were used to

simulate the transition probabilities for each flock across a full range of total flock prevalences. i.e. using the median values for

αi, βi, Ci and the precision matrix, we are able to build the functions

π1,2,c = α1 +C1[c]+β1D, (9)

π2,1,c = α2 +C2[c]+β2D, (10)

for any value D ∈ [0,1], for each chicken c. The results of these functions for both the imputed and non-imputed density models220

are presented below in figure 11. The data only records flock infection proportions ranging from 0.1818 to 0.6667, so dotted221

lines are placed in figure 11 to show the range beyond which the result was further imputed.222

223

Importantly figure 11 confirms that density dependence is apparent within the flock. This was an important result to capture224

to reinforce the findings of model 6. It confirms that birds are influenced by the infection prevalence of the flock, suggesting225

that the more resilient birds truly are less likely to become infected, as opposed to just never becoming exposed to particularly226

virulent STs. Of interest here is that the probability of clearing infection (transitioning to uninfected) is affected far more by227

flock prevalence proportion than the probability of becoming infected.228
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Figure 11. Transition probabilities from a state of uninfection to infection, and from infection to uninfection using a density
dependent model programmed using (A) recorded data (B) recorded and imputed data. Each coloured line represents the
transition probabilities for a single chicken, with a black line depicting the flock mean. Dotted lines show the region for which
data was available for such a flock infection proportion.

Discussion229

Our work has investigated the underlying transmission dynamics of Campylobacter within a flock of breeder chickens through230

a series of seven models, each constructed to investigate and answer a specific research question. The work has revealed the231

extent to which data can capture and describe multiple underlying dynamical behaviours when correctly queried by modelling232

approaches.233

234

Figures 1 to 3 present a basic display of the data, and the prevalence of species and STs across the length of the experi-235

ment. Figure 1 appears to show that overall flock infection prevalence increases slightly throughout the year. One can also236

observe slight oscillating behaviour in the total number of infections across a few weeks, most notably in the May to September237

period. Experimental and theoretical studies have both confirmed the presence of these oscillations2117, caused by the immune238

response within each chicken creating predator-prey style oscillations between the immune system and invading bacteria. One239

can also note from figures 1 to 3 that C. jejuni appears to be the most frequently appearing species of Campylobacter in the240

summer months, before C. coli takes over as the most frequently appearing species in the winter. Figures 2 and 3 also show that241

there are far more STs of C. jejuni present throughout the experiment than C. coli STs. Note however from figure 2 that, despite242

the higher number of C. jejuni STs, each week is primarily dominated by only two or three STs. This phenomena was found243
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through theoretical study to be a result of stochastic drivers within the system, as opposed to any demographic advantages244

unique to certain STs17.245

246

The primary goal of this study was to attempt to verify these suspected dynamics observed through visualisations of the247

data, as well as uncover other dynamic interactions less easily observed. Our first model considered the impact of time upon the248

overall infection of the flock. Figure 4 showed that, across the experiments, birds were less likely to transition to a state of249

being uninfected at later times in the experiment history, and more likely to transition to a state of infection. Figures 4C and 4D250

showed a statistically significant linear relationship between time and the probability of transitioning to a state of infection,251

confirming the initial assumption upon observing the data that the overall flock infection prevalence seemed to gradually252

increase. Uninfected birds were significantly more likely to become infected, and infected birds were likewise more likely to253

stay infected. One can also observe from the plots in figure 4 the oscillating behaviour of infection prevalence, with transition254

probabilities rapidly swapping between being greater than the average transition rate (shown by the blue line) and then lower255

than the average from week to week.256

257

Most notable from figure 4 is that we are unable to observe any season specific variations in general infection prevalence.258

