SUPPLEMENTAL FIGURES

Figure S1. Prss56 and Adamts19 expression in Prss56 retina across ages. (A-B) Graphs showing quantification of Prss56 (A) and Adamts19 (B) mRNA levels using qPCR in wild-type and mutant retina at different developmental stages. A significant increase in Adamts 19 mRNA levels was detected as early as P10 in Prss56 mutant retina (B), while upregulation in Prss56 mRNA was first observed at P15 in the mutant retina (A). The magnitude of the increase of both Prss56 and Adamts19 expression became more pronounced with age in the mutant retina. Prss56 and Adamts19 expression were normalized to the expression of three housekeeping genes (Hprt1, Actb1, and Mapk1). Data are presented as fold expression relative to wild-type (mean \pm SEM), $\mathrm{N}=4$ to $6 /$ group. ${ }^{*} \mathrm{p}<0.05$; ** $\mathrm{p}<0.01$; *** $\mathrm{p}<0.001$, t-test. The Prss56 qPCR data in A were previously published in Figure 4 of Paylakhi et al. 2018 [13].

Adamts 19 null allele generated by Cre-mediated recombination

Figure S2. Generation of Adamts19 mutant mice allele.
(A) The LoxP site flanks the exon 3 of the Adamts19 ${ }^{F}$ allele. In presence of Cre recombinase, the Adamts19 exon is deleted resulting in a frameshift mutation and premature stop codon, rendering the Adamts19 catalytically inactive. (B-C) Adamts19 exon 3 excisions was confirmed by PCR as well as qPCR. (B) PCR amplification of DNA from wild-type (Adamts19+/+, lane 1), heterozygous (Adamts19 ${ }^{\text {F//, }}$ lane 2), or homozygous (Adamts 19/F) mice. PCR reactions were performed using primers amplifying regions of intron 2 and exon 3 . The deletion of exon 3 from the Adamts19FF allele gives no PCR product. using primers amplifying a region of intron 2 and exon 3 gives no PCR product from DNA from Adamts 1 1FFFmice. (C) qPCR analysis employing primers amplifying exon 3 of Adamts 19 further confirm that Adamts 19 transcript from Adamts $19 ヶ$;Prss56 $\%$ retina lacks exon 3.

Figure S3. Ocular biometric analysis in Adamts19 mutant mice
Histograms showing that ocular the lens diameter (\mathbf{A}) and retinal thickness (B) were indistinguishable in Adamts19 ${ }^{-\cdots}$;Prss56 ${ }^{-/}$, Adamts19 ${ }^{+/ ;}$Prss56 ${ }^{-/}$and control Adamts19 ${ }^{+/ \text {; }}$ Prss56+-- mice. Data are presented as mean $\pm S D, N \geq 7 /$ group. * $p<0.05$, One-way ANOVA.

Figure S4. Ocular biometric parameters are indistinguishable between wild-type and Adamts19 ${ }^{+\nearrow: \text { Prss56 }}{ }^{+/}$mice. (A-D) Histograms showing that all the ocular biometric parameters examined including axial length (A), vitreous (VCD) (B), lens diameters (C) and retinal thickness (D) are indistinguishable between wild-type (Adamts19++;Prss56++/) and Adamts $19^{++;} ;$Prss56 ${ }^{+\dagger}$ mice at P18 Data are presented as mean $\pm \mathrm{SD}, \mathrm{N} \geq 7 /$ group. *p<0.05, One-way ANOVA.

S5. Ocular biometric analysis of Adamts19 ${ }^{-/}$;Prss56 ${ }^{-/}$mice. (A-B) Histograms showing that retinal thickness (A) is modestly increased in Adamts19-;Prss56 ${ }^{-}$mice compared to control (Adamts 19^{+}; Prss56+ ${ }^{+}$) mice at P18, but not at P30, while the lens
 control (Adamts19 ${ }^{+/ \text {; Prss56 }}$ +-) mice at both ages examined. (C) Histogram showing relative Adamts 19 mRNA levels AGE N>4/group. Data are presented as mean \pm SD, $\mathrm{N} \geq 13 /$ group. * $\mathrm{p}<0.05$, One-way ANOVA.

