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Abstract 

A mammalian brain is comprised of numerous cell types organized in an intricate manner to 

form functional neural circuits. Single-cell RNA sequencing provides a powerful approach to 

identify cell types based on their gene expression profiles and has revealed many distinct cell 

populations in the brain1-3. Single-cell epigenomic profiling4,5 further provides information on 

gene-regulatory signatures of different cell types. Understanding how different cell types 

contribute to brain function, however, requires knowledge of their spatial organization and 

connectivity, which is not preserved in sequencing-based methods that involve cell 

dissociation3,6. Here, we used an in situ single-cell transcriptome-imaging method, multiplexed 

error-robust fluorescence in situ hybridization (MERFISH)7, to generate a molecularly defined 

and spatially resolved cell atlas of the mouse primary motor cortex (MOp). We profiled 
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~300,000 cells in the MOp, identified 95 neuronal and non-neuronal cell clusters, and revealed 

a complex spatial map in which not only excitatory neuronal clusters but also most inhibitory 

neuronal clusters adopted layered organizations. Notably, intratelencephalic (IT) cells, the 

largest branch of neurons in the MOp, formed a continuous spectrum of cells with gradual 

changes in both gene expression profiles and cortical depth positions in a highly correlated 

manner. Furthermore, we integrated MERFISH with retrograde tracing to probe the projection 

targets for different MOp neuronal cell types and found that projections of MOp neurons to 

other cortical regions formed a many-to-many network with each target region receiving input 

preferentially from a different composition of IT clusters. Overall, our results provide a high-

resolution spatial and projection map of molecularly defined cell types in the MOp. We 

anticipate that the imaging platform described here can be broadly applied to create high-

resolution cell atlases of a wide range of systems.  

 

Main 

The cerebral cortex is a highly-organized structure comprised of distinct regions that support 

different sensory, motor, and cognitive functions. Known for its distinctive laminar structure, the 

cortex is delineated into six layers (L1-L6) based on cytoarchitectural features. Various cortical 

regions are interconnected with each other and with other brain region to form functional neural 

circuits8-10. Classification of neuronal cell types is central to deciphering the complexity of these 

circuits2,11-13. The glutamatergic excitatory neurons in the cortex are often classified by their 

projection properties into, for example, intratelencephalic (IT) neurons, sub-cerebral projection 

neurons (or pyramidal tract neurons), and cortico-thalamic (CT) projection neurons14,15. The 

GABAergic inhibitory neurons can be divided based on their developmental origin into caudal 

ganglionic eminence (CGE) derived and medial ganglionic eminence (MGE) derived neurons, and 

can also be classified by prominent marker genes such as Parvalbumin (Pvalb), Somatostatin (Sst), 

and Vasoactive intestinal polypeptide (Vip)16-18. Recent single-cell transcriptomics studies have 

revealed an extraordinarily high diversity of cells in the brain19-21 and reported dozens to a 

hundred cell types within individual cortical regions22-24. However, a high-resolution map of the 
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spatial organization and connectivity of different cell types in the cortex, which is essential to 

understanding cortical circuits, is still missing.  

Recently, a number of spatially resolved transcriptomics methods have been developed, 

including both in situ imaging-based transcriptomics methods with single-cell resolution7,25-29 and 

methods based on spatially resolved RNA capture followed by sequencing30,31. Among these, 

multiplexed error-robust fluorescence in situ hybridization (MERFISH) is a single-cell 

transcriptome imaging method, which massively multiplexes single-molecule FISH32,33 using 

error-robust barcoding, combinatorial labeling and sequential imaging7. MERFISH allows 

simultaneous imaging of hundreds to thousands of genes in individual cells with high detection 

efficiency both in cultured cells7,34 and in brain tissue slices35,36. Here we used MERFISH to 

perform in situ gene expression profiling of individual cells, identifying distinct cell populations 

and mapping their spatial organization in the mouse primary motor cortex (MOp), a region 

designated by the BRAIN Initiative Cell Census Network (BICCN)37 as the initial target for 

comprehensive cell mapping. Furthermore, we developed an approach to integrate MERFISH 

with retrograde tracing, and used this approach to determine the compositions and spatial 

distributions of MOp neurons that project to several cortical regions. 

Single-cell gene expression profiling and cell type identification of the mouse MOp by MERFISH 

We selected a panel of 258 genes for MERFISH imaging (Figure 1a) by combining three distinct 

approaches: (i) 62 canonical marker genes for major neuronal and non-neuronal cell types in the 

cortex were selected based on prior knowledge; (ii) 168 genes were selected based on pair-wise 

differential gene expression analysis on the neuronal clusters identified by a concurrent single-

cell / single-nucleus RNA-sequencing (sc/snRNA-seq) study reported in a companion BICCN 

paper38; (iii) a set of genes (50 for glutamatergic and 50 for GABAergic neuronal clusters) were 

selected which contained the highest mutual information39,40 among the clusters identified by 

sc/snRNA-seq. The overlapping gene lists generated by these three approaches were combined 

to form a panel of 258 genes total, in which 242 were imaged using MERFISH, and the remaining 

16 genes, which were either relatively short or highly expressed, were measured in eight 

sequential rounds of a two-color FISH following MERFISH.  
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We then performed MERFISH measurements on a series of coronal slices of the adult mouse 

brain (Bregma +2.4 to -0.6) at 100 µm intervals along the anterior-posterior axis and imaged the 

MOp region selected according to the Allen Mouse Common Coordinate Framework version 3 

(CCF v3)41 (Figure 1a). Individual RNA molecules were clearly detected and identified in the tissue 

slices (Extended Data Figure 1a). The decoded RNA spots were assigned into individual cells 

segmented using 4’,6-diamidino-2-phenylindole (DAPI) and total mRNA staining (Extended Data 

Figure 1b). The mean copy number per cell for individual genes obtained from MERFISH were 

highly reproducible between biological replicates (Extended Data Figure 1c) and exhibited high 

correlation with the gene expression level measured by bulk RNA sequencing (Extended Data 

Figure 1d).  

In total, we imaged and segmented ~300,000 individual cells in the MOp in 64 coronal slices from 

two adult mice. Based on the single-cell expression profiles, we identified transcriptionally 

distinct cell populations using an unsupervised, community-detection-based clustering 

algorithm42-45 (Figure 1a). The clustering identified 39 excitatory neuronal populations, 42 

inhibitory neuronal populations, and 14 non-neuronal cell populations in the MOp, as well as four 

distinct cell clusters exclusively outside of the MOp (in striatum or lateral ventricle) which were 

not included in subsequent analyses. The MERFISH-derived MOp cell taxonomy showed a 

hierarchical structure of multiple levels (Figure 1b). The first level of separation occurred 

between glutamatergic, GABAergic, and non-neuronal cell classes. The GABAergic cell class 

consists of two groups corresponding to their developmental origins: the CGE- and MGE-derived 

cells. Based on the expression of marker genes, we defined five subclasses of GABAergic cells: 

Pvalb, Sst, Vip, Sncg and Lamp5 (Figure 1b, bottom). The glutamatergic neuronal clusters could 

be grouped into the following subclasses with distinct projection properties (identified based on 

known marker genes23): layer 5 extratelencephalic projecting neurons (L5 ET, also known as 

pyramidal tract neurons, marked by Fam84b), layer 5/6 near-projecting neurons (L5/6 NP, 

marked by Tshz2), layer 6 CT neurons (L6 CT, marked by Syt6), layer 6b neurons (L6b, marked by 

Nxph4), as well as IT neurons (marked by Slc30a3), which were further divided into several 

subclasses based on different cortical layer assignment (L2/3 IT, L4/5 IT, L5 IT, L6 IT, plus a distinct 

L6 IT Car3 type). We also identified major non-neuronal cell types in MOp (Figure 1b), including 
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astrocytes (astro), endothelial cells (endo), microglia (micro), oligodendrocyte precursor cells 

(OPCs), mature oligodendrocytes (oligo), perivascular macrophages (PVM), pericytes (peri), 

smooth muscle cells (SMC) and vascular leptomeningeal cells (VLMC). The cell subclasses 

determined by MERFISH (Figure 1c) showed excellent correspondence to those determined using 

sc/snRNA-seq in the companion paper38 (Extended Data Figure 2a).  

Because MERFISH allows in situ cell type identification in intact tissue slices without dissociation-

induced cell loss, this allowed us to determine quantitatively the composition of cells in the MOp 

and its vicinity. We found that the MOp was made of 57% glutamatergic, 7% GABAergic, and 36% 

non-neuronal cells (Figure 1d). The GABAergic cells were comprised of 43% Pvalb cells, 22% Sst 

cells, 18% Lamp5 cells, 15% Vip cells and 2% Sncg cells, and the glutamatergic cells were 

comprised of 73% IT cells, 17% CT cells, 5% ET cells, 3% NP cells and 2% L6b cells.  

MERFISH data further divided the 23 subclasses of cells into 95 clusters, for which we used 

nomenclature style of adding a numerical index following the subclass name (e.g. Pvalb 1, L5 IT 

3) (Figure 1b).  Our MERFISH images also covered part of the secondary motor region (MOs) and 

primary somatosensory region (SSp), and in most cases, we did not separately label cells in the 

MOs or SSp unless the cluster was located primarily in these regions. The clusters identified by 

MERFISH show good correspondence to the clusters identified by sc/snRNA-seq measurements 

(Figure 1e) and by an integrated analysis of single-cell transcriptomic and epigenomic data in the 

companion paper38 (Extended Data Figure 2b). MERFISH analysis also revealed clusters not 

identified by the sc/snRNA-seq data, mostly in the form of refined cluster splitting, especially in 

the glutamatergic L2/3 IT and L4/5 IT subclasses. Likewise, some clusters identified by the 

sc/snRNA-seq data were not distinguished by MERFISH as separate clusters, mostly in the 

GABAergic cells. In addition, the non-neuronal cells were mostly only split at the subclass level in 

the MERFISH data because we only included 1 or 2 canonical markers for each major non-

neuronal subclass in the MERFISH gene panel. 

