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ABSTRACT 22 

Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, 23 

respectively, that after nutrient depletion aggregate and develop into structures called fruiting 24 

bodies. The developmental processes and the resulting morphological outcomes resemble one 25 

another to a remarkable extent despite their independent origins, the evolutionary distance 26 

between them and the lack of traceable levels of homology in the molecular mechanisms of the 27 

groups. We hypothesize that the morphological parallelism between the two lineages arises as 28 

the consequence of the interplay, within multicellular aggregates, between generic processes, 29 

physical and physicochemical processes operating similarly in living and non-living matter at the 30 

mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems, characteristic of 31 

the constituent cells. To this effect, we analyze the relative contribution of the generic and 32 

agent-like determinants in the main phenomena of myxobacteria and dictyostelid development, 33 

and their roles in the emergence of their shared traits. We show that as a consequence of 34 

aggregation collective cell-cell contacts mediate the emergence of liquid-like properties, making 35 

nascent multicellular masses subject to new sets of patterning and morphogenetic processes. In 36 

both lineages, this leads to behaviors such as streaming, rippling, and rounding up, similar to 37 

effects observed in non-living fluids. Later the aggregates solidify, leading them to exhibit 38 

additional generic properties and motifs. We consider evidence that the morphological 39 

phenotypes of the multicellular masses deviate from the predictions of generic physics due to 40 

the contribution of agent-like behaviors. These include directed migration, quiescence, and 41 

oscillatory signal transduction of the cells mediated by responses to external cues acting 42 

through species-specific regulatory and signaling mechanisms reflecting the evolutionary 43 

histories of the respective organisms. We suggest that the similar developmental trajectories of 44 

Myxobacteria and Dictyostelia are more plausibly due to shared generic physical processes in 45 

coordination with analogous agent-type behaviors than to convergent evolution under parallel 46 

selection regimes. Finally, we discuss the broader implications of the existence and synergy of 47 

these two categories of developmental factors for evolutionary theory.  48 

 49 
Key words: myxobacteria; dictyostelids; liquid tissues; deformable solids; excitable 50 
media  51 
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INTRODUCTION 52 

The emergence of multicellular organisms exhibiting cell differentiation, spatial patterning and 53 

morphogenesis has been recognized as one of the major transitions in evolution (Maynard 54 

Smith and Szathmáry, 1995). Depending on the criteria applied (cell–cell attachment, cell 55 

communication, division of cell labor, among others) multicellularity evolved on anywhere 56 

between 10 and 25 independent occasions (Niklas and Newman, 2013; Niklas and Newman, 57 

2019). The appearance of multicellular organisms enabled an extraordinary increase in the 58 

complexity of living systems and the study of the developmental mechanisms and selective 59 

forces leading to its emergence, maintenance, and variation is an active research area (e.g., 60 

Niklas and Newman (2016). In broad terms, multicellular organisms can be classified either as 61 

aggregative (“coming together”) or zygotic (“staying together”), according to the mechanism by 62 

which multicellularity arises (Bonner, 1993; Tarnita et al., 2013). In the former, multicellular 63 

organisms develop through the gathering of several individual cells potentially belonging to 64 

different genetic lineages; in the latter, all the cells in the organism are the offspring of a single 65 

cell and remain attached to each other after cell division (Bonner, 1998; Grosberg and 66 

Strathmann, 2007). Across eukaryote lineages, aggregative multicellularity involves amoeboid 67 

cells and leads to the formation of a fruiting body or “sorocarp” (Brown and Silberman, 2013). 68 

There appear to be ecological determinants (e.g., resource availability, land vs. water 69 

environment) of whether organisms are clonal or aggregative (Bonner, 1998; Fisher et al., 2019; 70 

Hamant et al., 2019). Furthermore, clonal lineages do not always exhibit complex development 71 

with different cell types and arrangements, and aggregative ones often do (Newman, 2014b; 72 

Newman, 2019c; Niklas and Newman, 2019). 73 

Dictyostelia and Myxobacteria are eukaryotic and prokaryotic multicellular lineages, 74 

respectively (Romeralo et al., 2013a; Yang and Higgs, 2014). In these lineages, the life cycle 75 

comprises a vegetative and a developmental stage. In the vegetative stage, Dictyostelia behave 76 

as solitary cells acting independently of each other, and with the possible exception of 77 

intercellular repulsion during feeding (Keating and Bonner, 1977), only engage in cell-cell 78 

interactions during development. In contrast, Myxobacteria, often referred to as social bacteria, 79 

are believed to organize into cell consortiums through their entire life cycles, although single-80 

cell-specific behaviors are observed in the laboratory (Thutupalli et al. (2015) and unpublished 81 

observations). Both lineages are commonly found in soils where they feed upon (other) bacterial 82 

species. Once nutrients have been depleted, they transit into a developmental stage 83 

characterized by a substratum-dependent cellular aggregation that culminates in the formation 84 
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of multicellular structures called fruiting bodies, containing up to 105-106 cells, where cell 85 

differentiation takes place (Whitworth, 2008). 86 

The basis of cell differentiation in D. discoideum has been explained in two ways. There are 87 

pre-aggregation tendencies among amoebae, stochastic in origin, biased by the environment 88 

they experienced during the phases of growth and division, or, cell differentiation is a post-89 

aggregation phenomenon based on intercellular interactions and diffusible morphogens 90 

(reviewed in (Nanjundiah  and Saran 1992). There is experimental evidence for each of the two 91 

viewpoints (Kawli and Kaushik, 2001), and it is also clear that subsequent interactions can 92 

override cell-autonomous tendencies (Raper, 1940). 93 

In Myxobacteria development, cells commit to at least three different cell types, peripheral 94 

rods, spores and autolysis. In Dictyostelia, there are principally only two terminal cell types, stalk 95 

and spore cells, with several transitory cell types (different pre-stalk and pre-spore subtypes) 96 

observed over the normal course of development. Phylogenetic analyses suggest that the 97 

capacity for cellular differentiation predated the emergence of multicellular development in both 98 

lineages (Arias Del Angel et al., 2017; Schaap et al., 2006). Theoretical studies show that 99 

cellular differentiation can spontaneously arise by the coupling of multistable cellular systems 100 

(Furusawa and Kaneko, 2002; Mora Van Cauwelaert et al., 2015). 101 

The morphology of fruiting bodies in both lineages displays a similar extent of diversity 102 

ranging from simple mound-like to highly branched tree-like structures. Morphology is a species-103 

dependent trait, though there are examples in the dictyostelids of the fruiting body of one 104 

species mimicking the morphology of another (Bonner, 2009). For neither Myxobacteria nor 105 

Dictyostelia are fruiting bodies morphologies a monophyletic trait (Arias Del Angel et al., 2017; 106 

Schaap et al., 2006), and thus different forms are likely to have evolved multiple times within 107 

each lineage. 108 

The issue of convergence becomes even more remarkable when it is recognized that 109 

sorocarpic amoebae like those of Dictyostelia occur in five of the seven supergroups into which 110 

eukaryotes are divided. (Archaeplastids, the group containing red algae, green algae, and 111 

plants, appear to be the sole exception. In another supergroup, the Alveolates, aggregative 112 

multicellularity and fruiting body formation occurs, but in ciliates, not amoebae (Bonner, 2009; 113 

Brown and Silberman, 2013). 114 

Perhaps more surprising is the resemblance of developmental processes and resulting 115 

morphologies between eukaryotic sorocarpic amoebae such as Dictyostelia and the prokaryotic 116 

Myxobacteria, despite their independent origins, the evolutionary distance between them, and 117 

the lack of traceable homology in the molecular mechanisms in each group (Fig. 1). Bonner 118 
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(1982) suggested that the parallelisms between Myxobacteria and Dictyostelids appear as a 119 

consequence of either similar selective pressures or shared developmental constraints. But 120 

these determinants are not mutually exclusive and discrimination between them is not trivial 121 

(Olson, 2012). Kaiser (1986) proposed that a joint investigation of Myxobacteria and Dictyostelia 122 

could potentially lead to the identification of generalities underlying the multicellular phenotypes 123 

across both lineages. 124 

Since Kaiser’s proposal, a combination of experimental and modeling approaches has been 125 

employed to investigate the development in these two lineages (Romeralo et al., 2013b; Yang 126 

and Higgs, 2014). Such studies advanced after physico-chemical processes came to be 127 

considered as key factors determining the developmental outcomes (Bretschneider et al., 2016; 128 