Figure S6. Ocular biometric parameters are indistinguishable between wild-type and Adamts19+^:Mfrp+/ mice. (A-D) Histograms showing that all the ocular biometric parameters examined including axial length (A), vitreous (VCD) (B), lens diameters (C), and retinal thickness (D) are indistinguishable between wild-type (Adamts $19^{+/+} ;$Mfrp $^{+/+}$) and Adamts $19^{+/-}$Mfrp $+/$mice at P18. Data are presented as mean \pmSD, $\mathrm{N} \geq 7 /$ group. *p<0.05, One-way ANOVA.

Figure S7. Ocular biometric analysis of Adamts $19^{-} ;$Mfrp $^{-/}$mice. (A-C) Histograms showing that the lens diameter (\mathbf{A}) are indistinguishable in Adamts $19^{+} /$; Mfrp ${ }^{-}$, , Adamts 1^{-} -; Mfrp ${ }^{-/}$, and control (Adamts19+/; Mfrp+ ${ }^{+-}$) mice, while the retinal thickness (B) is increased in both Adamts19+-; Mfrp ${ }^{\digamma}$ and Adamts $1^{-/}$;Mfrp ${ }^{-}$mice compared to control Adamts19+/; Mfrp ${ }^{+/}$mice at P18. Data are presented as mean \pmSD, $\mathrm{N} \geq 11 /$ group. ****p<0.0001, One-way ANOVA.

Figure 58.

Ocular biometric analysis of Irbp mutant mice following Prss56 inactivation

(A) Representative OCT images showing that ocular axial length (quantified in Fig. 6A) and VCD (quantified in Fig. 6 B) are increased in Irpb mutant mice (Irpb--; Prss56+/-) and reduced in Prss56 mutant mice compared to control Irpb ${ }^{+/-}$; Prss56+/- control mice at P18. In contrast, retinal thickness (B) were reduced in Irpb mutant mice (Irpb---; Prss56 ${ }^{+/-}$) and retinal thickness was increased in Prss56 mutant and Irbp;Prss56 double mutant mice (Irpb ${ }^{+-;}$Prss56-/ and Irbp $^{-/}$; Prss56 ${ }^{-/}$, respectively) compared to control Irpb ${ }^{+/ ;}$Prss56+1mice. Data are presented as mean $\pm S D, N \geq 4 /$ group. ${ }^{* *} p<0.01$; *** $p<0.0001$ (compared to controls); $\ddagger \ddagger \ddagger p<0.001$ (compared to double mutant lrpb ${ }^{-\cdots}$;Prss56 ${ }^{-/}$mice), One-way Anova.

Biometric analysis of Irbp mutant mice following Mfrp inactivation (C) Representative OCT images showing that ocular axial length (quantified in Fig. 6 C) and vitreous chamber depth (VCD, quantified in Fig. 6 D) are increased in Irpb mutant mice
 Mfrp $^{-/}$and Irbp $^{-/}$; Mfrp ${ }^{-/}$, respectively) compared to control Irpb $^{+/ ;}$Mfrp ${ }^{+/}$mice at P18. In contrast, and retinal thickness (D) were reduced in Irpb mutant mice (Irpb-/; Mfrp ${ }^{+/ \text {- }}$) and retinal thickness was increased in Mfrp mutant and Irbp;Mfrp double mutant mice (Irpb+/; Mfrp ${ }^{-/}$and Irbp $^{-/}$; Mfrp ${ }^{-/}$, respectively) compared to control $\mathrm{Irpb}^{+/-}$; Mfrp ${ }^{+/}$mice. Data are presented as mean $\pm S D, N \geq 8 /$ group. ${ }^{* *} p<0.01$; ${ }^{* * *} p<0.0001$ (compared to controls); $\ddagger \ddagger \ddagger \mathrm{p}<0.001$ (compared to double mutant $\mathrm{Irpb}^{-/} ;$Mfrp$^{-/}$mice), One-way Anova.