Human incidence of campylobacteriosis has been shown to vary in a repeated pattern each year35, which numerous studies have259

correlated with a similar pattern observed in broiler house infection rates363738 (an artifact disputed by other studies24). Despite260

this generally accepted phenomena, no clear seasonal variation can be seen in figure 4, certainly not to the extent observed in261

studies on commercial broiler houses3637. This lack of seasonality could be due to the different housing conditions and diet262

provisions provided to breeder flocks39. Breeder flocks have also been shown to shed smaller amounts of Campylobacter than263

commercial broilers40.264

265

Model 2 begins to investigate the differences in transition probabilities between the two species of Campylobacter ob-266

served. A three-state system of ‘uninfected’, ‘infected with C. jejuni’ and ‘infected with C. coli’ was considered, and the267

transition probabilities plotted in figure 5. The first thing to note is that chickens infected with C. coli were less likely on268

average to then clear infection (transition to a state of ‘uninfected’) than those chickens infected with C. jejuni. This difference269

is slight, but significant enough that the 95% HDI intervals of these probabilities do not overlap. Reinforcing this notion we270

see that birds infected with C. coli are more likely to remain infected with a C. coli ST than to clear infection or become271

infected with a C. jejuni ST. We do however also observe that the general transition probabilities from either species are very272

similar, with overlapping posterior distributions. This suggests that while C. coli does appear to have a slightly higher rate of273

persistence, it is not significant enough to yet imply an intrinsic demographic advantage.274

275

Model 3 combines both the previous two models by investigating the impact of time on our previous three-state system276
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of species. This slight adaption to model 1 provides far more insight into the underlying system of infection. We once again see277

that transitions to a state of uninfection reduce over time, however, whereas model 1 reported overall transitions to infection278

increasing, model 3 shows that only transitions to C. coli infections increase over time. The transitions to infection with C.279

jejuni were not found to change with time to any statistical significance, whereas all transitions to infections with C. coli were.280

We also note that, while it was found that transitions to being uninfected from being infected with either species significantly281

changed with time, transitions from uninfected to remaining uninfected did not significantly change. This suggests that overall282

infection perseverance increased over time, as opposed to general infection occurrence. In short, chickens did not become more283

likely to pick up an infection, but the infections they already had were less likely to clear. This phenomena is likely due to the284

increased flock prevalence causing a positive feedback loop, whereby more Campylobacter is being shed into the environment285

by infected birds, and then further ingested by the other birds in the flock before they are able to clear an infection. We also286

noted that many of the probabilities in figure 6 appeared to show curved trends against time, and as such we also searched287

for statistical significance to a quadratic regression. Only one of the nine plots was found to be statistically significant, π2,3,t ,288

the probability of transitioning from an infection with C. jejuni to an infection with C. coli. This quadratic regression was289

plotted in figure 7, where we see that the positive quadratic behaviour causes the probability to dip in the summer months and290

increase in the winter. This discovery reinforces our observation that C. coli appears to be most prevalent in the winter, with291

figure 7 showing that it actively forces out C. jejuni infections at a greater rate. Aroori et al. (2013)27 found that C. coli was292

more invasive than C. jejuni at a cooler temperature of 37°C compared to 42°C, suggesting some degree of adaptation to colder293

environments. This reinforces our observation that C. coli replaces C. jejuni within hosts at a greater rate in the winter months.294

295

Inspired by our previous finding that infection perseverance may alter with time, we adapted model 2 to become a five296

state system of: ‘S1: uninfected’, ‘S2: new C. jejuni ST’, ‘S3: same C. jejuni ST as previous week’, ‘S4: new C. coli ST’ and297