Fujimori et al., 2019; Thutupalli et al., 2015; Umeda and Inouye, 2002). Specifically, there is a 129 

recognition that the shaping of multicellular masses cannot be explained independently of their 130 

material properties, and that developing organisms are thus subject to physical forces and 131 

effects relevant to their composition and scale (Benítez et al., 2018; Newman, 2014a; Newman 132 

and Bhat, 2009; Rivera-Yoshida et al., 2018). When applied, for example, to embryonic animal 133 

tissues, which behave similarly, in certain respects, to non-living liquids and liquid crystals, 134 

physical models predict the formation of immiscible layers, interior spaces, and, when the 135 

subunits are anisotropic, the capacity to undergo elongation (Newman and Bhat, 2009). In 136 

contrast, plant tissues, characterized by rigid cell walls, behave like deformable, mechanically 137 

and chemically active solids which (unlike liquid-state materials) can bud or branch (Benítez et 138 

al., 2018). 139 

Properties shared by cellular masses with (as the case may be) nonliving liquids, solids, or 140 

semisolid materials have been termed “generic” (Newman and Comper, 1990), and we adopt 141 

that term here. The physical forces, effects and processes inherent to such materials enable 142 

and constrain developmental outcomes in multicellular masses, leading to the conclusion that 143 

homoplasy (the same form, independently evolved) is expected to be common, and some 144 

morphological motifs should be recurrent and predictable (Benítez et al., 2018; Newman, 145 

2014a). Physical determinants, in this view, are complementary to the regulatory dynamics 146 

within cells. Indeed, physical and physicochemical processes are mobilized on the multicellular 147 

scale by genes, their products and other molecules, and are thus subject to regulation 148 

throughout evolution (Benítez et al., 2018). 149 

In contrast to the molecular subunits of non-living materials, the individual cells constituting 150 

a multicellular cluster are able to sense and respond to local cues through signaling and 151 

regulatory pathways. Because of their intracellular chemical dynamics and capacity to generate 152 
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mechanical forces, cells can be understood as agents that actively modify their behavior in 153 

response to their environment, and even modify their environment in ways that can further affect 154 

the cell-environment interaction. These processes taking place at the cell level, including 155 

chemotaxis, which as discussed in Section 4, can continue even when the cells are already 156 

aggregated, can translate into collective behaviors that act in parallel and coordination with, and 157 

even oppose, the generic physical processes that shape a tissue mass. These “agent-like” 158 

behaviors modify the outcomes that would be expected if only generic physical processes were 159 

operative. 160 

Here, we hypothesize that the morphological outcomes, and thus the parallelism between 161 

the myxobacterial and dictyostelid lineages, originated as a consequence of the interplay 162 

between generic processes acting upon the multicellular materials and agent-like behaviors 163 

characteristic of the constituent cells. To this end, we describe the major generic and agent-like 164 

properties exhibited during the development of these lineages and attempt to analyze their 165 

contributions to the emergence of the groups’ shared traits. We suggest that as a consequence 166 

of aggregation, the nascent multicellular mass becomes subject to new sets of patterning and 167 

morphogenetic processes resulting from the fact that cell-cell contacts or immersion in a matrix 168 

mediate the emergence of a fluid-like properties. In both lineages, this leads to developmental 169 

processes, e.g., streaming, rippling, that are similar to behaviors observed in non-living fluids. 170 

We explore the idea that deviations of the dynamics and morphological outcomes of the 171 

multicellular mass from the generic predictions are due to the contribution of agent-like 172 

behaviors of individual cells, e.g., gradient sensing, directed migration, quiescence. 173 

Generic effects are common causes in the different lineages. This is because whatever 174 

molecules underlie the realization of properties such as cell-cell adhesion, spatial heterogeneity 175 

via diffusion gradients, and so in in different lineages, the morphological outcomes are similar by 176 

virtue of being produced by similar physical generative processes. Agent-behaviors, in contrast, 177 

are peculiar to disparate lineages (cell locomotion, for example, has very different physical and 178 

genetic bases in prokaryotes and eukaryotes, as does entry into the quiescent state), reflecting 179 

the evolutionary histories of the respective organisms. However, these behaviors can be 180 

analogous to one another, thus contributing to convergent morphological outcomes. Further, 181 

analogous intracellular dynamical behaviors such as biochemical oscillation can be organized 182 

by generic effects such as synchronization, leading to additional shared generic modes of 183 

organization. We conclude that the similar developmental programs of Myxobacteria and 184 

Dictyostelids are plausibly due to shared generic physical processes in coordination with 185 

analogous agent-like behaviors.   186 
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 187 

GENERIC MATERIAL PROPERTIES OF MYXOBACTERIAL AND DICTYOSTELID 188 

MULTICELLULAR MASSES 189 

Based on the observation that animal life is characterized by a restricted set of basic forms and 190 

patterns, Newman and co-workers advanced the conceptual framework of “dynamical patterning 191 

modules” (DPMs). DPMs are defined as sets of gene products and other molecules in 192 

conjunction with the physical and physicochemical morphogenetic and patterning processes 193 

they mobilize in the context of multicellularity (Newman and Bhat, 2008; Newman and Bhat, 194 

2009). These include phenomena such as adhesion and differential adhesion, and reaction-195 

diffusion effects. This framework emphasizes that the material nature of a developing organism 196 

makes it subject to generic physical processes (i.e., those common to living and nonliving 197 

viscoelastic and excitable systems) and that they readily exhibit morphological motifs – layers, 198 

segments, protrusions – Inherent to the respective materials. The term “module” is employed to 199 

highlight the semi-autonomous action of DPMs in determining specific spatial patterns and 200 

structures. But the DPMs also interact during development and can thus be conceptualized as a 201 

complex “pattern language” for generating organismal form (Hernández-Hernández et al., 2012; 202 

Newman and Bhat, 2009). This approach is distinguished from a purely “tissue physics” 203 

framework since it also recognizes the relevance of the cells as repositories of genetic 204 

information, making such systems subject to evolutionary processes not applicable to non-living 205 

matter. 206 

Even when the similarity in the mesoscopic (i.e., physics of the middle scale) properties of 207 

living and certain kinds of non-living matter is recognized, it should not be taken to imply that 208 

they are constituted in the same way. The liquid or solid nature of living tissues does not arise 209 

from the same subunit-subunit interactions that endow non-living materials with these 210 

properties. This is particularly the case with the liquid-like state of animal tissues. Instead of the 211 

thermal vibration- driven Brownian motion that causes the molecular subunits of non-living 212 

liquids to move randomly, the cells in animal tissues move actively by ATP-dependent 213 

cytoskeleton-generated forces, which in the absence of external signals is also random. Despite 214 

continually changing their neighbors, subunits of nonliving liquids cohere due to the weakly 215 

attractive electronic interactions that hold them together. The cells of developing animal tissues 216 

also remain cohesive despite their translocation, but for a different reason: the homophilic 217 

attachment proteins (classical cadherins) that mediate their transient attachment extend through 218 

the cells’ membranes to form stable connections between adhesive and motile functions 219 

(Newman, 2019b). In plant and fungal tissues, instead of the charge-based or covalent bonds of 220 
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the atomic or molecular subunits of non-biological solids, the cells are cemented together by 221 

pectins and glycoproteins which are subject to unique forms of reversible remodeling (Benítez et 222 

al., 2018; Hernández-Hernández et al., 2012). Because these generic properties are dependent 223 

on evolved biological, rather than purely physical effects, the various viscoelastic and 224 

deformable solid materials that constitute living tissues have been termed “biogeneric” matter 225 

(Newman, 2016).  226 

In the following, we describe some of the generic and biogeneric properties and processes 227 

of Myxobacteria and Dictyostelia multicellular masses and compare these properties to those 228 

implicated in animal development. Then, we describe the molecular components that establish 229 

and mobilize these properties in both Myxobacteria and Dictyostelia. Next, we highlight some 230 

developmental phenomena in these organisms and evaluate the extent to which these can be 231 

explained by generic physical behaviors, and what is left unaccounted for. Finally, we describe 232 

the agent-like behaviors of the subunits (bacteria and amoeba) of the two systems, discuss their 233 

similarities and differences, and discuss how analogous agent behaviors coordinate with and 234 

complement the described generic properties, and potentially account for the common 235 

developmental modes of Myxobacteria and Dictyostelia.  236 

 237 

Adhesion- and matrix-based cell-cell association 238 

Cell adhesion is the defining characteristic of multicellular organisms and the nature and 239 

strength of cell bonding is a major determinant of tissue properties (Forgacs and Newman, 240 