Spatial organization of transcriptomically defined cell populations in MOp 

Single-cell gene expression profiling and cell type identification in intact tissues by MERFISH 

allowed us to map the spatial organization of the 95 transcriptomically distinct cell populations 
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in the MOp (Figure 2a). The layered organization of the glutamatergic subclasses, especially the 

IT subclasses, provided a laminar appearance for the overall cellular organization of the MOp 

(Figure 2a and Figure 2b, left). Unlike the IT cells, which spanned across nearly all cortical layers, 

the ET, NP, CT and L6b cells populated only deeper layers (Figure 2b left and Figure 2c). At the 

finer level, individual glutamatergic clusters adopted spatially distinct, partially overlapping 

distributions along the cortical depth direction or medial-lateral direction, and many 

glutamatergic clusters assumed narrow distributions along cortical depth direction that sub-

divided cortical layers, often without discrete layer boundaries, as will be described in more 

details in a later section.  

The GABAergic inhibitory neurons also showed a high level of molecular diversity. At the subclass 

level, the CGE-derived GABAergic neurons – the Lamp5, Sncg and Vip subclasses – were more 

populated in the upper layers, whereas the MGE-derived GABAergic neurons – the Sst and Pvalb 

subclasses – were more abundant in deep layers (Figure 2b middle panel and Figure 2d), which 

is consistent with previous findings in the mouse cortex46,47. Surprisingly, at the cluster level, 

many of the GABAergic cell clusters also showed layered distributions and preferentially reside 

within one or two cortical layers (Figure 2d). The Lamp5 clusters were highly enriched in L1 and 

L2/3, except clusters 7 and 9, which distributed broadly in the deep layers (Figure 2d). Lamp 5 

and 6 were found almost exclusively in L1 (Figure 2d). Sncg cells, a rare population in the MOp, 

were enriched in L1 and L2/3 (Figure 2d). Most Vip clusters were present mainly in upper layers 

L1 and L2/3, whereas Vip clusters 7 and 10 were more widely distributed across layers. The Sst 

and Pvalb neurons overall show broad distribution in the deep layers, but at the cluster level, 

almost all Sst and Pvalb clusters displayed restricted laminar distribution with preferential 

distribution in one layer (Figure 2d).  

Imaging the 30 coronal slices every 100 µm along the anterior-posterior axis for each animal also 

allowed us to determine the distributions of neuronal clusters along this direction. We found that 

except for several glutamatergic clusters (e.g. L2/3 IT 1 and 2, L4/5 IT 2-4, L5 IT 3, L6 IT Car3, L5 

ET 4, L6 CT 1 and 7), most neuronal clusters adopted largely uniform distributions along the 

anterior-posterior direction (Extended Data Figure 3).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.105700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.105700
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

We also mapped the spatial organizations of the non-neuronal cells (Figure 2c right panel and 

Figure 2e). Among the three astrocyte clusters, the most abundant cluster, Astro 1, showed no 

preference in laminar residency, a less abundant cluster, Astro 2, showed enrichment in L1 and 

the white matter, and the rarest type, Astro 3, was found almost exclusively in the white matter. 

The oligodendrocyte lineage was divided into OPCs and three mature oligodendrocyte clusters. 

The mature oligodendrocytes were enriched in the white matter, accounting for ~90% of the cells 

in the corpus callosum, whereas the OPCs distributed evenly across all layers. The VLMCs formed 

the outmost layer of cells of the cortex. The other non-neuronal cell types, including microglia, 

PVMs, SMCs, pericytes and endothelial cells, exhibited more disperse distributions across the 

cortical layers. 

We noticed substantial spatial intermixing of different cell populations across the MOp, with 

individual neighborhoods adopting a complex cell composition. To quantify the complexity of the 

cell composition in the neighborhood of each cell, we determined the number of distinct cell 

clusters that were present in the 100 µm vicinity of each cell and determined the distributions of 

this complexity metric for cells in each cortical layer and in each subclass (Figure 2f and Extended 

Data Figure 4). For each cell neighborhood, we observed a large number of cell clusters, indicating 

a high level of local cellular heterogeneity, and the composition complexity of cell neighborhood 

increased as the cell soma moved towards deeper layers (Figure 2f top).  In the deep layers L5 

and L6, where the cell neighborhood was the most complex, different cell types exhibited 

comparable degree of neighborhood complexity (Figure 2f bottom). 

Diversity of L5 ET, L5/6 NP, L6 CT and L6b neurons 

Transcriptomically, the L5 ET, L5/6 NP, L6 CT and L6b subclasses of neurons appeared as discrete 

cell populations (Figure 3a). Each subclass was subdivided into finer clusters (Figure 3a, Extended 

Data Figure 5). Spatially, the five L5 ET clusters were segregated into 2 sublayers with the L5 ET 5 

cluster distributed in the lower part of layer 5 and the L5 ET 1-3 clusters intermixed in upper layer 

5 (Figure 3b).  L5 ET 4 located at the lateral side of MOp (Figure 3b) and was found to be more 

abundant in the anterior part of MOp whereas in the posterior part, L5 ET 4 mostly resided 

outside of MOp (Extended Data Figure 3). It has been previously reported that two distinct L5 ET 
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populations in upper and lower layer 5 of the anterior lateral motor cortex (ALM) project to 

thalamus and medulla, respectively, and played specialized roles in motor control in the ALM48. 

In a companion BICCN paper, Zhang et al also identified a distinct medulla-projecting ET sub-type 

and several other ET sub-types with less projection specificity using the epi-retro-seq method49. 

The lower layer 5 cluster L5 ET 5 identified here by MERFISH corresponded to the L5 ET (1) cluster 

identified by integrated analysis of single-cell transcriptomic and epigenomic data in the 

companion paper38 (Extended Data Figure 5), which in turn corresponds to the medulla-

projecting ET cluster identified by epi-retro-seq49. Our MERFISH data further showed that this 

unique medulla-projecting L5 ET 5 cell type was mainly present in MOp but rarely in the adjacent 

SSp region (Extended Data Figure 6). The L5/6 NP neurons were divided into two clusters (Figure 

3a), with L5/6 NP 1 found mainly in layer 5 and L5/6 NP 2 found in deeper regions extending into 

layer 6 (Figure 3c).   

The L6 CT neurons, the most abundant subclass in L6, were divided into nine clusters (Figure 3a). 

These clusters exhibited a complex spatial pattern, with distinctions both in the cortical depth 

direction and in the medial-lateral direction (Figure 3d). The L6 CT 1 cluster located preferentially 

at the lateral side of MOp, which likely represents an extension of a CT type from the SSp region. 

The L6 CT 7 cluster, on the other hand, was found exclusively at the medial side of MOp in the 

posterior part, which is close to the MOs region and the anterior cingulate area. Clusters L6 CT 6, 

4, 3 and 8 spanned the entire medial-lateral range of the MOp and exhibited a layered 

organization from top to bottom of layer 6. L6b cells, which formed the innermost layer of the 

neocortex, were subdivided into three clusters (Figure 3a), but these three clusters were 

completely intermixed in space, showing no difference in spatial distribution along the anterior-

posterior axis, medial-lateral axis, or cortical depth axis (Figure 3e).  

Taking advantage of the correspondence between MERFISH clusters and the clusters identified 

by integrated analysis in the companion paper38 (Extended Data Figure 5), we can further infer 

addition information, such as the epigenomic signatures, about the spatially-resolved MERFISH 

clusters. For example, Foxp2, a marker gene identified for L6 CT 1 and 2 MERFISH clusters, 

showed enrichment of open chromatin reads and reduced DNA methylation in the corresponding 

integrated cluster L6 CT Cpa6 (1), as compared to the L6 CT Cpa6 (4) and Nxph2 Kit clusters, which 
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correspond MERFISH clusters L6 CT 8 and 7, respectively (Extended Data Figure 7). Based on the 

correspondence between MERFISH and sc/snRNA-seq or integrated clusters, or more 

sophisticated integration analysis, it is also possible to impute marker genes for MERFISH clusters 

that were not included in the MERFISH gene panels, which would not only provide a more 

complete marker gene sets for the MERFISH clusters, but also allow the prediction of spatial 

expression patterns for these gene.  

A continuous spectrum of the IT neurons 

The IT neurons constitute the largest branch of neurons in the MOp, which span nearly the entire 

MOp region from L2/3 to L6. Our MERFISH data divided the IT cell into 20 clusters, 19 of which 

belonged to 4 subclasses classified by the cortical layers (L2/3 IT, L4/5 IT, L5 IT and L6 IT) (Figure 

4a, b). The remaining one formed a distinct cell type (Figure 4a), which corresponded to the L6 IT 

Car3 type identified by sc/snRNA-seq and integrated analysis (Extended Data Figure 8a and b). 

These L6 IT Car3 cells did not form a laminar distribution, but were located at the lateral edge of 

MOp (Extended Data Figure 9a).  

In contrast, the 19 clusters in the L2/3, L4/5, L5 and L6 IT subclasses showed fine laminar 

organizations (Figure 4b). These four subclasses were each subdivided into several clusters, 

further parcellating each layer into finer sub-layers, but without discrete boundaries (Figure 4a-

c). Notably, MERFISH identified seven IT clusters residing between L2/3 and L5, which we named 

L4/5 IT (Figure 4c). Among these, L4/5 IT SSp 1 and 2 were located in the neighboring SSp region 

and partially extended into the MOp (Extended data Figure 9b), whereas the other five clusters 

(L4/5 IT 1-5) were located within the MOp. The MOp has been traditionally considered lacking a 

distinct layer 4 due to the absence of clear cytoarchitecture features50. Our results suggest the 

presence of layer 4 neurons in the MOp, corroborating results from joint analyses of multiple 

different experimental modalities in the BICCN consortium (see the BICCN flagship paper) and a 

recent report of L4-like neurons based on their anatomic and connectivity properties51.  

Along the cortical depth direction, individual IT clusters partially overlapped in space with 

adjacent clusters and there was no clear difference in the extent of spatial overlap when the 

adjacent clusters were from the same or a different subclass (Figure 4b). Moreover, the 
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differentially expressed genes often marked multiple cell clusters across different subclasses and 

exhibited gradual changes along the cortical depth direction, as represented by the cortical layer 

markers Cux2, Rorb, Fezf2 and Osr1 (Figure 4d). The two-dimension visualization by Uniform 

Manifold Approximation and Projection (UMAP)52 also revealed a gradual transition of the gene 

expression profiles among the IT cell clusters, except for L6 IT Car3 (Figure 4a). The apparent lack 

of discreteness among the IT cell clusters in both their gene expression profiles and spatial 

profiles led us to evaluate whether the IT cell clusters reflect cross-sections of a continuous 

spatial and molecular landscape.  