‘S5: same C. coli ST as previous week’. Results were plotted in figure 8, and the most notable result is seen in comparing298

columns 3 and 5. Here we see that, when infected with a new ST of either C. coli or C. jejuni, both species have roughly the299

same probability of that infection then remaining for a second week. However, once a ST has remained within a chicken for300

more than one week, C. coli STs are more more likely to continue to persevere than C. jejuni STs. In fact, once a C. coli ST has301

remained within a chicken for more than one week, it is more likely for the chicken to remain infected with that ST than to302

transition to any other state in the system. Comparing also columns 2 and 3 of figure 8, we see that transitions to infections of303

new coli / jejuni STs are roughly comparable, meaning that the primary difference we observe between the two species is in304

perseverance as opposed to infectivity.305

306

So far our models have only considered the interplay between species and STs, and not yet considered the effect of the307

individual birds themselves. The response of a host can vary greatly to an infection, which in turn can play a significant role in308

the overall dynamics throughout the flock. Otherwise healthy flocks of chickens can become overwhelmed by the bacterial309
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output of certain ‘super-shedder’ birds18 who trigger high infection rates in the other birds they are housed with. Model 5310

investigates the differences in transition probabilities amongst the 200 studied birds, with results plotted in figure 9. The figure311

shows that the majority of the flock inhabits a space of roughly equal transition between infection and uninfection, however the312

top left of the figure shows a selection of birds who are both more likely to clear infection and less likely to become infected. In313

contrast, the lower right of figure 9 shows a selection of birds who are both more likely to become infected, and then less likely314

to clear such an infection. In short, the model reveals that the flock contains sub-groups of highly susceptible birds who are315

consistently infected and highly resistant birds who very rarely become infected.316

317

After confirming from this model the existence of variation in bird transition probabilities, we asked what the impact of318

this variation could be on the proliferation of Campylobacter STs. Using a previously published stochastic differential equation319

model of Campylobacter population dynamics within a broiler flock17 we simulated two variant scenarios, one simulating a320

homogenous flock of chickens, and another simulating variation in immune response such as that observed in figure 9. The321

simulations are presented in Appendix 2, where it was seen that demographically equal strains of Campylobacter can be322

sustained at broadly different levels across the flock due only to variation in bird immune response. This is caused by random323

chance, in that whichever strain is initially picked up by a super-shedder is then shed in large amounts into the environment,324

increasing the likelihood of then infecting other birds in the flock. This result greatly implies that the results shown in the325

data, whereby some STs seem to persist at higher levels than others in the flock, is likely due to the variation in bird transition326

probabilities, as opposed to phenotypic differences between STs. In short, looking at figure 2, ST 958 may appear more than ST327

45, not because it has a competitive advantage, but because it was initially ingested by super-shedders. Indeed upon looking at328

the first appearance of certain recorded STs, those STs that would appear most frequently throughout the experiment were first329

observed in the most susceptible birds. Likewise the STs that appeared to die out during the experiment were first observed330

in the more resilient birds. There is however an important caveat to this point, in that, due to only 75 out of 200 birds being331

sampled each week we cannot be confident of exactly when a ST first appeared.332

333

Model 7 then sought to investigate how the different species of Campylobacter behaved within the now highlighted dif-334

ferent spectrum of chicken transition probabilities. The previous model was expanded to separate infections by species, and335

the results plotted in figure 10. Interestingly. the gradients of all the shifting transition probabilities are different between336

species, confirming that, indeed, the transition probabilities of each species varies differently across chickens. The most337

notable and significant result is seen in figure 10A. Here, the y-axis depicts the probability of transitioning from uninfected338

to uninfected, which we treat as a metric of bird resilience, as the more susceptible ‘super-shedders’ will have a far lower339

probability of remaining uninfected. We see that the probability of a species persisting, unsurprisingly increases as bird340

susceptibility increases, but curiously our linear regressions for each species overlap. This result indicates that, in the more341

resilient birds, C. coli is less likely to persevere than C. jejuni infections, however the inverse is seen in the more susceptible342
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birds. The interpretation here would be that, the more resilient birds are successfully able to clear any infection presented to343

them, and that the greater perseverance of C. jejuni is likely due to the greater number of C. jejuni STs observed throughout the344

experiment. Model 4 then suggested that C. coli was more capable of persisting than C. jejuni while model 6 further clarifies345

that this only holds true in the most susceptible birds, highlighting an extraordinary example of interplay between host and346