2005; Mora Van Cauwelaert et al., 2015; Niklas and Newman, 2019). In animals, cell-cell 241 

adhesion is mediated by membrane proteins such as cadherins that permit cells to be 242 

independently mobile and capable of moving relative to another while remaining cohesive. As 243 

noted above, the animal tissues from which embryos and organs develop behave formally like 244 

liquids (Newman, 2016). 245 

In D. discoideum, cell-cell adhesion at early stages of development involves the action of 246 

several proteins including the immunoglobulin-like DdCAD-1 and the glycoproteins gp80 and 247 

gp150 whose expression and activities are tightly regulated during the different stages of 248 

development (Coates and Harwood, 2001). Later in development, when cells have entered into 249 

streams and cell density has increased, the cells are also embedded in cellulose-based 250 

matrices that provide the basis for adhesion in cellular conglomerates (Huber and O'Day, 2017). 251 

In the case of M. xanthus, persistent cohesion is correlated with the secretion of thick fibrils, 252 

composed of carbohydrates and proteins, that coat the cell surface and constitute an 253 

extracellular matrix that interconnects the cells (Arnold and Shimkets, 1988; Behmlander and 254 
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Dworkin, 1994a; Behmlander and Dworkin, 1994b). Chemical or genetic disruption of fibrils 255 

causes defects in agglutination and failures in social and developmental behaviors. In a similar 256 

fashion to the animals, cell-cell adhesion in Myxobacteria and Dictyostelia depend, to different 257 

degrees, on the presence of divalent cations (Lin et al., 2006; Shimkets, 1986). 258 

Both Myxobacteria and Dictyostelia also have strong associations with external substrata 259 

during their pre-culmination stages of development. The closest analogy in animal systems is 260 

the interaction of cell layers in eumetazoans with internally generated planar basal laminae, 261 

which are not generally present in the earliest diverging and morphologically simplest 262 

metazoans, sponges and placozoans. In both Myxobacteria and Dictyostelia cells are more 263 

loosely associated with one another as they interact with the substratum than are the cells in 264 

planar animal epithelia. In the non-animal systems, cell substratum interactions depend on focal 265 

adhesions that indirectly (in contrast to directly in animal tissues) mediate communication 266 

between the substratum and the actin cytoskeleton, where they also provide the foundation for 267 

cellular motility (Faure et al., 2016; Fukujin et al., 2016).  268 

A key difference between the respective lineages is that dictyostelid cells only engage in 269 

persistent cell-cell interactions shortly after starvation, whereas extensive cell-cell adhesion and 270 

interactions take place among myxobacterial cells through their entire life cycle. While the 271 

mechanisms involved in cell-cell and cell-substratum contact between Myxobacteria and 272 

Dictyostelia are different, in both cases the bonds between adjacent cells are weak enough to 273 

allow cells to rearrange relative to one another during aggregation and shortly after mounds are 274 

formed. Therefore, aggregating cells in these lineages behave like non-living liquids, exhibiting 275 

streaming and rippling behaviors characteristic of such materials. This contrasts with 276 

monolayered animal tissues (epithelia) which, though also having liquid-like properties in the 277 

plane, bind too strongly to their intra-organismal substrata, basal laminae, to manifest similar 278 

fluid-like behaviors at the planar interface (Mittenthal and Mazo, 1983).  279 

Unlike Dictyostelia, in Myxobacteria some type of cell-cell adhesion or matrix embedment is 280 

present throughout the whole life cycle, causing cellular masses to exhibit liquid-like behaviors 281 

in both vegetative and developmental stages (Thutupalli et al., 2015). During predation, cells 282 

align and move concertedly into ripple-like travelling waves (Zhang et al., 2012). Once 283 

development has started, M. xanthus aggregation is largely driven by entropy minimization 284 

through reduction of the surface area on which the collective cell population contacts the 285 

substratum (Bahar et al., 2014). This is a comparable behavior to that of liquid droplets, where 286 

individual subunits or clusters move into larger droplets of larger volume but smaller contact 287 

area with the surface. In Myxobacteria, phase separation has not been implicated in sorting of 288 
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cell types inside fruiting bodies. However, since spores are coated by material that increases 289 

cell cohesiveness, differential adhesion likely contributes to the spontaneous sorting out of 290 

spores from peripheral rod cells, reflecting their liquid-like properties. 291 

It is important to distinguish the liquid-like properties of both Dictyostelia and Myxobacteria 292 

cell streams and masses from that of embryonic animal tissues. In epithelioid animal tissues the 293 

cells are directly attached to their neighbors by transmembrane cadherins which maintain strong 294 

cohesivity while permitting rearrangement. This is consistent with persistent apicobasal 295 

polarization that allows for the formation of lumens within cell masses, and planar cell 296 

polarization that permits elongation and other reshaping of tissues by intercalation and 297 

convergent extension, a liquid-crystalline like phase transformation. In Dictyostelia, the cells are 298 

embedded in cellulose-based matrices that enable cell rearrangement and hence the liquid-like 299 

behaviors described above (Huber and O'Day, 2017). However, the lack of direct engagement 300 

in this attachment mode with the cytoskeleton makes cell polarization, even when it occurs, 301 

transient and unconducive to lumen formation or stable intercalation (Manahan et al., 2004; 302 

however, see Hayakawa et al. (2020)). Cells of Dictyostelia also have a more pronounced 303 

chemotactic response to extracellular signals than most animal embryonic cells, which 304 

contributes to their particular version of liquid-tissue properties (Tan and Chiam, 2014) (see 305 

below). 306 

The glycoprotein-based associations of Myxobacterial cells are also too transient, and their 307 

polarity too rapidly reversible, to allow lumens to form, at least until solidification occurs during 308 

fruiting body formation (see below). However, the cells are stably elongated by default, and thus 309 

readily form liquid crystalline-like domains as in some animal tissues (Thutupalli et al., 2015). 310 

The rapid relative movement of the cells, though, causes these to be only local and temporary. 311 

 312 

Solidification 313 

The generic-type fluid-to-solid transitions seen during development of the aggregative species 314 

can productively be considered in relation to well-studied ones in animal embryogenesis. Animal 315 

tissues during early stages of development, as noted above, behave in important ways like non-316 

living liquids. As development proceeds, however, some tissues undergo a transformation 317 

where cell movements become constrained and the cellular mass behaves more like a solid 318 

(Newman, 2019b). In these tissues, solidification may provide increased mechanical integrity, 319 

and new morphological outcomes and constructional elements (e.g., exo- and endoskeletons) 320 

arise with the physical properties of these materials. The most typical way solidification occurs is 321 

by the deposition of stiff extracellular matrices (ECM), consisting of fibrous and nonfibrous 322 
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proteins such as collagen and elastin, covalently linked to, or complexed with 323 

glycosaminoglycan-type polysaccharides. These ECMs can also become mineralized, as in 324 

bone and tooth. More recently, “jamming,” a liquid-to-solid transition known from colloid physics 325 

(Bi et al., 2011) has been shown to occur in liquid-state tissues as a result of increased  cell-cell 326 

adhesivity (Mongera et al., 2018). 327 

In D. discoideum, cells are embedded in an ECM that once aggregation is complete defines 328 

the boundaries of the aggregate. Aggregation in this and related species leads to the formation 329 

of a migratory “slug” (see below), which once it reaches its final position, forms a fruiting body 330 

by building up a stalk that takes cellular material away from the surface, and in which terminal 331 

cell differentiation takes place. Membrane proteins involved in cell-cell adhesion are expressed 332 

in a cell-type dependent fashion. Spores and stalk cells phase separate, in part, due to the 333 

resulting differential adhesion, in agreement with the expected behavior of immiscible liquids 334 

(e.g., water-oil mixtures), although other factors such as chemotaxis and differential cell motility 335 

are also involved (see below) (Bretschneider et al., 2016; Raper, 1940). 336 

During fruiting body elevation deposition of ECM, is required for the stiffening and 337 

construction of the stalk (Palsson, 2008) (Dickinson et al., 2012). Solidification occurs unevenly 338 

across the cellular mass. While the movement of cells in the stalk becomes constrained 339 

because of the ECM, the remaining cells move upwards as the stalk continues to be built up 340 

following the expected dynamics of solidifying non-living liquids. In Myxobacteria, deposition of a 341 

stiff ECM appears to be the most important factor in aggregation, but the “solidification” of 342 

maturing fruiting bodies may also involve jamming (Hu et al., 2012; Liu et al., 2019; Thutupalli et 343 

al., 2015) see below).  344 

 345 

Differential loss of mass 346 

In animal morphogenesis, differential loss of mass can be achieved through programmed cell 347 

death (e.g., apoptosis, autophagy and necrosis) where, in addition to acting as cue for signaling 348 

pathways, it can also induce tissue reshaping by cell elimination or mobilization of mechanical 349 

forces (Monier and Suzanne, 2015; Suzanne and Steller, 2013). In both Myxobacteria and 350 