To this end, we first quantified the similarity in gene expression between pairs of IT clusters by 

computing the degree of inter-cluster connectivity in a k-nearest neighbor (kNN) graph 

constructed based on the gene expression profiles of individual IT cells53. This analysis showed 

that the IT cell clusters formed a single, interconnected network with clusters exhibiting the 

highest connectivity (i.e. similarity in gene expression) to those that were spatially adjacent 

(Figure 4e).  Next, we applied pseudotime analysis to order the IT cells based on their expression 

profiles. Pseudotime analysis has been most commonly used to understand dynamic or 

developmental states of cells54, but here we use this analysis to evaluate how an expression-

defined trajectory of IT cells relate to their spatially-defined trajectory. Notably, ordering of cells 

in pseudotime was highly correlated with their cortical depth positions (Figure 4f, g and Extended 

data Figure 10a), and individual cells formed a continuous cloud, instead of discrete clusters, 

along the pseudotime and cortical depth axes (Figure 4f). We further identified genes of which 

the expression changed substantially with cortical depth, yielding a list of 118 genes that included 

the well-known layer markers as shown in Figure 4d. Sorting these genes based on the cortical 

depth at which they exhibited maximum expression revealed a largely gradual change of gene 

expression profiles of cells along the cortical depth axis, with somewhat sharper changes at the 

cortical depths that approximately separate subclasses (Figure 4h). Similar patterns were also 

observed when cells and genes were sorted based on pseudotime instead of cortical depth 

(Extended Data Figure 10b). At the individual gene level, the expression profile of the variable 

genes changed gradually along the cortical depth direction (Extended Data Figure 10c)  
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Taken together, these results show that the IT cells do not follow the rule of cortical layer 

delineation but instead adopt a largely continuous gradient distribution across the cortical depth, 

with the gene expression profiles of individual cells being highly correlated with their cortical 

depth positions. 

Complex projection patterns of the IT neurons 

The axonal projection properties of the neurons are key to connect their molecular profiles with 

function. We thus sought to integrate MERFISH with retrograde tracing to simultaneously 

determine the expression profiles and spatial organization of cell types in the MOp and their 

projection targets at the single cell level.  

To this end, we injected a retrograde tracer, cholera toxin subunit b (CTb), into three cortical 

regions, MOs, SSp, and the temporal association area (TEa), all of which have been reported to 

receive inputs from the MOp8,9. We injected three distinct dye-conjugated CTbs (CTb-AlexaFluor 

647, 555, and 488) into MOs, SSp and TEa, respectively, and identified the cells in the MOp that 

projected to these injection sites by imaging the signals of the CTb conjugates. We then imaged 

the 258-gene MERFISH panel, as described above, in the same tissue slices for cell type 

identification (Figure 5a, b). This allowed individual cells to be assigned with both a cell type 

identity and a projecting target (Figure 5c). We performed this analysis for the MOp upper limb 

region (Bregma +0.7 to +0.1), and observed that ~90% of MOs-, SSp- and TEa-projecting neurons 

were IT neurons and L6b neurons. Spatially, the MOs-projecting and SSp-projecting neurons were 

enriched in upper layers L2/3 and L4/5; the TEa-projecting neurons showed enrichment in upper 

L2/3, deep L4/5 and L6 (Figure 5d), consistent with previous observations9.  

At the single cell and cell cluster level, we observed a complex projection pattern that connected 

MOp IT neurons and the three target regions. Notably, even neighboring IT neurons in the same 

cell clusters could send output to different target regions, and likewise, the same target region 

could also receive inputs from different cell clusters (Figure 5c, e).  At the subclass level, MOs and 

SSp received inputs from all five subclasses of IT neurons and L6b neurons but both were 

dominated by L2/3 and L4/5 IT neurons, and TEa received input from the four IT subclasses (L2/3, 

L4/5, L5 and L6) with nearly equal contributions but had almost no input from L6b neurons (Figure 
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5e, upper panel). At the cluster level, all three regions received inputs from a large number of 

individual clusters, each region from a quantitatively different composition of clusters (Figure 5e, 

lower panel). 

Out of the 22 IT and L6b cell clusters, 21 clusters showed projection to the MOs, SSp and TEa 

regions. All of these clusters targeted more than one region (Figure 5f). Even spatially adjacent 

cells belonging to the same clusters could project to different regions (Figure 5g). These results 

suggest that the projection target of a neuron is not simply dictated by its gene expression profile 

and spatial location.  

Interestingly, although IT neurons exhibited a gradual change in their gene expression profiles 

and spatial distributions, some of them showed highly specific projection patterns. For example, 

almost all CTb-positive L6 IT 3 neurons targeted the TEa but not MOs and SSp, whereas the vast 

majority of the CTb-labeled L6 IT 1 neurons targeted MOs but not SSp and TEa (Figure 5f). 

Conversely, among the L6 IT neurons, MOs almost exclusively received input from the L6 IT 1 

cluster and TEa almost exclusively received input from the L6 IT 3 cluster, despite the similar 

expression files and substantially overlapping spatial distributions of these cells (Figure 5h). How 

such discrete and specific projection property arises from these neurons with similar and 

gradually varying expression profiles and spatial distributions, whether this is due to a molecular 

signature not capture by transcriptomic profiling or has arisen from a developmental origin, 

remains to be determined.  

 

Discussion 

In this study, we used MERFISH to generate a molecularly defined and spatially resolved map of 

cell populations for the mouse MOp. The cell census defined by MERFISH, including 95 neuronal 

and non-neuronal populations, showed good correspondence to that defined by the single-cell 

sequencing-based transcriptomics datasets reported in a companion BICCN paper38. The MOp 

cell census determined by these approaches showed both similarity and differences to the cell 

census of other cortical regions23,38,55.  
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The direct spatial measurements by MERFISH allowed us to map the spatial organization of the 

95 molecularly defined cell clusters with high resolution. Our results showed laminar restrictions 

for different subclasses of neurons that are consistent with previous findings22,23,46,47, but also 

revealed a previously unknown, high-resolution spatial map for individual neuronal clusters. We 

observed that most transcriptomically distinct cell clusters adopted distinct spatial distributions. 

Notably, our MERFISH images revealed a laminar organization of not only excitatory neurons, but 

also inhibitory neurons, with many inhibitory neuronal clusters preferentially located in one or 

two cortical layers. Moreover, many excitatory neuronal clusters adopted narrow distributions 

along the cortical depth direction that subdivided individual cortical layers into finer laminar 

structures, often without discrete layer boundaries.  

We noticed that although neurons tended to form discrete populations of cells with distinct 

expression profiles at the subclass level, the clusters within individual subclasses often exhibited 

more gradual changes, adding evidence to the co-existence of discrete and continuous cell 

heterogeneity23,56,57. Remarkably, our results showed that the entire cohort of IT cells (barring 

the small Car3 cluster), which consist of several subclasses and constitute >70% of all excitatory 

neurons in the MOp, formed a largely continuous spectrum of cells instead of discrete clusters. 

Continuous variations in gene expression was also observed among IT cells in the isocortex by an 

concurrent, independent scRNA-seq study55. Here, with spatially resolved single-cell gene-

expression profiling afforded by MERFISH, we observed concurrent gradual changes among IT 

neurons both in gene expression space and in real space, with a strong correlation between the 

expression profiles of individual neurons and their cortical depth positions, revealing a 

continuous molecular and spatial gradient of cells spanning nearly the entire cortical depth.  

Taken together, our MERFISH measurements of the ~100 neuronal and non-neuronal cell 

populations revealed the correspondence between molecular diversity and spatial organization 

of cells in the cortex with an unprecedented resolution and granularity. 

We further investigated how individual molecularly identified cell types correlate with their 

projection targets by integrating MERFISH with retrograde tracing. This approach allowed in situ 

determination of both gene expression profiles and projection targets with single cell resolution 
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and hence enabled the determination of source neurons projecting to specific target regions with 

high spatial and molecular resolution. Our results showed that projections of MOp neurons to 

other cortical regions did not occur in a one-cell-type-to-one-target-region manner, but rather 

formed a complex many-to-many network: each cell cluster can project to multiple regions and 

each region can receive input from many clusters, with an underlying specificity. Here, our proof-

of-principle measurements probed only three target regions, but more target regions could be 

measured to allow the construction of a more compressive projection map for the MOp cell types. 

Technologically, the throughput of projection targets profiled per experiment could also 

potentially be scaled up by using different projection-labeling approaches, such as 

oligonucleotide-labeling of CTb or high-diversity barcoded  tracers58, to allow many distinct 

tracers to be imaged and hence many target regions to be interrogated in each MERFISH 

experiment. Ultimately, we envision that MERFISH may also be combined with barcoded, trans-

synaptic viral tracers to allow the generation of a high-resolution cell-type-to-cell-type 

connectivity map.  

In this BICCN consortium, a multitude of experimental modalities, including single-cell 

transcriptomics, single-cell epigenomics, anatomical measurements, and electrophysiology have 

been used to provide cell census and atlas of the MOp (see companion papers38,49,59-61). Some of 

the studies probed two or three properties of the neurons simultaneously. In addition to our 

study, which combined MERFISH and neural tracing to determine the gene expression profiles, 

spatial locations, and projection targets of the same neurons, the companion epi-retro-seq 

paper49 simultaneously probed the epigenomic properties and projection targets and the 

companion patch-seq study60 jointly probed morphological, electrophysiological and 

transcriptomic properties of individual neurons. In addition to the transcriptomic profiles, many 

other properties can also be probed by imaging-based methods, including epigenomic properties 

(e.g. chromatin conformation62,63 and accessibility64), anatomic properties (e.g. cell morphology 

and projection), as well as functional properties (e.g. by using neuronal activity markers). 

Imaging-based methods are often intrinsically compatible, and can be performed in a manner 

that preserves the sample for other analyses. We thus envision an exciting possibility of 

combining single-cell transcriptome imaging with all these other imaging-based approaches to 
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simultaneously probe the molecular, spatial, anatomical and functional properties of individual 

cells, expediting our understanding of how different cell types are connected to form functional 

circuits in the brain.  

 

 

Data and code availability 

All raw and processed MERFISH data can be accessed via the Brain Image Library (BIL) ftp archive: 

ftp://download.brainimagelibrary.org:8811/02/26/02265ddb0dae51de/. Code for MERFISH 

image analysis is available at https://github.com/ZhuangLab/MERlin. 