Table S1. List of genotyping primers

Allele (mouse strain)	Primer name	Primer sequence
$\begin{gathered} \text { Prss5669/cr4 } \\ \text { (C57BL/6.Cg-Prss56 glcr4/SjJ) } \end{gathered}$	Prss56 glcr4 F1 Prss56 glcr4 F2 Prss56 glcr4 R	5' TGGCTCCAGAAACCAAAGCCGGAA GAGCGCCCGGAAACAAAGAGT 3' 5' GCGGCGCCCGGAAACAAAAGGA 3' 5' TCCTGGAAGAGAGGGAGTGA 3'
Prss56Cre (C57BI/6.Cg-Prss56tm)	Prss56 Cre F Prss56 Cre R WT Prss56 Cre R Cre	5' CAG GGC ATC GTT TCC CTG AG 3' 5' GAC AGG CGC GTG TAC AGT GG 3' 5' CCA TGA GTG AAC GAA CCT GG 3'
\qquad	EGR1 common R EGR1 MUT F EGR1 WT F	5' GGG CAC AGG GGA TGG GAA3 5' AAC CGG CCC AGC AAG ACA 3' 5^{\prime} CTC GTG CTT TAC GGT ATC G 3^{\prime}
Adamts19- (Adamts19tm4a(EUCOMM)Wtsi)	Adamts19_244_F Adamts19_244_R CAS_R1_Term	5' AGA AGG GAA CAA ACA CAA CAA GTG 3' 5' AGT TAG CCT GAG CCT GTG TGG 3' 5' TCG TGG TAT CGT TAT GCG GCC 3'
$\mathrm{Mfrp}^{-/}$ (B6.C3Ga-Mfrprd6/J)	Mfrp F Mfrp R	5' CAC TAC CAC CCC AGC AAG GAC 3' 5^{\prime} CTT CTC CAG AGA GTG CCC TTG 3'
	Common IRBP MF IRBP WT IRBP	5' CAT ATC CAC ACC TGC CAA CA 3' 5' GCT ACT TCC ATT TGT CAC GTC C 3 ' 5^{\prime} GGA CCC ACA CCT GAA GAC AG3'
Ubc-Cre (C57BI/6.Cg-Tg(UBC-Cre/ERT2)1Ejb)	$\begin{aligned} & \mathrm{Cr} 1 \\ & \mathrm{Cr} 2 \\ & \hline \end{aligned}$	5' TGA TGA GGT TCG CAA GAA CC 3 ' 5' CCA TGA GTG AAC GAA CCT GG 3'

Table S2. List of qPCR primers

Gene	Forward Primer	Reverse Primer
House Keeping Genes		
Actb	5' CCCTGAGGAGCACCCTGTGC 3'	5' GGCTGGGGTGTTGAAGGTCT 3'
Hprt1	5' TGCCGAGGATTTGGAAAAAGTGT 3'	5' GTGATGGCCTCCCATCTCCT 3'
Mapk1	5' TTGAACAGGCTCTGGCCCAC 3'	5' TGAATGGCGCTTCAGCAATGG 3'
Genes of Interest		
Prss56	5' ACCTGGACGCCCTAGACCTC 3'	5' TGTTGGCAACGCCTTGATGT 3'
Adamts 19	5' `TGCTGAAGACAACGGCCTGA 3'	5' CAGCACAGGATGGGTGGTCA 3'
Adamts19 Ex3	5' GAGGACTTCCTATTCATTGAGCCA 3'	5' CCTGTATAAACGGTGCGGGT 3'