Dictyostelia, it has been suggested that programed cell death may act as a mechanism for 351 

nutrient release and recycling that can be employed for the remaining cells in the population as 352 

source of energy and cellular materials (Boynton et al., 2013; Mesquita et al., 2017). However, 353 

localized developmental lysis may also be relevant in mechanical reshaping multicellular 354 

microbial masses. For example, localized cell death mobilizes mechanical forces that are 355 

instructive for the generation of key features during development of B. subtilis biofilms (Asally et 356 
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al., 2012). In Myxobacteria, where most of the cells in the initial population undergo 357 

developmental lysis, lysed cells may serve to strengthen the ECM (Hu et al., 2012). Specifically, 358 

exopolysaccharides embedded in the ECM interact with extracellular DNA. As a consequence, 359 

the ECM exhibits greater strength and stress resistance (Hu et al., 2012). While the origin of this 360 

extracellular DNA remains unclear, it may be released by cells after lysis. In Myxobacteria and 361 

Dictyostelia, peripheral rods and stalk cells, respectively, die after the stalk has been built up. In 362 

both, cell death is a consequence of nutrition deprivation. In the dictyostelids, it shows 363 

similarities as well as differences with the manner in which cell death is regulated in metazoan 364 

tissues (Arnoult et al., 2001; Cornillon et al., 1994; de Chastellier and Ryter, 1977; Kawli et al., 365 

2002). 366 

Additional generic effects can arise in cell masses from, e.g., synchronization of intracellular 367 

biochemical oscillations. Some of these will be characterized below, after the roles of such 368 

pivotal cellular functions in individual cell behavior are described.  369 

  370 

AGENT-LIKE BEHAVIORS IN MYXOBACTERIA AND DICTYOSTELIA 371 

Previous descriptions of the development of embryonic animal and plant tissues in terms of 372 

material properties of multicellular assemblages have accounted for key morphological features 373 

on the basis generic physical processes pertaining to these materials without invoking the idea 374 

that individual cellular subunits of such materials act as autonomous agents in creating 375 

multicellular forms and patterns (see, e.g., (Benítez et al., 2018; Newman, 2016). Although the 376 

constituent cells in these generic accounts are assumed to carry out metabolic and synthetic 377 

functions necessary to sustain life, to change their state (including polarity) in response to 378 

external signals (Niklas et al., 2019), and (in the case of animal systems) locomote randomly, 379 

the materials-based perspective does not involve formal sets of rules governing cellular 380 

interactions of individually mobile cells. Similarly, as seen in the previous section, several 381 

important aspects of Myxobacteria and Dictyostelia development can be explained by 382 

considering them as generic materials, that is, considering the cell streams and masses as 383 

generic liquid-like or solid-like materials. 384 

However, attempts to computationally model aggregation of Myxobacteria and Dictyostelia 385 

cells and the resulting multicellular masses based on generic mesoscale physics have found the 386 

need to incorporate agent-like behaviors of the cells themselves into the models to capture the 387 

relevant behaviors (Bahar et al., 2014; Fujimori et al., 2019; Marée and Hogeweg, 2001; 388 

Thutupalli et al., 2015). (Following standard usage (Thorne et al., 2007) we define agents as 389 

autonomous entities acting according to internal rules in a shared environment.) For biological 390 
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agents such as Myxobacteria and Dictyostelia cells these “rules” depend on intracellular 391 

dynamics of molecules and pathways. 392 

In biological development, agent-based phenomena pertain to the semi-autonomous 393 

activities of individual cells or cells in transient associations with each other. This contrasts with 394 

the collective effects governed by generic physical processes operating at the mesoscale. 395 

Unlike nonliving systems, the subunits of tissues, aggregates, and presumptive aggregates are 396 

living cells that are internally complex and chemically, mechanically, and electrically active and 397 

potentially excitable. Cell dynamics can modulate the properties of biomaterials, making a liquid-398 

like animal tissue liquid-crystalline, for example, or a solid plant tissue locally expansible. When 399 

cells act as individuals, however, alterations in their internal states can give them agent-like 400 

properties when interacting with other such agents or features of the environment. The reality of 401 

this distinction is illustrated by a recent study of neural crest migration where, exceptionally in 402 

animal systems, cells navigate directionally through surrounding tissues in loose association 403 

with each other. Consequently an agent-based modeling approach was deemed necessary 404 

(Giniunaite et al., 2020a).  405 

In certain cases, generic properties and agent-like effects mobilize the same intracellular 406 

activities and processes. For instance, random cell movement, driven by actomyosin-based 407 

contractile and protrusive activity, is essential to the liquid-like state of animal tissues. These 408 

processes in individual amoeboid cells can also be mobilized for directional locomotion. 409 

Similarly, concerted induction of cell polarity in animals and plants can impart anisotropy to the 410 

respective tissues, changing their shapes and topology (Nance, 2014; Niklas et al., 2019). In 411 

single amoeboid or bacterial cells, in contrast, polarity is essential in the sensing of chemical 412 

and substrate gradients and directed navigation. Lastly, intracellular biochemical oscillation in 413 

animal, amoebal, or bacterial cell collectives can attain synchrony, thereby causing it to behave 414 

as a “morphogenetic field” in which cell states are coordinated at long distances across the 415 

multicellular mass (Bhat et al., 2019 and references below). 416 

As described above, multicellular systems can exhibit predictably similar morphological and 417 

patterning outcomes as a result of mobilizing generic mesoscale physics. Agent-like behaviors, 418 

however, are not generic in the same in sense, and their outcomes do not have the same kind 419 

of shared inherency, since the rules that individual cells follow in relating to other cells and their 420 

external environments are specific to each lineage and dependent on their respective 421 

evolutionary histories. As mentioned above, and exemplified in the phenomena of directed 422 

migration, regulated quiescence, and oscillation-based cell-cell communication, agent-like 423 

behaviors of cells as distantly related as Dictyostelia and Myxobacteria can sometimes have 424 
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analogous morphological outcomes. This, combined with the generic effects with which they 425 

interact in the development of multicellularity, contribute to the strikingly similar morphological 426 

motifs in these disparate systems. 427 

 428 

Directed migration 429 

During animal embryogenesis, the displacements of cells relative to another can be largely 430 

understood in terms of random movements analogous to the Brownian motion of the molecular 431 

subunits of non-living liquid systems (Newman and Bhat, 2009). In Dictyostelia and 432 

Myxobacteria, in contrast, cell trajectories deviate from the undirected motion of most animal 433 

tissues due to the action of signaling and regulatory mechanisms. These bias the direction and 434 

speed of cell movement in response to local cues in ways that may change as development 435 

progresses. We suggest that some particularities of Dictyostelia and Myxobacteria observed at 436 

the mesoscale (notwithstanding their shared liquid-like behaviors) derive from the distinct 437 

mechanisms underlying directed cell migration in these two groups. 438 

In Dictyostelia, cell movement occurs by amoeboid motion, which is driven by cytoplasmic 439 

actomyosin-based contractile and protrusive activity just as in animal cells (Fukui, 2002). In 440 

contrast to the generally random cell locomotion seen in animal tissues, however, Dictyostelia 441 

exhibit both random movement and directed movement via chemotaxis, which can be thought of 442 

as a biased random walk. Amoebae seek food by chemotaxis. Aggregation is also mediated by 443 

chemotaxis, but to an aggregation pheromone (e.g., cAMP). Chemotaxis remains essential for 444 

all subsequent developmental stages (Du et al., 2015). It dependent on  both the physical 445 

process of diffusion of the chemoattractant (which is not a generic tissue mechanism since it is 446 

outside the cell mass) and agent-like behavior in response to the chemoattractant signaling at 447 

the cellular level. Specifically, chemotaxis is a quantifiable outcome of directional pseudopod 448 

extension (Chopra and Nanjundiah, 2013). 449 

In D. discoideum, the response to the chemoattractant cyclic AMP (cAMP) involves an 450 

oscillatory dynamics of excitation and adaptation (see below). The formation of streams with 451 

high cellular density is facilitated by the collective movement of cells coordinated by chemotaxis 452 

towards higher concentrations of cAMP. While cellular movements are most prominent at the 453 

aggregation stages, extensive cell translocation still take place at later stages of the 454 

development with chemotaxis biasing the individual movements. Cell movements remain 455 

operational in the concerted movement of cells within a slug (Singer et al. (2019) but see 456 

Hashimura et al. (2019). Finally, in slugs and maturing fruiting bodies, chemotaxis operates 457 

jointly with differential adhesion to drive cell sorting (an authentically generic tissue process) 458 
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where it also provides the basis for fruiting body elongation (Matsukuma and Durston, 1979; 459 

Schaap, 2011; Tan and Chiam, 2014). 460 

In the case of Myxobacteria, where cells are rod-shaped, the presence of protein 461 

complexes that promote motility defines a lagging and a leading pole (Guzzo et al., 2018). Cells 462 

in transient contact with their neighbors move along their long axis in the direction of the leading 463 

pole, with reversals in the direction of movement being a major agent-type behavior in 464 