 

Supplementary Information is linked to the online version of the paper. 
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Figures 

 

Figure 1 | Cell type profiling and mapping of the mouse MOp by MERFISH. a, Schematics of 

MERFISH workflow for MOp cell type profiling and mapping. Based on both prior knowledge of cell type 

markers and sc/snRNA-seq data, we selected the MERFISH gene panel and designed the MERFISH probe 
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set that targets these genes. Coronal slices of 10 µm-thick that contained the MOp region were cut at 100 

µm intervals using the Allen CCF v3 (http://atlas.brain-map.org/) as a reference and 258 genes were imaged 

in each slice. The images were decoded to identify RNA species and total polyadenylated mRNA and DAPI 

co-stains were used for cell boundary segmentation. The decoded RNA molecules were assigned into 

individual cells and the resulting single-cell gene expression profiles were used for clustering analysis. b, 

(Top) Dendrogram showing the hierarchical relationship among the 39 glutamatergic, 42 GABAergic, and 

14 non-neuronal clusters identified by MERFISH, constructed based on the z-scored mean cluster 

expressions and colored by the subclass that each cluster belongs to. (Bottom) Expression of markers genes 

for each subclass. c, UMAP of cells measured by MERFISH colored based on cell subclasses. d, Fraction 

of cells in each of the major cell classes (glutamatergic, GABAergic, and non-neuronal) (left), each of 

GABAergic subclasses (middle), and glutamatergic subclasses (right). e, Correspondence between the 

clusters determined by MERFISH and the consensus clusters determined by seven sc/snRNA-seq datasets. 

A neural-net classifier was trained on the z-scored expression profiles in the MERFISH dataset, and used 

to predict a MERFISH cluster label for each cell in the snRNA-seq 10x v3 B dataset generated in a 

companion study38. Cells were grouped based on their sc/snRNA-seq cluster identity, and the fraction of 

cells from a given sc/snRNA-seq cluster that were predicted to have each MERFISH cluster label were 

plotted.  
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Figure 2 | Spatial organization of cell classes, subclasses and clusters in the MOp. a, Spatial 

distribution of the 95 cell clusters determined by MERFISH shown in one of the coronal slices (Bregma 

~+1.1). Cells are shown as segmented boundaries and colored by their cluster identities. The slice is 

orientated as shown by the arrows. wm: white matter; M, medial; L, lateral; D, dorsal; V, ventral. Scale bar: 

400 µm. b, Spatial distribution of the cell subclasses in the glutamatergic cell class (left), GABAergic cell 

class (middle), and non-neuronal cell class (right) in the same slices as shown in (a). Cells are shown as 

circles, with indicated cells colored by subclasses and other cells shown in grey. Scale bars are 200 µm. c, 

The distribution of the glutamatergic neuronal clusters along the cortical depth axis shown in violin plots.  

The cortical depth of a cell is defined as the shortest distance of its soma centroid to the cortical surface 

measured in each slice, and was normalized by the cortical thickness with 0 representing the cortical surface 

and 1 representing the median depth of the L6b cells in each slice. The dashed grey lines mark the 
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approximate layer boundaries. d, Normalized cortical depth distributions of the GABAergic neuronal 

clusters as in (c). e, Normalized cortical depth distribution of the non-neuronal clusters as in (c). f, Spatial 

complexity of the cell neighborhoods in the MOp. The neighborhood complexity of a cell is defined as the 

number of different cell clusters present within a 100 µm-radius neighborhood surrounding the given cell. 

Top: Probability distributions of the neighborhood complexity of any given cell of each cortical layer. 

Bottom: Probability distributions of the neighborhood complexity of any given cell of in different cell 

subclasses in the deep layers. 
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Figure 3 | Diversity and spatial organization of the ET, CT, NP and L6b neurons. a, UMAP of the ET, 

CT, NP and L6b neurons colored by the MERFISH cluster identity. b, Spatial distribution of five L5 ET 

cell clusters in one of the coronal slices (~Bregma +1.4). L5 ET cells are highlighted in colors and other 

cells are shown in grey. Normalized cortical depth distributions of the cells of each L5 ET cluster is shown 

in the right panel. c, Spatial distribution of two L5/6 NP cell clusters in one of the coronal slices (~Bregma 

+0.4), as in (b). d, Spatial distribution of the nine L6 CT cell clusters in one of the coronal slices (~Bregma 

+0.3), as in (b). The medial-lateral (ML) distribution for clusters 1, 7 and 8 is additionally shown at the 

bottom. The ML distribution is calculated in each coronal slice in which cluster 7 is present, where the ML 

distance of zero is set to be the location of the cluster 7 cell that is the closest to the midline. e, Spatial 

distribution of the three L6b clusters in one of the coronal slices (~Bregma +0.4), as in (b). Scale bars in 

(b-e) are 200 µm.  
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Figure 4 | A continuous spectrum of IT cell with gene expression profile correlated with cortical 

depth position. a, UMAP of the 20 IT neuronal clusters. b, The IT neurons in one of the coronal slices 

(~Bregma +0.4). The IT neurons are colored by their cluster identity as in (a) shown together with L6b cells 
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in dark blue to mark the bottom border of the cortex, and all other cells are shown in grey. Scale bar: 200 

µm. c, Spatial distribution of the IT subclasses (L2/3, L4/5, L5, and L6, left panel) and individual clusters 

in each subclass (right panels) shown in one of the coronal slices (~Bregma +1.0). The L6b cells are shown 

in dark blue to mark the bottom border of the cortex. Scale bars: 200 µm. d, Box plot of the expression of 

layer specific marker genes (Cux2, Rorb, Fezf2, Osr1) in each IT neuronal cluster normalized to the 

maximum median expression across all clusters. The box represents the interquartile range, the median is 

indicated with a line, notch represents ± 95% confidence interval, whiskers are 10th and 90th percentile, 

outliers are not shown. e, Force-directed graph representing the degree of connectivity between clusters in 

a k-nearest neighbor (kNN) graph for the IT neuronal clusters. The expression profile of the IT cells was z-

score normalized; principle-component analysis was used to reduce dimensionality to the first 19 principle 

components then input to construct a kNN graph. Partition-based graph abstraction (PAGA) was used to 

compute the connectivity between clusters in the kNN graph53, which is plotted with each cluster 

represented as a node, and the weighted edges between nodes representing their connectivity. Edges with 

weights below 0.1 were discarded. f, Scatter plot of the pseudotime vs. normalized cortical depth for 

individual IT neurons colored by the cell clusters. Pseudotime was calculated using an L2/3 IT 1 cell as the 

root, using the same kNN graph as described in (e). g, The same tissue slice as shown in (b) with the IT 

neurons colored by their pseudotime. h, Normalized expression of 118 differentially expressed genes of all 

the IT neurons across cortical depth. All IT cells were sorted in the order of ascending cortical depth and 

the genes are sorted by the cortical depth at which they exhibit maximal expression. The colored bar beneath 

the heatmap indicates the cluster identity of the cell in that column of the heatmap.  
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Figure 5 | Projection patterns of the IT neurons determined by the integration of MERFISH with 

retrograde tracing. a, Schematics of workflow integrating retrograde tracing and MERFISH. Three 

cholera toxin subunit b (CTb) conjugates, CTb-AlexaFluor647, CTb-AlexaFluor555, and CTb-
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AlexaFluor488, were injected into three different cortical regions, MOs, SSp, and TEa, respectively. The 

coronal slices containing the MOp region were then collected and the retrograde CTb labels and MERFISH 

gene panel were imaged. b, CTb fluorescence image of a single field-of-view in the MOp with CTb-

AlexaFluor647, CTb-AlexaFluor555, and CTb-AlexaFluor488 signals shown in red, green and blue, 

respectively. The cells boundaries were colored by their cell cluster identities determined by MERFISH. c, 

A coronal slice (~Bregma +0.1) highlighting the CTb-positve cells colored by the injection sites (Red: MOs, 

Green: SSp, Blue: TEa; left) and by their cell cluster identities (right). Only the cell clusters with 3 or more 

cells labeled by CTb are highlighted. Scale bars: 200 µm. d, Histogram showing enrichment of MOs-

projecting, SSP-projecting and TEa-projecting cells at different cortical depths. Enrichment was determined 

by comparing the fraction of relevant CTb-positive cells in each cortical-depth bin with the fraction of all 

IT and L6b cells in the same bin. e, Left: Pie charts showing the proportions of MOs-projecting cells 

belonging to each cell subclasses (top row) and cell clusters (bottom row). Only top 10 cell clusters in each 

case are shown in the bottom row. Middle: same as left but for SSP-projecting cells. Right: same as left but 

TEa-projecting cells. f, Fractions of MOs-projecting, SSP-projecting and TEa-projecting cells in each cell 

cluster. g, Neighborhood projection complexity (left) and purity (right) of the cells in the MOp. The 

neighborhood projection complexity of a CTb-positive cell is defined as the number of different projection 

targets (MOs, SSp, TEa, or CTb-negative) of the cells belong to the same cluster present within a 100 µm-

radius neighborhood surrounding the cell. Neighborhood projection purity of a CTb-positive cell is defined 

as the fraction of all cells of the same cluster within the 100 µm-radius neighborhood that belong to the 

most abundant projection target. The normalized histograms of the neighborhood projection complexity 

and purity for all CTb-positive cells are shown. (h) The projection specificity of the molecularly and 

spatially similar L6 IT clusters. The cortical depth distributions (left) and UMAP (left inset) of L6 IT 1, 2 

and 3 indicate the similarity in gene expression profiles and spatial locations between the three clusters. Pie 

charts (right) show the relative proportions of the three clusters that projected to MOs and TEa, respectively.   
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Extended Data Figures 

 

Extended Data Figure 1 | RNA identification and cell segmentation of MERFISH image, replicate 

reproducibility of MERFISH data, and correlation between MERFISH and bulk RNA-seq results. a, 
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Decoded MERFISH image of a single field-of-view, shown as a maximum intensity projection across all 

seven z-planes. In these experiments, we assigned 22-bit Hamming Distance 4, Hamming Weigh 4 barcodes 

capable of error detection and correction to individual RNA species, physically imprinted the barcodes onto 

the RNAs using a high-diversity of oligonucleotide probes (encoding probes), and detected the barcodes 

bit-by-bit using sequential imaging. Each encoding probe comprises a target sequence that specifically 

binds to one of the targeted genes and two readout sequences, each readout sequence corresponds to one 

bit, and the presence of specific readout sequences on the entire set of encoding probes bound to an RNA 

determines which bits read “1” for this RNA. The 22 bits were imaged in eleven sequential rounds of 

hybridization with two-color imaging per round. The decoded image shows all pixels that belonged to 

detected correct barcodes. Each barcode was assigned a unique RGB value, and pixels were colored based 

on their assigned barcode. The intensity of each pixel was scaled based on the L2-norm of their fluorescence 

signal intensity across all bits. Right inset: The boxed region of the image shown at a greater magnification. 