invading bacteria dynamics.347

348

Our final model then considers how the number of infected chickens in one week can impact the number of infections349

in the following week. This was an important interaction to capture to ensure that our data supported the presence of bird-to-bird350

transmission. Without this one could argue that our more resilient birds were simply the ones who did not ingest a more351

invasive ST. Figure 11 shows the influence of flock infection proportion on transition probabilities. Most notably we see that352

the transition from uninfected to infected is affected less by total infection prevalence than the transition from infected to353

uninfected. This means that in a highly infected flock, uninfected birds still have a possibility to not become infected, while354

those who are already infected will be far less likely to then clear their infection. This would likely be caused by the immune355

system of currently uninfected birds being just as likely as previously to prevent an initial infection, but currently infected birds356

will be more likely to add to their current bacterial load by ingesting more Campylobacter and reduce their likelihood of recovery.357

358

This work has highlighted how much dynamic interaction can be uncovered from data when appropriately investigated,359

but that most importantly multiple models are required in order to fully understand the relationships driving observations. While360

model 1 highlighted that the probability of infection increased with time, model 3 was then able to reveal that this increase was361

caused primarily by C. coli. Models 2 and 4 then revealed that this increase in infection of C. coli was a result of increased C.362

coli persistence. Models 5 and 6 then revealed that this persistence was driven and enabled wholly by a sub-group of highly363

susceptible chickens within the flock. Model 7 then finished by indicating how the overall trend of increased flock infection364

prevalence across time was due to a higher proportion of infected birds preventing those birds already infected from clearing365

their infection.366

367

Our work has shown that different species of Campylobacter exhibit different rates of infectivity, driven to some degree368

by seasonal differences, but most significantly by the underlying susceptibility of host birds. The immune response of chickens369

has been shown to be significantly impacted by welfare measures such as stocking density4142 and food withdrawal and heat370

stress43. As such, there is a clear incentive to ensure that good bird welfare is upheld, as only a small sub-population of371

susceptible birds can have a large impact on the infection status of the whole flock.372

373

Furthermore, understanding how certain strains of Campylobacter prevail throughout the industry is a key first step to374

combatting the presence of antimicrobial resistant (AMR) strains of Campylobacter. AMR Campylobacter continue to appear375
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in broiler flocks4445 and within human isolates as well46. Despite increased biosecurity measures over the last decade, AMR376

prevalence has remained consistent throughout this time47. Our work suggests that the perseverance of particular strains of377

Campylobacter is driven more by broiler health than by demographic advantages of specific isolates, potentially explaining the378

perseverance of these AMR strains. Further investigation of the persistence of these resistant STs is one of the most pressing379

areas of further work we have highlighted.380

381

This work has highlighted the great diversity of individual bird response to bacterial challenge, and most notably how382

this range of responses can be a key driver of Campylobacter prevalence dynamics. The hurdle now is to find a clear observable383

metric that correlates with the resilience a bird shows to infection. Some data was available on the weight of birds at the time384

that samples were taken, but there was no correlation found between bird weight and resilience. If one were able to clearly385

identify which birds were ’super-shedders’ then steps can be taken to improve the health of these respective birds, or to better386

inform industry of how to raise broiler flocks. These super-shedders clearly play a significant role in amplifying the expression387

of Campylobacter within a flock, acting as a catalyst for a chain reaction of outbreaks. Now that we have highlighted the critical388

role that bird health plays, future work must elucidate how one may act to help prevent the emergence of super-shedders within389

the flock.390
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A Appendices502

A.1 Appendix 1 - Bayesian Statistics503

This brief section aims to convey the basic principles of Bayesian statistics, and familiarise the reader with the terminology that504

is be used throughout the manuscript. For an in-depth explanation, I recommend the text by Kruschke (2014)34.505

506

Bayesian statistics is derived wholly from the relationship defined by Bayes’ theorem,507

P(θ |D) =
P(D|θ)P(θ)