Myxobacteria motility. Reversals occur by switching the cellular polarity (i.e., the leading pole 465 

turns into the lagging pole and vice-versa) and net cellular displacement is influenced by the 466 

reversal frequency (Cotter et al., 2017). At the molecular level, reversals are controlled by the 467 

Frz and MglAB intracellular oscillators (Guzzo et al., 2018; Igoshin et al., 2004). Directed 468 

migration is favored during development by a reduction in the frequency of reversal that allows 469 

cells to retain their direction and aggregate. This frequency reduction is stimulated by cell-cell 470 

contacts, likely involving the exchange of intercellular signals, which become more frequent as 471 

aggregation proceeds and cellular density increases (Cotter et al., 2017; Zhang et al., 2018). An 472 

additional mechanism underlying directed migration in Myxobacteria is stigmergy, by which 473 

individual cellular movement is biased by cues left behind by other cells (Gloag et al., 2016). 474 

Specifically, while moving over solid surfaces, M. xanthus cells deposit slime material that forms 475 

trails over which other cells travel preferentially. 476 

In both Myxobacteria and Dictyostelia, the interplay between directed migration, an agent-477 

like behavior, and generic material properties highlights the need to consider them together in 478 

accounting for development. In D. discoideum, cell sorting requires agent-like behaviors 479 

(directed migration) and generic properties (differential adhesion) for its completion. In 480 

Myxobacteria mesoscopic movement patterns are the result of the joint effect of the agent-like 481 

behavior of directed migration and generic liquid-like behavior enabled by transient cell-cell 482 

adhesion. In addition to these, the different phenomena observed along Myxobacteria life cycle 483 

also require cellular alignment that may occur spontaneously as a generic property of rod-484 

shaped particles and cells (Janulevicius et al., 2015; Volfson et al., 2008).  485 

 486 

Cessation of movement and quiescence 487 

Development in M. xanthus and other myxobacteria starts as a response to starvation (Dworkin, 488 

2007). Once it is sensed, ribosomes stall and the enzyme RelA increases the intracellular 489 

concentration of the tetra- and pentaphosphate alarmones (p)ppGpp which, as in most bacteria, 490 

induces the so-called stringent response (SR; (Boutte and Crosson, 2013; Cabello et al., 2017; 491 

Chatterji and Ojha, 2001; Manoil and Kaiser, 1980a; Manoil and Kaiser, 1980b; Shimkets, 492 
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1999). As (p)ppGpp accumulates, proteases are synthesized and exported, leading to an 493 

extracellular mixture of amino acids and peptides (A-signal), where it mediates a quorum-494 

sensing mechanism that enables a coordinated population-level response to starvation, 495 

including specifying the minimal cell density required for initiation of development (Kuspa et al., 496 

1992). Myxobacteria respond to nutrient depletion via the SR, but also require high cell density 497 

to initiate fruiting body and spore development. To effect this, in addition to conserved SR 498 

components, Myxobacteria produce CgsA, which positively regulates (p)ppGpp and is in turn 499 

positively regulated by it, and SocE, which suppresses and is suppressed by the production of 500 

(p)ppGpp (Boutte and Crosson, 2013; Crawford and Shimkets, 2000a; Crawford and Shimkets, 501 

2000b). Therefore, when A-signal rises  to the concentration where it promotes aggregation 502 

(Bretl and Kirby, 2016), which in non-aggregative bacteria would turn off the SR (since the A-503 

signal components serve as nutrients), the downregulation of SocE permits CgsA to keep 504 

(p)ppGpp (which is required for spore formation) elevated during development. 505 

A proteolytic cleavage product of CsgA serves as another extracellular signal which is 506 

required for fruiting body development and sporulation (C-signal; (Giglio et al., 2015; Gronewold 507 

and Kaiser, 2002). The specific mechanisms by which C-signal mediates intercellular 508 

communication are not understood, but it appears to be involved in cell-to-cell adhesion and 509 

coordination of cell movement during development (Sogaard-Andersen et al., 2003) and is a key 510 

element enabling multicellular aggregation and cellular differentiation (Holmes et al., 2010; 511 

Julien et al., 2000). In addition to A- and C-signaling, at least three other signals, termed B-, D- 512 

and E-signal, mediate intercellular communication and coordination of individual cells during 513 

development, but their specific mechanisms remain unclear (Bretl and Kirby, 2016; Kaiser, 514 

2004). 515 

The SR is largely conserved in bacteria where it typically mediates proliferative and 516 

biosynthetic quiescence in response to nutrient depletion and other stresses. While it is 517 

therefore likely to have been present in the unicellular ancestor of myxobacteria, the genetic 518 

novelties represented by the intracellular CsgA-SocE circuits and the extracellular A-, B-, C-, D- 519 

and E-signals co-opted this behavior to the transition to multicellularity. By making the SR cell 520 

nonautonomous, these components and their interactions form a set of rules that enable cells of 521 

M. xanthus to act as agents with respect to both cessation of movement and active signaling 522 

(Arias Del Angel et al., 2017). As demonstrated in other myxobacteria such as 523 

Anaeromyxobacter dehalogenans, and Sorangium cellulosum, it likely maintains aggregates 524 

and promotes the differentiation of their constituent cells into quiescent spores and other cell 525 

types (Huntley et al., 2014; Knauber et al., 2008). 526 
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Eukaryotic cells like those of Dictyostelium do not have a bacterial-type stringent response, 527 

but they have their own conserved sensor of nutrient depletion, the enzyme AMP-dependent 528 

protein kinase (AMPK). Among other effects, AMPK inhibits the energy utilization hub 529 

mechanistic target of rapamycin complex-1 (mTORC1) under starvation conditions (Hardie, 530 

2014). In animal systems AMPK plays developmental roles in, for example, inducing quiescence 531 

in germline stem cells (GSCs) in the nematode Caenorhabditis elegans. In the absence of 532 

AMPK, the GSCs overproliferate and lose their reproductive capacity, leading to sterility 533 

(Kadekar and Roy, 2019). Significantly, in relation to the discussion above of the SR in 534 

Myxobacteria quiescence, the function of AMPK in C. elegans development has been 535 

reconfigured evolutionarily to be cell nonautonomous, with AMPK activity in somatic cells being 536 

transmitted to GCSs via small RNAs (Kadekar and Roy, 2019). But the quiescence-inducing 537 

role of AMPK is conserved across the eukaryotes, also appearing in plants and fungi (Guerinier 538 

et al., 2013; Zhang and Cao, 2017). 539 

In Dictyostelia, AMPK was found to regulate aggregate size and patterning, as well as cell 540 

fate choice and stalk-spore case boundary formation in the fruiting body (Maurya et al., 2017). 541 

Deletion of the gene specifying AMPK resulted in generation of numerous small-sized 542 

aggregates (compared to wild type cell populations) that develop asynchronously to form few 543 

fruiting bodies with small spore masses and long stalks. In contrast, when the gene is 544 

overexpressed, cells form fruiting bodies with small stalks and large spore masses (Maurya et 545 

al., 2017). Although AMPK itself functions cell autonomously, its regulation depends on 546 

interaction with other cells, mediated by soluble factors. For example, the secreted inhibitor of 547 

cell-cell adhesion Countin (Jang and Gomer, 2008)  is upregulated in AMPK null cells, and 548 

conditioned media collected from them cause wild-type cells to form smaller aggregates 549 

(Maurya et al., 2017). 550 

As with Myxobacteria, the starvation response triggers development at the expense of 551 

growth. Jaiswal and coworkers have shown that although in Dictyostelium, mTORC1 function is 552 

indeed inactivated via AMPK upon starvation, development is nonetheless initiated. These 553 

investigators have identified of a class of essential starvation-upregulated, developmentally 554 

associated signaling genes and downregulated growth genes (Jaiswal and Kimmel, 2019; 555 

Jaiswal et al., 2019). Based on the earlier work of Maurya et al. (2017), downregulation of the 556 

paracrine adhesion inhibitor Countin appears to be a component of this response, suggesting as 557 

with Myxobacteria, a conserved starvation-sensing mechanism may have been recruited into a 558 

mechanism of multicellular development by one or more factors that mediate communication 559 

among agent-like cells. 560 
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 561 

OSCILLATIONS AS A BASIS FOR BOTH GENERIC AND AGENT-TYPE BEHAVIORS 562 

Both Myxobacteria and Dictyostelia exhibit intracellular oscillations, which in the first case 563 

mainly involves cell polarity and direction of motion reversals, and in the second, production of 564 

chemoattractant molecules such as cAMP. Oscillations can mediate global effects if they come 565 

into synchrony in established cell masses. This produces developmental fields in which the 566 

constituent cells acquire a uniform state in a key modulator (e.g., the transcriptional coregulator 567 