Segmented cell boundaries as determined in (b) are shown in white. Scale bars are 20 µm and 5 µm, for the 

full images and the magnified region in the insets, respectively. b, DAPI (left) and poly(A) RNA (right) 

images for the same field-of-view as in (a), shown is the central z-plane (z = 4.5 µm). These images are 

used to define the boundaries of each cell using a seeded watershed algorithm, with DAPI defining the seed 

and poly(A) used to define the extent of each cell (see Online Methods). The cell boundaries are shown in 

white. Scale bars are 20 µm. c, Scatterplot of the average counts of individual genes per cell for the two 

biological replicates, showing all genes measured by MERFISH. The blue solid line indicate equality. The 

grey dashed lines indicate the average counts per cell of the blank barcodes (i.e. valid barcodes that were 

not assigned to any RNA), which provides an indication of the false-positive rate. The Pearson correlation 

coefficient is 0.99. d, Scatterplot of average copy number per cell of individual genes determined by 

MERFISH versus expression level determined by bulk RNA-seq for the MOp region for all genes measured 

by MERFISH. The dashed line indicates the average copy number per cell of the blank barcodes. The 

Pearson correlation coefficient is 0.84.  
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Extended Data Figure 2 | Correspondence between cell subclasses and clusters identified by 

MERFISH and those identified by single-cell sequencing based approaches. a, Correspondence 

between cell subclasses identified by MERFISH and by sc/snRNA-seq. A neural-net classifier was trained 

to predict MERFISH subclass labels using the z-scored expression profiles of individual cells in the 
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MERFISH data. The snRNA-seq 10x v3 B dataset was z-scored, and then the subset of genes in the 

MERFISH gene panel were used along with the trained model to predict a MERFISH subclass label for 

each cell in the snRNA-seq dataset. From this, each snRNA-seq cell had both a predicted MERFISH 

subclass label and a subclass label determined from the consensus sc/snRNA-seq clustering38. Cells were 

grouped based on their consensus sc/snRNA-seq cluster identity, and then the fraction of cells from a given 

consensus sc/snRNA-seq subclass that were predicted to have each MERFISH subclass was determined 

and plotted. b, Correspondence between neuronal clusters identified by MERFISH and by integrated 

analysis of sc/snRNA-seq, snATAC-seq and snmC-seq. A classifier was trained as in (a), but in this case 

only neuronal clusters identified by the MERFISH measurements were considered, and MERFISH cluster 

labels were predicted for the cells in the snRNA-seq 10x v3 B dataset and compared with their cluster 

identities determined by the integrated clustering analysis of sc/snRNA-seq, snATAC-seq and snmC-seq 

measurements using SingleCellFusion (SCF)38 (55 out of the total 56 neuronal integrated clusters revealed 

by SCF is detected in the snRNA-seq 10x v3 B data used here).  
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Extended Data Figure 3 | Anterior - posterior distribution of neuronal clusters in the MOp. a, Spatial 

organization of cells in two additional representative coronal sections at Brigma +1.8 and 0.0. Cells are 

colored by subclass, as in Figure 2a. Scale bars are 200 µm. b, Heatmap quantifying the anterior - posterior 

distribution of the neuronal clusters. Slices were arranged from anterior-most to posterior-most based on 

their bregma coordinates. For each cluster, the fraction of cells found in each slice was determined and 

normalized to the maximum across all slices.  
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Extended Data Figure 4 | Neighborhood complexity of individual cells belonging to different 

subclasses. The neighborhood complexity of a cell is defined as the number of different cell clusters present 

within a circle of 100 µm radius around the cell of interest, as in Figure 2f. A normalized histogram of the 

neighborhood complexity for all cells from a given subclass is shown for each subclass identified by 

MERFISH.  
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Extended Data Figure 5 | Correspondence between the ET, CT, NP and L6b clusters determined by 

MERFSH and those determined sc/snRNA-seq or by the integrated cluster analysis of sc/snRNA-seq, 

snATAC-seq and snmC-Seq. a, Correspondence between the ET, CT, NP and L6b clusters determined by 

MERFISH and by sc/snRNA-seq. b, Correspondence between the ET, CT, NP and L6b clusters determined 

by MERFISH and by integrated analysis of sc/snRNA-seq, snATAC-seq and snmC-Seq datasets using 

SingleCellFusion38. The classifier approach used to determine the correspondence is as described in 

Extended Data Figure 2.  
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Extended Data Figure 6 | Different spatial distributions of ET cells in MOp and SSp. A coronal slice 

(~Bregma +0.7) highlighting the L5 ET cells colored by cell clusters in the MOp and the neighboring SSp 

region. Dashed grey line marks the approximate border between MOp and SSp according to Allen CCF v3 

(http://atlas.brain-map.org/). The L6b cells are shown in dark blue to mark the bottom boarder of the cortex. 
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Extended Data Figure 7 | Epigenetic properties of representative marker genes for MERFISH 

clusters revealed by correspondence between clusters identified by MERFISH and integrated 

analysis. A marker gene for MERFISH cluster L6 CT 1, Foxp2, which also marks the corresponding 

integrated cluster L6 CT Cpa6 (1), shows enrichment in open chromatin reads and RNA counts, and 

moderate reduction in DNA methylation (indicated by an arrow) as compared to L6 CT Cpa6 (4) and Nxph2 

Kit, which correspond MERFISH clusters L6 CT 8 and 7, respectively.  
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Extended Data Figure 8 | Correspondence between the MERFISH IT clusters and the clusters 

determined by sc/snRNA-seq analysis and those by integrated analysis.  a, Correspondence between 

the IT clusters identified by MERFISH and those identified by the sc/snRNA-seq. b, Correspondence 

between the IT clusters identified by MERFISH and those identified by the integrated clustering analysis 

of sc/snRNA-seq, snATAC-seq and snmC-seq using SingleCellFusion38. The correspondence is determined 

using a classifier approach as described in Extended Data Figure 2. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.105700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.105700
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

 

Extended Data Figure 9 | Spatial distributions of L6 IT Car3 and L4/5 IT SSp 1 and 2 clusters. a, A 

coronal slice (~Bregma +1.2) highlighting the L6 IT Car3 cluster (green) shows that these cells are 

preferentially located at the lateral side of MOp in deep layer 6. b, A coronal slice (~Bregma +0.7) 

highlighting the L4/5 IT SSp 1 (green) and L4/5 IT SSp 2 clusters (orange). The two SSp clusters form two 

dense layers in the SSp region and also extend into MOp. In both (a) and (b), the L6b cells are shown in 

dark blue to mark the bottom boarder of the cortex. 
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Extended Data Figure 10 | Correlation between gene expression and cortical depth position for IT 

cell clusters, and the dependence of expression levels of differentially expressed genes on pseudotime 

and cortical depth. a, Scatter plot of the mean pseudotime vs. mean normalized cortical depth for the IT 

clusters. b, Normalized expression of 128 genes that are differentially expressed across pseudotime. All IT 

cells were sorted in order of ascending pseudotime value, and the genes were sorted based on the 
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pseudotime at which they exhibit maximal expression. The color bar beneath the heatmap indicates the 

cluster identity of the cell in that column of the heatmap, according to the color-cluster correspondence 

legend as shown in (a). The expression for each gene was z-score normalized across all IT cells, then the 

IT cells were grouped into 50 equal-sized bins according to their pseudotime and the mean normalized 

expression value of each bin is shown.  c, Box plot of expression level in IT cells grouped into bins based 

on cortical depth, showing 20 representative genes that are differentially expressed across cortical depth. 

Expression was normalized and IT cells were grouped into 50 equal-sized bins according to their cortical 

depth. For each bin, the distribution of expression for the constituent cells are shown. The box represents 

the interquartile range, the median is indicated with a line, whiskers are 10th and 90th percentile, outliers 

are not shown. 
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Online Methods 

 

Animals 

Adult C57BL/6 male mice aged 57-63 days were used in this study. Animals were maintained on 

a 12 hour:12 hour light/dark cycle (2pm-2am dark period) with ad libitum access to food and water. 

Animal care and experiments were carried out in accordance with NIH guidelines and were 

approved by the Harvard University Institutional Animal Care and Use Committee (IACUC). 

 

Gene selection for MERFISH 

In order to discriminate transcriptionally distinct cell populations with MERFISH, we designed a 

panel of 258 genes. Among the 258 genes, 62 were manually picked marker genes including 

established markers for inhibitory neurons and excitatory neurons, as well as different non-

neuronal cell markers for mature and immature oligodendrocytes, astrocytes, microglia, 

macrophages, endothelial cells, pericytes, smooth muscle cells, and vascular leptomeningeal cells 

(VLMCs). To discriminate different neuronal types, we took two approaches to select genes. In 

the first approach, we selected a panel of most informative genes using mutual information analysis 

as reported previously39. Briefly, we used an information theory quantity known as mutual 

information40 to determine the relative amount of information each gene carries in defining the 

sc/snRNA-seq clusters. The amount of information that each gene carries is defined as the 

information gain due to knowledge of the expression state of the given gene (i.e. the mutual 

information between the gene and the cell classification). We used the scRNA 10x v2 A dataset 

generated by a companion study38 and determined highly variable genes using the Scanpy65 

package. We binarized the expression profiles using a gene counts cutoff of zero to simplify the 

calculation of the mutual information. We selected the top 50 most informative genes based on 

mutual information analysis for excitatory neuronal clusters and inhibitory neuronal clusters, 

respectively, and due to overlap between the two groups, this approach generated a total of 91 top 

mutual information genes. In the second approach, we selected a panel of 168 genes based on 

differential expressed (DE) gene analysis using the scRNA-seq data  (scRNA 10x v2 and scRNA 

SMART data) from the companion study38. We first found DE genes for each neuronal cluster pair 

(consisting a foreground cluster and a background cluster) in both directions. The criteria to define 

DE genes were: the genes have ≥2-fold change in expression between the foreground and 
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background clusters and P-value < 0.05; they express in at least 40% cells in the foreground cluster, 

with more than 3-fold enrichment, in terms of the fraction of cells expressing the gene, relative to 

the background cluster. P-values were calculated using ANOVA test in limma66 on log 

transformed data. Top 50 genes that passed all the tests and ranked by P-values in each direction 

for every cluster pair were pooled together as candidates for scoring for the final marker set. To 

determine the final marker list, which we required to include at least two genes in both direction 

for all pairs of clusters, we used a greedy algorithm to find minimal number of genes that satisfy 

the requirement. Starting from the 62 manually picked marker list as described above, the 

algorithm checks which pairs already have sufficient number of DE genes, and work on the 

remaining pairs of clusters until each pair of clusters has 2 DE genes included in both directions. 