P(D)
. (11)

If we consider θ as some statistical parameter we wish to infer, and D as some data informing the parameter, then equation508

(1) expresses that the probability distribution for our value of θ , given our dataset (P(θ |D)), is proportional to the likelihood of509

such data (P(D|θ)) multiplied by the probability distribution of θ free of any data (P(θ)).510

511

Spoken plainly, one starts with a prior probabilistic understanding of the values θ , often informed by expert opinion, and by512

utilising relevant data, D, we update our belief in the values θ may take, producing a new posterior distribution. Mnemonically,513

if we wished to calculate the probability that a flipped coin will land heads up, we may have a prior belief that the coin is fair.514

However, upon observing a data set of 5 coin flips, all of which produced heads, we may update our posterior belief to reflect515

that the coin may be biased.516

517

The analytical difficulty in this calculation lies in computing P(D) =
∫

P(D|θ)P(θ)dθ , which is often near impossible518

for realistically complex models. Fortunately modern computing power enables us to efficiently estimate our posterior distribu-519

tions through algorithms such as Gibbs sampling and other Metropolis-Hastings schemes.520

521

Hierarchical systems represent multi-variable models where some parameters depend on other parameters. Returning to522

the example of a coin flip, say the probability of heads (θ ) is dependent on the factory in which the coin was minted. The523

probability that a coin was from a certain factory (ω) will then inform our value of (θ ). Expressed mathematically, equation (1)524

now becomes:525

P(θ ,ω|D) =
P(D|θ ,ω)P(θ ,ω)

P(D)

=
P(D|θ ,ω)P(θ |ω)P(ω)

P(D)
. (12)
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This means that a prior distribution is only required for ω , as this distribution will directly inform our conditional prior of526

θ , via our model formulation. As such, when provided with data on coin flips from multiple coins from different factories, we527

obtain a posterior probability distribution of which factory a coin has come from, and the resulting probability of a coin flip528

resulting in heads. This structure of conditional independence means that data relating specifically to one parameter can still529

help inform the posterior of all other dependent variables, a key advantage of Bayesian inference.530
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A.2 Appendix 2 - Model Simulations of flock health531

After confirming from model 5 the existence of variation in bird transition probabilities, we asked what the impact of this532

variation could be on the proliferation of Campylobacter STs. Using a previously published stochastic differential equation533

model of Campylobacter population dynamics within a broiler flock17 we simulated two variant scenarios. Figure A1 displays534

a case study of the spread of five demographically identical strains of Campylobacter within a flock of 400 demographically535

identical broilers. Figure A1 shows that, as expected, all strains perform equally well and are equally represented in the536

amount being shed into the environment. Figure A2 instead shows the same model of five demographically identical strains of537

Campylobacter within a flock of 400 birds whose strength of immune response is drawn from a normal distributed centred538

around the value used for Figure 8. Figure A2E shows how five demographically equal strains can be sustained at broadly539

different levels across the flock due only to variation in bird immune response. This is caused by random chance, in that540

whichever strain is initially picked up by a super-shedder, such as the one shown in Figure A2D then sheds large amounts of541

that strain of Campylobacter into the environment, increasing the likelihood of then infecting other birds in the flock. This542

result greatly implies that the results shown in the data, whereby some STs seem to persist at higher levels than others in the543

flock, is likely due to the variation in bird transition probabilities, as opposed to phenotypic differences between STs.544
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Figure A1. Dynamic behaviour of five identical strains of Campylobacter in a flock of identical broilers. (A) - (D) shows the
population within the gut of individual broilers, while (E) displays the amount of Campylobacter in the environment, an
expression of the average amount throughout the flock.
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Figure A2. Dynamic behaviour of five identical strains of Campylobacter in a flock of broilers of varying susceptibility to
infection. (A) - (D) shows the population within the gut of individual broilers, while (E) displays the amount of Campylobacter
in the environment, an expression of the average amount throughout the flock.
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