Hes1) and therefore are poised to respond to developmental signals in a coordinated fashion. 568 

This occurs in animal systems, for example during the formation of somites, tandem blocks of 569 

tissue along the central axis of vertebrates (Hubaud and Pourquié, 2014), and the digits of the 570 

tetrapod limb (Bhat et al., 2019). The synchronization of oscillators can be considered a generic 571 

physical effect since its physical basis is the same regardless of the underlying basis of the 572 

oscillation. 573 

But oscillations of individual cells can also provide component of agent-like behavior, 574 

particularly in species that develop by aggregation. For example, they can permit cells to signal 575 

one another over distances provided they are specifically receptive to periodic stimulation. The 576 

myxobacterium M. xanthus exhibits a quasi-periodic reversal in the direction of motion. Reversal 577 

in the gliding cells are achieved by dynamic cell polarity that switches direction by 180° (Zusman 578 

et al., 2007). As noted above, regular reversals are driven by the relocalization of polarity and 579 

motility proteins between the leading and lagging poles of the cells and allow for diverse 580 

collective modes, such as rippling in nutrient-rich media (Mauriello et al., 2010; Shimkets and 581 

Kaiser, 1982). Reversals also appear to be critical for complex collective behavior before and 582 

during development (Blackhart and Zusman, 1985; Wu et al., 2009). 583 

Indeed, it appears that reversal frequency in M. xanthus drives a phase transition from two-584 

dimensional flocking to one-dimensional streaming, therefore modulating the complex behaviors 585 

that enable the robust formation of fruiting bodies (Thutupalli et al., 2015). Because the reversal 586 

is coupled to intercellular signaling pathways (C-signal), this periodic switch may be 587 

synchronized between different cells and favor development (Igoshin et al., 2004). A refractory 588 

period, i.e., time lag in response to the environmental signal(s), in the molecular circuit 589 

responsible for inducing the polarity reversal, has been proposed to underlie the rippling 590 

dynamics of the bacterial sheet (Guzzo et al., 2018).  591 

As in Myxobacteria, oscillations mediate collective behaviors in Dictyostelia, but they are 592 

also the basis of agent-like behaviors in these social amoebae. Initially isolated cells of D. 593 

discoideum aggregate by chemotactic movements in response to the release of periodic pulses 594 
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of cyclic AMP, which they also amplify and relay. Specifically, when stimulated with extracellular 595 

cAMP, cells respond by synthesizing and secreting more cAMP. This results in non-dissipating 596 

waves of cAMP which guide aggregation of individual amoeboid cells (Tomchik and Devreotes, 597 

1981). The relay requires a refractory period, or else there could just be an explosive production 598 

of cAMP with no local gradients to guide cells into aggregates. So, a nonconstant, ultimately 599 

periodic, production of the chemoattractant by the dispersed cells is intrinsic to the patterning 600 

process. 601 

Since the cells in this organism start out as individuals, a key question in characterizing 602 

their agent-like behavior is the relation of single cell oscillations to the global oscillations in the 603 

organizing field of cells (Nanjundiah and Wurster, 1989). Isolated cells are capable of oscillating 604 

(Satoh et al., 1985), but it has been unclear whether such oscillations initiate the propagating 605 

waves in the “excitable medium” constituted by the field of cells (Cohen and Robertson, 1971; 606 

Durston, 1973). There are two physical possibilities. In the first, a set of oscillators (the 607 

amoebae in this case) with identical period, but randomly distributed phases come into 608 

synchrony or attain a spatiotemporal propagating mode through weak coupling, by a diffusible 609 

chemical, for example (Garcia-Ojalvo et al., 2004; Kuramoto, 1984; Strogatz, 2003). The second 610 

possibility is that cells only become oscillatory as a result of collective interactions, the global 611 

behavior being an emergent process. Gregor et al. (2010) investigated these possibilities 612 

experimentally and via mathematical modelling, and while they confirmed that isolated cells are 613 

capable of oscillating, they concluded that the second possibility, what they term “dynamical 614 

quorum sensing,” was the way that globally synchronized waves are generated in Dictyostelium. 615 

 616 

INTERPLAY OF GENERIC PROPERTIES AND AGENT EFFECTS 617 

As we have shown, aggregative multicellular systems can change their organizational states as 618 

a result of the cell masses they form being shaped and reshaped by mesoscopic physical 619 

effects, and also by lineage-specific, “custom-built” agent-like behaviors. A schematic 620 

representing some of these factors and determinants is shown in Fig. 2. In some cases, 621 

however, developmental transformations cannot be attributed to either category of effect alone 622 

but can only be understood as outcomes of a combination of the two acting in concert. A newly 623 

characterized example of this described by Hayakawa et al. (2020), in which an ordered, liquid-624 

crystalline-like field of polarized D. discoideum amoebae organizes by phase separation, from 625 

populations of cells of a mutant strain incapable of chemotactic signaling via cAMP. This novel 626 

patterning phenomenon, which has generic-type features, occurs by “contact following 627 
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locomotion,” a behavior whose agent-type role in the collective motion is supported by 628 

simulations. 629 

In the remainder of this section we will discuss two long-studied cases of such generic-630 

agential synergy: (i) the formation and migration of multicellular slugs in dictyostelids, and (ii) 631 

formation of complex morphologies in fruiting bodies of both dictyostelids and myxobacterial 632 

species. 633 

  634 

Slug formation in Dictyostelium 635 

When starvation drives D. discoideum into development the liquid-like streams that form 636 

culminate in aggregation centers. The mature aggregates, slugs, migrate over the surface in 637 

response to light and temperature gradients. Inside the slug, moving cells form smooth flow 638 

patterns similar to those of individual particles in liquids (Vasiev and Weijer, 2003). The slug is a 639 

long (~1 mm), thin (~50 µm) cylindrical mass with a well-defined anterior tip that directs its 640 

movement. During aggregation and early slug formation presumptive stalk and spore cells are 641 

sorted out along the anterior-posterior axis, and their relative positions become inverted in a 642 

‘reverse fountain’ manner as the fruiting body forms. 643 

This process exhibits both generic mesoscopic properties but also agent-like behaviors of 644 

the constituent cells. Odell and Bonner (1986), for example, used a continuum mechanics 645 

model of viscous flow in which cells moved both longitudinally, in response to an anterior-646 

posterior cAMP gradient and transversely, in response to an unspecified gradient, to generate a 647 

rotational movement that could generate a rolling flow. Jiang et al. (1998) employed a discrete 648 

lattice model in which movement was determined by chemotaxis towards a center (the tip) and 649 

energetics (cell-cell adhesion), and found that with the right balance of the two forces, a 650 

reasonably correct pattern of sorting out resulted. Umeda and Inouye (2004) formulated a 651 

continuum model of a viscoelastic fluid made up of heterogeneous actively moving points (cells) 652 

that differed in various respects including their diffusive tendencies and abilities to offer 653 

resistance, and obtained, in addition to sorting out, plausible equilibrium shapes for the slug.  654 

Hogeweg, Marée, and coworkers combined agent-based and generic mechanisms – 655 

chemotaxis to cyclic AMP, differential adhesion and pressure generation - to simulate  the 656 

aggregation of cells, the correct spatial distribution of cell type and their self-organization into a 657 

fruiting body (Marée and Hogeweg, 2001; Marée, 2000; Marée et al., 2013; Savill and 658 

Hogeweg, 1997). Trenchard (2019) has proposed a different agent-based mechanism for 659 

sorting, one that depends on differences in speeds of movement and energetics. 660 

 661 
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Fruiting body branching 662 

In contrast to M. xanthus and D. discoideum which exhibit branchless fruiting bodies, many of 663 

the species in both of their lineages develop into branched structures (Schaap et al., 2006; 664 

Yang and Higgs, 2014). In Dictyostelia, branches develop as the product of either budding or 665 

from a secondary cellular mass generated through pinching off of the main cellular mass 666 

(Schaap et al., 2006). These mechanisms can lead to different branching patterns in different 667 

species, with in some cases arrays of secondary fruiting bodies arranged about a primary axis 668 

of stalk cells (Gregg et al., 1996). In Myxobacteria, where evidence is more limited, branches 669 

seems to develop exclusively by budding of the main cellular mass;  pinching off has not been 670 

reported in this group (Qualls et al., 1978). Also, regularity in the branch distribution, as 671 

observed for whorl-developing fruiting bodies in some Dictyostelia species, is not obvious. 672 