This approach generated a total of 168 genes.   

We then combined the marker lists generated by these three different approaches, which partially 

overlap with each other, resulting in a panel of 258 genes total. We then screened this gene list to 

identify genes that are relatively short or have relatively high expression level, which were 

potentially challenging for highly multiplexed FISH imaging experiments as described 

previously36. We found 16 genes that can accommodate fewer than 48 hybridization probes with 

target sequences that are 30-nucleotide (nt) long, or are expressed at an average of 200 counts in 

any cell cluster as determined from the scRNA SMART data38. These 16 genes were imaged in a 

set of eight sequential, two-color FISH imaging rounds, following the MERFISH run that imaged 

the remaining 242 genes.  

 

Design and construction of the MERFISH encoding probes 

MERFISH encoding probes for the 242 genes were designed as previously described36. We first 

assigned to each of the 242 genes a unique binary barcode drawn from a 22-bit, Hamming-

Distance-4, Hamming-Weight-4 encoding scheme. We included 10 extra barcodes as “blank” 

barcodes, which were not assigned to any genes, to provide a measure of the false-positive rate in 

MERFISH as described previously36. 

We identified all possible 30-mer targeting regions within each desired gene transcript as 

previously described67. Each MERFISH encoding probe contains a 30-mer targeting region that is 

complementary to the RNA of interest, as well as two 20-mer readout sequences that encode the 

specific barcode assigned to each gene. From the set of all possible 30-mer probes for each gene, 
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we selected 92, 30-mer probes at random. For the transcripts that were not long enough and had 

fewer than 92 probes, we allowed these 30-mers to overlap by as much as 20 nt to increase the 

number of probes – because  a given cellular RNA is typically bound by less than one third of the 

92 encoding probes68, the encoding probes with overlapping targeting regions do not substantially 

interfere with each other but partially compensate for reduced binding due to local inaccessible 

regions on the target RNA or loss of probe during synthesis. We then assigned two readout 

sequences to each of the encoding probes associated with each gene. For the 22-bit encoding 

scheme, a total of 22 readout sequences were used, each associated with one bit, and the collection 

of encoding probes for each gene together contain 4 of the 22 readout sequences that corresponded 

to the 4 bit that reads “1” in the barcode assigned to that gene.  

Encoding probes for the 16 genes imaged in sequential two-color FISH rounds were produced in 

the same fashion, except that one single unique readout sequence was concatenated to each of 

these probes. The readout sequences used here were different from the 22 readout sequences used 

for MERFISH run. 

In addition, we concatenated to each encoding probe sequence two PCR primers, the first 

comprising the T7 promoter, and the second being a random 20-mer designed to have no region 

of homology greater than 15 nt with any of the encoding probe target sequences designed above, 

as we previously described67. 

With the template encoding probe sequences we designed above, we constructed the MERFISH 

probe set as previously described36. The template DNA were synthesized as a complex oligo pool 

(Twist Biosciences). This pool contained both the encoding probes to the 242 genes measured in 

MERFISH run and the 16 genes measured in sequential two-color FISH rounds, but different 

primer sequences, which allowed us to amplify these two groups separately via PCR followed by 

same synthesis and purification procedures. The two groups were then mixed during tissue staining. 

 

Design and construction of MERFISH readout probes 

For the 258 gene panel used in this study, 38 readout probes were designed, each complementary 

to one of the 38 readout sequences. 22 of the 38 readout probes correspond to the 22 bits barcodes 

used for MERFISH imaging, and the remaining 16 readout probes each corresponds to one gene 

that was imaged in the sequential two-color FISH rounds. Each readout probes were conjugated to 

one of the two dye molecules (Alexa750, Cy5) via a disulfide linkage, as described previously67. 
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These readout probes were synthesized and purified by Bio-synthesis, Inc., resuspended 

immediately in Tris-EDTA (TE) buffer, pH 8 (Thermo Fisher) to a concentration of 100 µM and 

stored at -20 °C. 

 

Tissue preparation for MERFISH 

Mice aged 57-63 days were euthanized with CO2, and their brain were quickly harvested and cut 

into hemispheres and each hemisphere was frozen immediately on dry ice in optimal cutting 

temperature compound (Tissue-Tek O.C.T.; VWR, 25608-930), and stored at -80 ̊C until cutting. 

Frozen brain hemispheres were sectioned at -18 ̊C on a cryostat (Leica CM3050 S). Slices were 

removed and discarded until the MOp region was reached. A continuous set of 300, 10-µm-thick 

slices were cut from anterior to posterior, and approximately every 10th slice was placed onto 

coverslips for imaging. Each coverslip contained 5-6 slices. In total 32 slices were collected for 

each animal. The coverslips were prepared as described previously35,36. 

Tissue slices were fixed by treating with 4% PFA in 1×PBS for 15 minutes and were washed three 

times with 1×PBS and stored in 70% ethanol at 4 °C for at least 18 hours to permeabilize cell 

membranes. The tissue slices from the same animal were cut at the same time and distributed to 

six coverslips, which were store in 70% ethanol at 4 °C for no longer than 2 weeks until all the 

coverslips were imaged. We observed no degradation in sample quality over this time. 

The tissue slices were stained with the MERFISH probe set as described previously36. Briefly, the 

samples were removed from the 70% ethanol and washed with 2× saline sodium citrate (2×SSC) 

for three times. Then we equilibrated the samples with encoding-probe wash buffer (30% 

formamide in 2×SSC) for five minutes at room temperature. The wash buffer was then aspirated 

from a coverslip, and the coverslip was inverted onto a 50 µL droplet of encoding-probe mixture 

on a parafilm coated petri dish. The encoding-probe mixture comprised ~1 nM of each encoding 

probe for the MERFISH run, ~5 nM of each encoding probe for the sequential two-color FISH 

rounds, and 1 µM of a polyA-anchor probe (IDT) in 2×SSC with 30% v/v formamide, 0.1% wt/v 

yeast tRNA (Life Technologies, 15401-011) and 10% v/v dextran sulfate (Sigma, D8906). We 

then incubated the sample at 37 °C for 36~48 hours. The polyA-anchor probe containing a mixture 

of DNA and LNA nucleotides 

(/5Acryd/TTGAGTGGATGGAGTGTAATT+TT+TT+TT+TT+TT+TT+TT+TT+TT+T, were 

T+ is locked nucleic acid, and /5Acryd/ is 5’ acrydite modification) hybridized to the polyA 
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sequence on the polyadenylated mRNAs and allowed these RNAs to be anchored to a 

polyacrylamide gel as described below. After hybridization, the samples were washed in encoding-

probe wash buffer for 30 minutes at 47 °C for a total of two times to remove excess encoding 

probes and polyA-anchor probes. All tissue samples were cleared to remove fluorescence 

background as we previously described35,36. Briefly, the samples were embedded in a thin 

polyacrylamide gel and were then treated with a digestion buffer of 2% v/v sodium dodecyl sulfate 

(SDS; ThermoFisher, AM9823), 0.5% v/v Triton X-100 (Sigma, X100), and 1% v/v proteinase K 

(New England Biolabs, P8107S) in 2×SSC for 36-48 hours at 37 °C. After digestion, the coverslips 

were washed in 2×SSC for 30 minutes for a total of four washes and then stored at 4°C in 2×SSC 

supplemented with 1:100 Murine RNase inhibitor (New England Biolabs, M0314S) prior to 

imaging.  

 

MERFISH imaging 

We used a home-built imaging platform in this study as previously described34. To prepare the 

sample for imaging, we first stained it with a readout hybridization mixture containing the readout 

probes associated with the first round of imaging in the MERFISH run, as well as a probe 

complementary to the polyA-anchor probe and conjugated via a disulfide bond to the dye 

Alexa488 at a concentration of 3 nM. The readout hybridization mixture was comprised of the 

readout-probe-wash buffer comprised of 2×SSC, 10% v/v ethylene carbonate (Sigma, E26258), 

and 0.1 % v/v Triton X-100, supplementing with 3 nM each of the appropriate readout probes. The 

sample was incubated in this mixture for 15 minutes at room temperature, and then washed in the 

readout-probe wash buffer supplemented with 1 µg/mL DAPI for 10 minutes to stain nuclei within 

the sample. The sample was then washed briefly in 2×SSC and imaged. Briefly, the sample was 

loaded into a commercial flow chamber (Bioptechs, FCS2) with a 0.75-mm-thick flow gasket 

(Bioptechs, 1907-100; DIE# F18524). Imaging buffer comprising 5 mM 3,4-dihydroxybenzoic 

acid (Sigma, P5630), 2 mM trolox (Sigma, 238813), 50 µM trolox quinone, 1:500 recombinant 

protocatechuate 3,4-dioxygenase (rPCO; OYC Americas), 1:500 Murine RNase inhibitor, and 5 

mM NaOH (to adjust pH to 7.0) in 2×SSC was introduced into the chamber and the sample was 

imaged with a low magnification objective (Nikon, CFI Plan Apo Lambda 10x) with 405-nm 

illumination to produce a low-resolution mosaic of all slices in the DAPI channel. We then used 

this mosaic image to locate the MOp region in each slice and generated a grid of field-of-view 
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(FOV) positions to cover the MOp region to be imaged. We then switched to a high magnification, 

high-numerical aperture objective (Nikon, CFI Plan Apo Lambda 60x) and imaged each of the 

FOV positions generated above. In the first round of imaging, we collected images in the 750-nm, 

650-nm, 560-nm, 488-nm, and 405-nm channels to image the first two readout probes (conjugated 

to Alexa750 and Cy5, respectively), the orange fiducial beads, the total polyA-mRNA stained by 

the polyA-anchor probe (Alexa488), and the nucleus stained by DAPI (405-nm channel). The latter 

two channels were used for cell segmentation as described below. We took a single image for the 

fiducial beads on the surface of the coverslip using the 560-nm illumination channel for each 

imaging round as a spatial reference to correct for slight misalignments in the stage position over 

the imaging rounds. To image the entire volume of each 10-µm-thick slice, we collected seven 

1.5-µm-thick z-stacks for other four channels (two readout probes, polyA probe and DAPI) in each 

FOV.  

After the first round of imaging, the dyes were removed by flowing 2.5 mL of cleavage buffer 

comprising 2× SSC and 50 mM of Tris (2-carboxyethyl) phosphine (TCEP; Sigma, 646547) with 

15 min incubation in the flow chamber, in order to cleave the disulfide bond linking the dyes to 

the readout probes. The sample was then washed by flowing 1.5 mL 2× SSC.  

To perform subsequent rounds of imaging, we flowed 3.5 mL of the readout probe mixture 

containing the appropriate readout probes across the chamber and incubated the sample in this 

mixture for a total of 15 minutes for each round. Then the sample was then washed by 1.5 mL of 

readout-probe wash buffer and then 1.5 mL of imaging buffer was introduced into the chamber. 

For each round, we took images for all FOV locations in the 750-nm, 650-nm, and 560-nm 

channels for the 2 readout probes and fiducial beads. Two readout probes were imaged in each 

round, one labeled with Alexa750and the other with Cy5, and a readout probe mixture containing 

3 nM of appropriate readout probes was used for each round. We repeated the hybridization, wash, 

imaging and cleave for all rounds to complete the 22-bit MERFISH imaging and the 8 rounds of 

sequential two-color FISH. All buffers and readout probe mixtures were loaded with a home-built, 

automated fluidics system composed of three, 12-port valves (IDEX, EZ1213-820-4) and a 

peristaltic pump (Gilson, MP3), configured as previously described7.  

 

MERFISH image analysis and cell segmentation 
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All MERFISH image analysis was performed using MERlin69, a Python-based MERFISH analysis 

pipeline, using algorithms similar to what we have described previously34,36. First, we aligned the 

images taken during each imaging round based on the fiducial bead images, accounting for X-Y 

drift in the stage position relative to the first round of imaging. For the MERFISH images, we then 

high-pass filtered the image stacks for each FOV to remove background, deconvolved them using 

20 rounds of Lucy-Richardson deconvolution to tighten RNA spots, and low-pass filtered them to 

account for small movements in the apparent centroid of RNAs between imaging rounds. 

Individual RNA molecules were identified by our previously published pixel-based decoding 

algorithm67. After assigning barcodes to each pixel independently, we aggregated adjacent pixels 

that were assigned with the same barcodes into putative RNA molecules, and then filtered the list 

of putative RNA molecules to enrich for correctly identified transcripts as described previously34 

for a gross barcode misidentification rate at 5%. We further removed putative RNAs that contained 

only a single pixel as they are prone to be background of spurious barcodes generated by random 

fluorescent fluctuations and had a much higher misidentification rate compared to those contained 

2 and more pixels. 

We identified cell segmentation boundaries in each FOV using a seeded watershed approach as 

described before36. The DAPI images were used as seeds and the polyA signals were used to 

identify segmentation boundaries. Finally, we assigned individual RNA molecules identified in 

the MERFISH run to individual cells based on whether or not they fell within the segmented 

boundaries of the cells. For the sequential two-color FISH rounds, we quantified the signal from 

these imaging rounds by summing the fluorescence intensity of all pixels that fell within the 

segmentation boundaries of the cells associated with the central z-plane and normalized the signal 

by the areas of the cells in this z-plane. Then the normalized signals of the 16 genes from the 

sequential two-color FISH rounds were merged with the RNA counts matrix from the 242 genes 

measured in MERFISH run and used for cell clustering analysis.  

 

Cell clustering analysis of MERFISH data 

With the cell-by-gene matrix obtained as described above (each row representing a cell and each 

column representing a gene, and each element representing the expression level a specific gene in 

a specific cell), we first preprocessed the matrix by several steps. (1) The segmentation approach 

we used generated a small fraction of putative “cells” with very small total volumes due to spurious 
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segmentation artifacts, as well as some cells that overlapped in the 3-D dimension and were not 

properly separated. We hence removed the segmented “cells” that had a volume that was either 

less than 100 µm3 or larger than 3 times of the median volume of all cells, which was about 1000 

µm3. (2) A fraction of cells did not have the whole soma body included in a 10-µm-thick tissue 

slice and were thus not imaged completely. To remove the differences in RNA counts due to the 

incompleteness of soma bodies, we normalized the RNA counts per cell by the imaged volume of 

each cell. (3) We observed a modest batch effect between MERFISH experiments accounting for 

~30% variation of the mean total number of RNAs per cell. We normalized the mean total RNA 

counts per cell to a same mean value (250 in this case) for each experiment to remove the influence 

of these batch effects. (4) Since the 16 genes that were imaged in the sequential FISH rounds 

contained many non-overlapping markers and no cells should express a majority of these 16 genes, 

we considered the segmented “cells” that had a normalized fluorescence signal that higher than 

the 90% quantile in 12 out of the total 16 sequential FISH channels as caused by spurious 

fluorescence background and removed these “cells”.  (5) Since the fluorescence background in the 

650-nm and 750-nm channels were different, we subtracted the background for each cell by taking 

the minimum of the signal for each cell across all sequential FISH rounds for 650-nm and 750-nm 

channels separately. (6) We removed the cells that had total RNA counts lower than 2% quantile 

or higher than 98% quantile. (7) We removed potential doublets using Scrublet70.  Briefly, 

principal component analysis (PCA) was used to train a k-nearest neighbor (kNN) classifier to 

predict a doublet score for each cell. Since we recorded the DAPI stained nucleus image of each 

cell, we were able to visually inspect a random subset of potential doublets picked by Scrublet and 

fine-tuned the doublet score threshold to remove connected cells more accurately. Finally, the cells 

with doublet score higher than 0.18 were removed as doublets, which accounted for ~12% of the 

total cell number. (8) We also found that 4 out of the 16 genes imaged in the sequential two-color 

runs, namely Cd52, Rprml, Mup5 and Igfbp6, were not detected well in all experiments and failed 

to mark any subset of cells as revealed in following clustering analysis. These 4 genes were 

removed for subsequent analysis. 

After the above preprocessing steps, we normalized the total RNA counts for each cell to the 

median total RNA counts of all cells and log transformed the cell-by-gene matrix. We then 

normalized their expression profiles by computing the z-score for each gene. We performed 

dimensionality reduction of the matrix using PCA, and used the first 35 principal components 
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(PCs). To determine the number of PCs to keep, we calculated the largest eigenvalue from a 

randomly shuffled values in each column of the cell-by-gene matrix, and then kept all the PCs that 

had an eigenvalue higher than the mean of the largest eigenvalues across 20 iterations of random 

shuffling. We then performed graph-based Louvain community detection42 in the 35 PC space 

using Scanpy65 for a range of nearest neighborhood size k values with a bootstrap analysis to both 

identify stable clusters and select the optimal k value (k = 10) as described previously36. We further 

identified six small clusters that expressed mixtures of markers for multiple distinct cell classes, 

e.g. Slc17a7 which marks excitatory neurons and Sox10 which marks the oligodendrocytes, and 

that did not correspond to any of the major subclasses defined by the sc/snRNA-seq data38 (based 

on classifier analysis which will be described below), as potential doublets, which were excluded 

from subsequent analysis. 

From the first round of clustering, we identified 16 excitatory neuronal clusters, 8 inhibitory 

neuronal clusters and 14 other clusters. To further refine our detection of transcriptionally distinct 

populations, we separated all the cells into five groups: intra-telencephalic (IT) projecting neurons 

(marked by excitatory neuronal marker Slc17a7 and pan IT marker Slc30a3), non-intra-

telencephalic (non-IT) neurons (marked by excitatory neuronal marker Slc17a7 but not Slc30a3), 

caudal ganglionic eminence (CGE) derived inhibitory neurons (marked by Gad1, Gad2, and 

Lamp5/Sncg/Vip), medial ganglionic eminence (MGE) derived inhibitory neurons (marked by 

Gad1, Gad2, and Sst/Pvalb), and other cells. We then repeated the procedure of dimensionality 

reduction and clustering, as described above, for these five cell groups separately. In addition, we 

sampled a range of resolution parameter r (r=1, 2, 3), a parameter value defined in Scanpy65 that 

controls the coarseness of the clustering, to search for the best granularity that represent the 

diversity of the transcriptomic profiles. We kept k=40 and r=2 for IT and non-IT excitatory neurons, 

k=15 and r=2 for CGE and MGE derived inhibitory neurons, and k=20, r=1 for the non-neuronal 

cells.  

After the second round of clustering, we further removed a small fraction of cells as potential 

doublets as described above. We also found four unique clusters that didn’t correspond to any 

subclass in the MOp region defined by the sc/snRNA-seq data38 (using the classifier approach 

described below). We located the cells that belonged to these clusters and found that two clusters 

were in striatum and were probably striatum neurons, and the other two clusters were likely 
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ependymal cells locating in the lateral ventricle. We removed these clusters from subsequent 

analysis.  

For presentation, Uniform Manifold Approximation and Projection (UMAP)52 was used to embed 

the cells in two dimensions using the same PCs that were used for clustering.  