Cox and co-workers have carried out detailed studies on the genesis of the branching 673 

pattern in fruiting bodies of the dictyostelid Polysphondilium pallidum (now Heterostelium 674 

pallidum, Sheikh et al. (2018)), and their studies point to the integrated functioning of generic 675 

and agent-like processes (reviewed in Bonner and Cox (1995). P. pallidum/H. pallidum fruiting 676 

bodies are the result of secondary cellular masses being pinched off in regular intervals from the 677 

primary cell mass as it moves upward as the main stalk is formed (Byrne and Cox, 1987). The 678 

secondary masses turn into whorls of regularly spaced branches perpendicular to the main stalk 679 

(McNally et al., 1987; McNally and Cox, 1988). As in D. discoideum, P. pallidum/H. pallidum 680 

elongation involves chemotactic movements towards a cAMP gradient, the source of which is a 681 

set of cells found at the tip of the cellular mass. 682 

The mechanisms underlying pinching off of the secondary cellular masses remain 683 

unknown. However, since this takes place before branching, the cellular mass may still retain its 684 

liquid-like properties. Liquids may undergo pinch-off as a consequence of an imbalance of the 685 

velocities of individual subunits across the mass. If the velocities are sufficiently large, the 686 

adhesion forces will not be strong enough to keep the cellular subunits together and a (partial) 687 

pinch-off would occur. As with slug locomotion, described above, chemotaxis could induce a 688 

velocity gradient of the cells across the mass. Biased movement due to chemotaxis, along with 689 

the oscillatory intracellular dynamics, may help to explain the observed regularity in the spacing 690 

between the multiple secondary masses. This outcome, which is not trivially predicted from the 691 

generic behavior of the liquid-like primary mass, may thus depend on agent-like behavior. 692 

The secondary cellular mass remains attached to the stalk and rounds up as expected for a 693 

liquid composed of homogeneously cohesive particles (McNally and Cox, 1988). Branches 694 

developed from the secondary mass are regularly arranged across the plane perpendicular to 695 
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the main axis. The positions of the branches are proposed to be determined by a local 696 

activation-long range inhibition effect like that described by Turing (1952), although the 697 

components of this reaction-diffusion system have not been characterized (Cox et al., 1988). 698 

The mechanism of branching itself is more problematic, since it is not an expected 699 

morphology of liquid-like materials. Plant tissues, however, routinely undergo budding and 700 

branching, an effect that has been attributed to the inherent properties of their material identity 701 

as deformable solids (Benítez et al., 2018; Hernández-Hernández et al., 2012). These motifs 702 

are independently recurrent developmental outcomes in all lineages of photosynthetic 703 

eukaryotes, including the various polyphyletic algal clades and the monophyletic land plant 704 

clade, the embryophytes (Hernández-Hernández et al., 2012). Since both Dictyostelia and 705 

Myxobacteria undergo solidification via ECM deposition and possibly liquid-to-solid jamming in 706 

portions of the multicellular mass after aggregation has been completed, this might allow the 707 

multicellular masses to escape from the physical constraints imposed by the liquid-like behavior 708 

and acquire the properties of deformable solids for which budding and branching are easily 709 

achievable.  710 

In addition to the transition from a liquid-like behavior to a solid one, a differential increase 711 

of volume in the direction of the future branch is required to extrude from the main cellular mass 712 

a secondary mass that will bud and finally turn into a mature branch. In plants, this is achieved 713 

by localized cell proliferation in response to gradients of hormones (Benkova and Bielach, 2010; 714 

Vermeer and Geldner, 2015). In Myxobacteria and Dictyostelia, development proceeds with 715 

little, if any, cell division. One of two mechanisms, or a combination of them, might cause the 716 

required increment in volume: further deposition of ECM or expansion of individual cell volume. 717 

In either case, volume increase must occur in an irregular distribution over the mass, with foci of 718 

hyperplasia specifying the sites where branches will develop further. 719 

While some myxobacterial species also have branched fruiting bodies (see, e.g., Zhang et 720 

al. (2003)), the lack of conventional chemotaxis (although see Taylor and Welch (2008) for a 721 

chemotaxis-like effect in these organisms) and molecular networks for local activation-long 722 

range inhibition may account for pinch-off and regular patterning in branching, respectively, not 723 

being observed during fruiting morphogenesis in Myxobacteria. It should be noted that fruiting 724 

bodies in these species grow vertically in a series of tiers, each involving the addition of a cell 725 

monolayer. The rate of formation of new tiers is too rapid to be attributed to cell division, which 726 

suggests that cells may be recruited from lower layers (Copenhagen et al., 2020; Curtis et al., 727 

2007). This mechanism for vertical growth is robust in the face of diverse mutations and 728 

conditions, which suggest that it is an essential process in fruiting body morphogenesis (Curtis 729 
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et al., 2007). Since it has been reported that the deposition of tiers can be slightly asymmetrical 730 

(Curtis et al., 2007), it is possible that branching in Myxobacteria arises from the amplification 731 

and robust reinstitution of such asymmetries across generations. 732 

 733 

DISCUSSION 734 

Motivated by the parallelisms between the two major known lineages of multicellular 735 

aggregative organisms: the prokaryotic myxobacteria and the eukaryotic dictyostelids, we have 736 

reviewed the factors determining the main developmental events in these organisms. We 737 

suggest that as a consequence of cell-cell contact during aggregation, the nascent multicellular 738 

masses of each organism acquire liquid-like properties and thereby become subject to 739 

morphogenetic processes characteristic of such materials. This allows them to be studied, and 740 

in some respects explained, in terms of physical principles at the mesoscale. As expected from 741 

the physical theory, the cell aggregates can exhibit streaming, rippling, and rounding-up 742 

behaviors like those observed in non-living liquids.  743 

While the molecules that mediate liquid-type properties in the two classes of organisms are 744 

largely different, the physical processes mobilized at the multicellular scale are generic and in 745 

that sense are the “same.” Furthermore, later in development cellular masses solidify and 746 

behave as deformable solids, another category of material with nonliving counterparts with 747 

generic properties. For such materials, branching is a predictable morphological outcome. 748 

Although the behaviors in aggregating cells resemble those exhibited by non-living liquids, 749 

mathematical and computational models have also needed to include agent-based behaviors in 750 

addition to generic ones to achieve verisimilitude (Cotter et al., 2017; Fujimori et al., 2019; 751 

Janulevicius et al., 2015; Marée and Hogeweg, 2001). Unlike the molecular subunits of 752 

nonliving liquids, the cells constituting the multicellular masses can change and adapt their 753 

behaviors in response to external cues through complex regulatory and signaling pathways. We 754 

attribute the deviations of the dynamics and morphological outcomes of the multicellular masses 755 

from generic physical predictions to the contribution of agent-like behaviors, e.g., directed 756 

migration, regulated quiescence, oscillatory signal relay, reaction-diffusion coupling, of the cells 757 

themselves. Cells of clonally developing multicellular organisms can also exhibit agent-like 758 

behaviors (Christley et al., 2007; Giniunaite et al., 2020b; McLennan et al., 2020). While it is 759 

difficult to quantify the relative contributions that each class of phenomena makes to the 760 

respective developmental processes, considering the extent to which morphogenetic outcomes 761 

are predictable from generic physical considerations we suggest that morphogenesis of 762 
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Myxobacteria and Dictyostelia is more dependent on agent-like behaviors than that of animals 763 

or plants. This is almost certainly a function of their aggregative nature. 764 

Because of the relative indifference of generic processes to molecular variation (adhesion, 765 

for example, can be mediated by many different classes of proteins and glycans), the gene 766 

products that first mediated the production of a form or structure in a species’ earliest ancestors 767 

need not be the same one that is active in its present members. Consequently, the gene 768 

products that mobilize generic effects can differ widely in different classes of organisms (e.g., 769 

animals, plants, social amoebae and bacteria), and even in sister species, due to developmental 770 

system drift (True and Haag, 2001). In contrast, generic processes are part of the physical 771 

world, and therefore do not evolve per se, although the physics involved in a given lineage’s 772 

developmental routines can change over phylogeny (Newman, 2019a). 773 

Many of the genes involved in generic processes in animal and plant lineages predated or 774 

accompanied the emergence of multicellularity. In those lineages, morphogenesis and pattern 775 

formation can be characterized in terms of the dynamical patterning modules (DPMs) that 776 

mobilize specific physical forces and physicochemical effects to produce the respective 777 

structural motifs (Newman, 2019b; Hernández-Hernández, 2012; Benítez et al., 2018). Similarly, 778 

some gene products that shape dictyostelids and myxobacteria as multicellular materials were 779 

carried over from single-celled ancestors, as were some gene products involved in agent 780 

behaviors. However, as we have described with the M. xanthus stringent response suppressive 781 

products CsgA and SocE, and the D. discoideum starvation-regulated paracrine factor Countin, 782 

some agent-associated genes seem to be novelties of the social forms. 783 

While DPMs are, by definition intrinsically multicellular, agents are intrinsically individual – 784 

cellular, in the cases discussed here. Another important distinction is that agents are peculiar to 785 

the biological world, even if they are artifactual (e.g., robots). Thus, in contrast to generic 786 

materials, which have physically predictable macroscopic properties and behaviors, cellular 787 

agents have no such constraints on their activities. The rules they follow in developmental 788 

systems are as varied as cell behaviors (e.g., motility, secretion of ions, small and macro- 789 

molecules, electrical, chemical, and mechanical excitability) and responses to 790 

microenvironmental complexity permit. 791 

Early comparisons between Myxobacteria and Dictyostelia noted that the morphological 792 

outcomes of their respective developmental processes resembled one another to a remarkable 793 

extent despite their independent origins, the evolutionary distance between them, and the lack 794 

of gene-based homology in the relevant mechanisms in the two groups. Our attention to this 795 

phenomenon was inspired by comparative analysis of the two lineages by Bonner (1982) and 796 
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Kaiser (1986). Both favored explanations based on convergent selection for adaptation to 797 

similar ecological niches, with a focus on common developmental mechanisms such as cell 798 

adhesion, communication and oscillations (Kaiser, 1986) and “developmental constraints” such 799 

as that incurred by increased size (Bonner, 1982; Bonner, 2015). Based on the literature 800 

reviewed here, we conclude that the similar developmental trajectories and outcomes of 801 

Myxobacteria and Dictyostelia are more likely due to shared generic physical processes in 802 

coordination with analogous agent-type behaviors than to convergent evolution under parallel 803 

natural selection regimes. However, we acknowledge, in agreement with both Kaiser (1986) and 804 

Bonner (2015), that ecology, in the form of exploitation or construction of suitable environmental 805 

niches, is an essential factor in accounting for the establishment of these social phenotypes. 806 

Our analysis extends beyond the molecular mechanisms considered by these earlier 807 

investigators, to also include the physical nature of the multicellular masses. This approach is 808 

based on experimental and theoretical advances made in material sciences, particularly as 809 

applied to biological systems, in the intervening decades (see Forgacs and Newman (2005)), 810 

and progress in agent-based concepts and models (Thorne et al., 2007). 811 

Some authors have noted the tendency of aggregative multicellular organisms to exhibit a 812 

narrower and simpler morphological diversity when compared to clonal organisms such as 813 

animals and plants (Grosberg and Strathmann, 2007). A common explanation to this 814 

observation is the emergence of genetic conflict arising between different cellular lineages being 815 

incorporated into the same conglomerate during aggregation. Despite kin selection mechanisms 816 

of “cheater” control (Travisano and Velicer, 2004), it is held that the impact of genetic conflict 817 

could still be large enough to destabilize multicellular structure and impair the evolution of 818 

further complexity. In clonal organisms, genetic conflict is thought to be avoided at every 819 

generation by genetic bottlenecks that reduce genetic diversity to those mutations emerging as 820 

consequence of DNA replication (Folse and Roughgarden, 2010). In his treatment of the 821 

evolution of Dictyostelia, Bonner (1982) also suggested that selective regimens are dependent 822 

on the scale on which they operate, and that size contributes to the differences in diversity 823 

between Dictyostelia and Myxobacteria compared with plants and animals. 824 

The physical framework addressed here provides an alternative to the multilevel selection 825 

and scale-based accounts. As described above, despite the fact that animals, Dictyostelia and 826 

Myxobacteria can all be conceptualized as non-living liquids, the weaker associations between 827 

cells and surfaces in the social amoebae and bacteria lead to behaviors not observed in animals 828 

(e.g., streaming) and the stronger, cytoskeletally linked attachments in animals mediate 829 

behaviors (multilayering and lumen formation) not seen in the aggregative systems (Newman, 830 
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2019c). These differences are amplified by the fact that polarity (affecting, variously cell surface 831 

or shape in the different systems) is much more transient in Dictyostelia and Myxobacteria than 832 

in animals (Gómez-Santos et al., 2019; Manahan et al., 2004; Szadkowski et al., 2019), 833 

undermining the persistence of complex organization in the former two groups. 834 

An important implication of the perspective we have presented here is that physics-based 835 

and agent-based approaches to understanding development are not simply alternative modeling 836 

or computational strategies, but represent realities of complex biological systems that are 837 

represented to various extents in different organismal lineages. Thus, the material nature of 838 

multicellular systems and the inherent structural motifs entailed by the relevant physics 839 

introduces a predictability to morphological evolution (Newman, 2016; Newman, 2019b). In 840 

contrast, agent-type behaviors are more unconstrained and open-ended in their possibilities, 841 

and their evolution could have led phylogenetic lineages that embody them (e.g., vertebrates, 842 

which have the novelty of a neural crest (York and McCauley (2020)) in less predictable 843 

directions.  844 

Comparative analyses often rely on the study of homologous characters (i.e., those sharing 845 

common ancestry) in order to disentangle phylogenetic relationships and hypothesize 846 

evolutionary scenarios. These studies, mostly conducted in the population genetics framework 847 

underlying the evolutionary Modern Synthesis, have provided important insights regarding the 848 

processes of divergence of species as the product of selective pressures, genetic drift, mutation 849 

and gene flow (Pigliucci and Müller, 2010). But (with some exceptions, see Abouheif and Wray 850 

(2002)) they have generally neglected the role of development and, lacking a mechanistic view 851 

of phenotypic innovation (Müller and Newman, 2005), are limited in the extent to which 852 

homology can be assigned between characters in disparate groups (Müller, 2003; Müller, 2017).  853 

Structures are considered homologous developmentally if they have the same form by virtue 854 

of having the same generative processes. Here we have invoked a more general sense of this 855 

concept, including in the notion of “sameness” generic physical mechanisms in addition to 856 

genes. In this we are echoing the insights of the Soviet biologist N.I. Vavilov, who in his classic 857 

paper “The law of homologous series in variation” wrote, “[g]enetical studies of  the last decades 858 

have proved even the divisibility of the minutest morphological and physiological units in 859 

systematics…and established that, although outwardly similar, they can be different 860 

genotypically” (p. 48), and that “the great majority of varietal characters, not only within the limits 861 

of single genera and families but even in distant families, are homologous from a morphological 862 

point of view" (p 82) (Vavilov, 1922). We suggest that our broader concept of homology can help 863 

resolve enigmas of biological similarity across phylogenetic distances. Knowledge of molecular 864 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.133025doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.133025
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

and cellular determinants of material identity and agent-like behaviors, in concert with suitable 865 

mathematical and computational models of these causally hybrid, multiscale systems (e.g., 866 

(Camley and Rappel, 2017; Cotter et al., 2017)), could ultimately provide a compelling and 867 

testable account of these morphological affinities. 868 
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 1288 
Figure legends 1289 

 1290 
 1291 
Figure 1. (Upper panel) Life cycle of Myxobacteria xanthus, a representative multicellular 1292 

myxobacterium. The circle on the left represents the proliferative mode that occurs in a nutrient-1293 

replete setting. The oval on the right shows the sequence of stages initiated under conditions of 1294 

starvation: clockwise, from top left, aggregation, mound formation, fruiting body formation and 1295 

spore differentiation. Spores can be dispersed and may germinate as single vegetative cells under 1296 

nutrient-rich conditions. (Lower panel) Life cycle of Dictyostelium discoideum, a representative 1297 

dictyostelid. The circle on the left represents the proliferative mode that occurs in a nutrient-1298 

replete setting. The oval on the right shows the sequence of stages initiated under conditions of 1299 

starvation (clockwise, from top left: starved amoebae, developing aggregation, late aggregations, 1300 

migrating slug, developing fruiting body, finished fruiting body with spore mass supported by an 1301 

erect stalk, amoebae emerging from spores after dispersal). 1302 

 1303 
Figure 2. Schematic representation of (left, top) a selection of generic physical effects and one 1304 

of their underlying mediators (cell-cell adhesion), and (left, bottom) a selection of agent-like 1305 

effects, all of which pertain to aggregative multicellular organisms such as myxobacteria and 1306 

dictyostelids. Some individual cell behaviors like biochemical or polarity oscillation can, when 1307 

they operate in the multicellular context, can mediate global generic effects, like morphogenetic 1308 

fields in which cell state is coordinated over large distances. Generic processes can lead to 1309 

convergent morphologies since they employ the same mesoscale physics despite genetic 1310 

divergence. Agent-based processes can lead to lineage-specific behaviors and morphological 1311 

motifs, but also convergent or parallel ones if they act in analogous fashions. See main text for 1312 

additional examples of generic and agent effects, and descriptions of their morphogenetic roles. 1313 
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