 

A neural-net classifier approach to determine correspondence between clusters identified by 

MERFISH and sequencing-based measurements 

Correspondence between cell clusters identified by MERFISH and by sc/snRNA-seq were 

assessed by running a neural-net classifier71 which was trained on the z-scored single-cell 

expression profiles measured by MERFISH. The snRNA-seq 10x v3 B data in the companion 

paper38 was used for comparison because it is the largest dataset among the seven single cell and 

single nucleus RNA-seq datasets included in this companion study and contained the most non-

neuronal cells, while all other six datasets were collected by fluorescence-activated cell sorting 

(FACS) to enrich neurons. The snRNA 10x v3 B data was z-scored, and then the subset of genes 

measured in the MERFISH data were used together with the trained model to predict a MERFISH 

cluster label for each cell in the snRNA-seq dataset. From this, each snRNA-seq cell had both a 

predicted MERFISH cluster label and a cluster label determined from the consensus clustering 

results for the seven sc/snRNA-seq datasets38. Cells were grouped based on their consensus 

sc/snRNA-seq cluster identity, and then the fraction of cells from a given consensus sc/snRNA-

seq cluster that were predicted to have each MERFISH cluster was then determined. Such a 

classifier can also be trained on the snRNA-seq dataset and used for predicting a sc/snRNA-seq 

cluster label for each cell in the MERFISH dataset. We obtained similar results by running the 

classifier both ways, but only presented the results from the classifier trained by the MERFISH 

data. The same classifier approach was also used to produce Extended Data Figure 2a but in this 

case the subclass labels defined by MERFISH and sc/snRNA-seq data for each cell was used 

instead of cluster labels. Likewise, the same classifier approach was used to produce Extended 

Data Figures 2a, 5b and 8b, but in these cases, the cluster labels defined by the integrated analysis 

of the seven sc/snRNA-seq datasets, a snATAC-seq dataset and a snmC-seq dataset were used 

instead of the cluster labels derived from the sc/snRNA-seq datasets alone.     

 

Analysis of gene expression and spatial continuity among IT cells 
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To visualize the degree of similarity and continuity in the gene expression profiles of the IT 

neuronal clusters, we employed a recently developed graph abstraction technique called PAGA53  

to gain a quantitative understanding of how extensively different IT cell clusters occupied 

overlapping gene expression space. To this end, we first took the 19 IT neuronal clusters and 

normalized their expression profiles by computing the z-score for each gene. Cells from the L6 IT 

Car3 were not included in this analysis as it formed a cluster that was well-separated in gene 

expression from the other IT cell clusters. PCA was used to reduce dimensionality of the 

normalized expression data to the first 19 PCs. In selecting the number of PCs to include, we 

performed the same randomization procedure used when setting a PC threshold during clustering 

as described in the “Cell clustering analysis of MERFISH data” above. We then constructed a kNN 

graph based on the PCs, identifying the 12 nearest neighbors of each cell. Using the kNN graph 

and the cluster label of each cell, we used Scanpy65 to calculate the frequency that edges from cells 

with a given cluster label were connected to cells from a different cluster label and then normalize 

this frequency to that expected by chance. The resulting values represent the connectivity between 

the clusters in the kNN graph, and are visualized in a graph wherein each cluster is a node and the 

edges between nodes indicate the connectivity between those clusters.  

Next, we constructed an ordering of the IT cells based on their expression profile, yielding a 

“pseudotime” value for each cell. This calculation is most often performed to order cells within a 

dynamic system, in which case the ordering reflects the “time” relative to some reference cell. This 

calculation performed on the IT cells is not intended to represent the trajectory from L2/3 to L6 as 

part of a dynamic process, but rather to obtain an expression-derived measure of where along the 

trajectory each cell falls. To calculate the pseudotime of the IT cells, we used Scanpy to construct 

a diffusion map based on the above-described kNN graph, assigned a neuron from the L2/3 IT 1 

cluster as the root cell of the trajectory, and then computed the diffusion-based pseudotime72. The 

resulting value assigned to each cell reflects how far from the root cell its expression profile places 

it, and since each cell falls along a single trajectory with the L2/3 IT root cell at one end, this value 

orders the cells relative to one another along this path. 

To identify genes that vary as a function of IT cell pseudotime, the expression profile of the IT 

cells was normalized by computing the z-score for each gene. The IT cells were split evenly into 

50 bins based on their pseudotime rank-order, and the mean normalized expression was calculated 

for each gene across all the bins. Any gene for which the difference in mean normalized expression 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.105700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.105700
http://creativecommons.org/licenses/by-nc-nd/4.0/


 53 

between any two bins exceeded 0.5 was selected as a differentially expressed gene. For plotting 

these genes in a heatmap, the genes were ordered according to the pseudotime at which they exhibit 

their maximum expression and the cells were ordered based on their pseudotime. A rolling average 

was calculated for each gene across the 50 bins, using a window size of 10 bins. Genes were then 

sorted according to the window at which the maximum value occurred. The same procedure was 

used to find and sort genes that vary as a function of the cortical depth values of the IT cells, using 

normalized cortical depth in place of pseudotime. 

 

Stereotaxic injection of retrograde tracers 

To retrogradely label TEa-, SSp-, and MOs-projecting MOp neurons, each region was injected in 

the same animal in the right hemisphere with 100 nL of fluorescently conjugated Cholera Toxin 

subunit b (CTb-AlexaFluor488, CTb-AlexaFluor555, or CTb-AlexaFluor647, respectively; 0.5%; 

ThermoFisher, Cat# C22841, C22843, and C34778) using the following coordinates relative to 

bregma: TEa (AP -1.7 mm, ML +4.5 mm, DV +2.5 mm below cortical surface), SSp (AP -0.5 mm, 

ML +2.4 mm, DV +0.5 mm below cortical surface), and MOs (AP +2.4 mm, ML +1.0 mm, DV 

+0.4 mm below cortical surface).  Injection procedures were performed in adult male and female 

C57BL/6J mice (Jackson Laboratories) aged 2-4 months.  Briefly, mice were anesthetized initially 

in an induction chamber containing 5% isoflurane mixed with oxygen and then transferred to a 

stereotaxic frame equipped with a heating pad. Anesthesia was maintained throughout the 

procedure using continuous delivery of 2% isoflurane through a nose cone at a rate of 1.5 L/min.  

The scalp was shaved, and a small incision was made along the midline to expose the skull.  After 

leveling the head relative to the stereotaxic frame, the specified injection coordinates were used to 

mark the locations on the skull directly above each target area and a small hole (0.5 mm diameter) 

was drilled for each.  CTb was delivered through pulled glass micropipettes (inner diameter of tip: 

~20 µm) using pressure injection via a micropump (World Precision Instruments, Sarasota, FL).  

After completing the last injection, the scalp was sutured closed and animals were administered 

ketofen (5 mg/kg) to minimize inflammation and discomfort.  Animals were recovered from 

anesthesia on a heating pad and then returned to their home cage.  Mice were euthanized 7 days 

following injection to allow time for tracer transport and fresh brain tissue was immediately 

extracted, embedded in Tissue-Tek O.C.T. Compound (Sakura, Cat# 4583), and frozen at -80°C 

for later cryostat sectioning. 
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Imaging for CTb-injected tissue 

Frozen CTb-injected mouse brain was sectioned the same as described in the “Tissue preparation 

for MERFISH” section. Continuous set of 10-µm-thick slices in the MOp upper limb region 

(Bregma +0.7 to +0.1) were sectioned with approximately every 2th slice kept and placed onto 

coverslips for imaging. We used a much higher sampling frequency for CTb-injected samples due 

to a higher failure rate of this experiment caused by removing the coverslip from the flow chamber 

after CTb imaging. Tissue slices were immediately fixed by treating with 4% PFA in 1×PBS for 

15 minutes, washed three times with 1×PBS, stained with DAPI and proceed for imaging. As 

described in the “MERFISH imaging” section, we used the same imaging buffer and the sample 

was first imaged with a low magnification objective (Nikon, CFI Plan Apo Lambda 10x) for DAPI 

in 405-nm channel to produce a low-resolution mosaic of all slices. Next, in order to align each 

cell in the tissue with the same tissue slice that will be imaged with the MERFISH probe set later, 

we picked 10 cells in each coronal slice and recorded the location of the right-side edge for each 

cell. We then used the mosaic image, created as described above, to locate the MOp region in each 

slice and generated a grid of FOV positions to cover the MOp region to be imaged. We then 

switched to the high magnification objective (Nikon, CFI Plan Apo Lambda 60x) and collected 

images in the 650-nm channel for CTb- AlexaFluor647, 560-nm channel for CTb- AlexaFluor555, 

488-nm channel for CTb- AlexaFluor488, and 405-nm channel for DAPI. We took a single image 

for each of these channels at the central z-plane.  

After the CTb signals were imaged, the sample was removed from the imaging chamber and 

washed three times by 2xSSC and then permeabilized by 70% ethanol at 4 °C for at least 18 hours 

to permeabilize cell membranes. The tissue slices were then stained with the same MERFISH 

probe set as described in the “Tissue preparation for MERFISH” section, followed by normal 

MERFISH preparation procedures and imaging as described in the “Tissue preparation for 

MERFISH” and “MERFISH imaging” sections. During MERFISH imaging, we first imaged 

DAPI again with a low magnification objective, and then located the same 10 cells in each coronal 

slice we selected before during CTb imaging, and recorded the new location of the right-side edge 

for each cell. Using the old and new locations of the 10 cells for each slice, we determined the 

rotation and translation of the tissue comparing to the original images to align the CTb and 

MERFISH images. Then the normal MERFISH imaging was proceeded and the MERFISH images 
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were decoded and segmented the same as described in the “MERFISH image analysis and cell 

segmentation” section. We assigned each cell a projection identity by thresholding the normalized 

CTb dye intensity for each CTb channel and labeled each cell “on” or “off” for each channel. The 

CTb labeling of the cells were mostly binary (“on” or “off”) but still the labeling level varied 

between cells, therefore threshold was tuned by manually examining a random subset of the images 

and was set to a fairly stringent level such that weakly labeled cells were labeled “off”. The cell 

type identities of the CTb-injected samples were determined by training the MERFISH dataset 

with the MERFISH cell cluster identities without CTb injections using the classifier as described 

in the “A neural-net classifier approach to determine correspondence between clusters identified 

by MERFISH and sequencing-based measurements” section and predicting on the CTb-injected 

samples. Each cell in the CTb-injected samples was hence assigned with both a cell type identity 

and a projecting target identity. 

 

 

Other data resources used in this work 

The datasets of different single-cell transcriptomic and epigenomic modalities (scRNA SMART, 

scRNA 10x v3 A, scRNA 10x v2 A, snRNA SMART, snRNA 10x v3 B, snRNA 10x v3 A, snRNA 

10x v2 A, snATAC-seq, snmC-seq) were generated by a concurrent study in the BICCN 

consortium37 and reported in a companion paper38. These data are available at the Neuroscience 

Multi-omics Archive (nemoarchive.org). 
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