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Abstract. Understanding how neural structure varies across individuals
is critical for characterizing the effects of disease, learning, and aging on
the brain. However, disentangling the different factors that give rise to
individual variability is still an outstanding challenge. In this paper, we
introduce a deep generative modeling approach to find different modes
of variation across many individuals. To do this, we start by training
a variational autoencoder on a collection of auto-fluorescence images
from a little over 1,700 mouse brains at 25 micron resolution. To then
tap into the learned factors and validate the model’s expressiveness, we
developed a novel bi-directional technique to interpret the latent space–by
making structured perturbations to both, the high-dimensional inputs
of the network, as well as the low-dimensional latent variables in its
bottleneck. Our results demonstrate that through coupling generative
modeling frameworks with structured perturbations, it is possible to
probe the latent space to provide insights into the representations of
brain structure formed in deep neural networks.

Keywords: variational autoencoder · interpretable deep learning · brain
architecture and neuroanatomy.

1 Introduction

Understanding how disease, learning, or aging impact the structure of the brain
is made difficult by the fact that neural structure varies across individuals [14,5].
Thus, there is a need for better ways to model individual variability that provide
accurate detection of structural changes when they occur. Traditional approaches
for modeling variability [5,4] require extensive domain knowledge to produce
handcrafted features e.g., volumetric covariance descriptors over pre-specified
regions of interest (ROIs) [19,13]. However, in high-resolution datasets where
micron-scale anatomical features can be resolved, it is unclear i) which features
best describe changes of interest across many brains, and ii) how to extract
these features directly from images. Thus, unsupervised data-driven solutions for
discovering variability across many brains are critical moving forward.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.134635doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134635
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Authors Suppressed Due to Excessive Length

In this work, we introduce a deep learning model and strategy for interpreting
population-level variability in high-resolution neuroimaging data (Figure 1). Our
model is a regularized variant of the variational autoencoder (VAE) called the
β-VAE [7,2], and consists of an encoder and a decoder which work together to
first distill complex images into a low dimensional latent space and next, expand
this low-dimensional representation to generate high resolution images. Therefore,
to gain insight into what the complete model has learned from the data, we
take a bi-directional approach to characterize how latent components both are
impacted by perturbations to specific regions in the input, via the encoder and
consequently impact specific regions of the generated output, via the decoder. We
provide new strategies for understanding how different brain regions are mapped
to latent variables within the network, an important step towards building an
interpretable deep learning model that gives insight into how changes in different
brain regions may contribute to population-level differences.

We applied this method to a collection of roughly 1,700 mouse brain images at
25 micron resolution from different individuals in the Allen Mouse Connectivity
Atlas. By tuning the regularization strength in the β-VAE, we found that it is
possible to both generate plausible brain imagery and denoise images corrupted
by a number of artifacts. Our investigation into the latent space of this model
revealed a number of interesting findings. First, we found that information
contained within the latent space is often asymmetric, with artifacts and noise
being stored in one direction and biologically meaningful variance observed across
many individuals in a separate direction within the same latent factor. Second,
we found that multiple units appear to generate outputs that exhibit biologically
meaningful variation. Our results demonstrate that the proposed approach can
be used to systematically find latent factors that are tuned to specific ROIs, and
show that generative modeling approaches can be used to reveal informative
components of individual variability.

The contributions of this paper include: (i) the creation and specification
of a β-VAE that can model high-resolution structural brain images, (ii) a bi-
directional approach for revealing relationships between brain regions and latent
factors in a deep generative network, and (iii) demonstration that structured
perturbations to both image inputs and the latent space can reveal biologically
meaningful variability.

2 Methods

2.1 Model details

Low-dimensional models are used throughout machine learning to represent
complex data with only a small set of latent variables. In deep learning, a
bottleneck, i.e., layer with small width inside the neural network, often forces a
low-dimensional modeling of data. The VAE couples an autoencoder architecture
[8,17] with a variational objective, thus providing a probabilistic view towards
the generation of new high-dimensional data samples [9,16]. Much like regular
autoencoders, VAEs embed information from the image space X into a latent
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Fig. 1: Visualization of our bi-directional approach for analyzing variational autoencoders
trained to generate brain imagery. On the left, we show a specific ROI being manipulated
in a collection of input images (A1) and how this perturbation might result in a distinct
shift in the latent representations (A2) formed from these inputs. On the right, we show
the reverse process, where we perturb the latent space (B1) and observe the generated
output images (B2). The architecture of the VAE is also depicted, where the latent
dimension varies but the rest of the architecture is fixed.

space Z with latent dimension L via an encoder, and transform elements from
the latent space into those in the image space via a decoder. The relationship
between the encoder, decoder, and latent space can be written as:

Encoder : q(z|x)p(x) 7→ p(z), Decoder : q(x|z)p(z) 7→ q(x̂), (1)

where p(x) denotes our dataset’s distribution over the high-dimensional image
space, q(z|x) and q(x|z) are the distribution of the estimated encoder and
estimated decoder respectively, and p(z) is the assumed prior on latent variables6.

To train a good encoder (θ) and decoder (φ), the VAE aims to maximize the
following objective:

L(θ, φ;x, z) = Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)||p(z)). (2)

The first term measures the likelihood of the reconstructed samples and the second
term measures the KL-divergence between the estimated posterior distribution
qφ(z|x) and the assumed prior distribution. When β = 1, the model simplifies
to a vanilla-VAE, whereas when β is a free parameter, the resulting model is
6 For simplicity, the prior is typically assumed to be Gaussian, z ∼ N (0, I).
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referred to as the β-VAE [7]. Increasing the value of β encourages a certain degree
of clustering, whereas lowering it encourages dispersion of similar elements in
the latent space. Thus, by tuning β correctly, the model can learn to disentangle
latent factors with stronger regularization [7,2].

In our experiments, we used a β-VAE with a deep convolutional structure
mimicking the DC-GAN architecture [15] (Figure 1). Our encoder had seven
convolutional layers followed by three fully connected layers and used the ReLU
activation function throughout. The same structure was mirrored for the decoder.
The learning rate and batch size were set to 2e-4 and 64 respectively, resulting in
a training time of roughly 4 hours on an Nvidia Titan RTX. After performing a
grid search (β = 1− 20, L = 4− 20), we selected L = 8 and β = 3 as our model
hyper-parameters since they exhibited performance that was relatively stable
(i.e., these parameters produced an inflection point in evaluation metrics). The
vanilla VAE’s performance also exhibits an inflection point at the same latent
dimension, which further confirmed that this choice holds for different amounts
of regularization. In contrast, PCA continues to decrease its approximation error
with higher dimensions; however, high-variance artifacts and other sources of
noise are very quickly incorporated into the model when the latent dimension
increases beyond 30.

2.2 Bi-directional latent space analysis

As images in our dataset are spatially aligned to an atlas, understanding how
different regions of the pixel space are mapped to latent variables within the
network can be a critical first step in building an interpretable model that
gives insight into how different brain regions may contribute to population-level
differences. To do this, we develop a bi-directional approach to investigate the
interaction between the image space and the β-VAE’s latent space (see Figure
1). By understanding how the encoder and decoder work together to represent
spatial changes in the data, we can build a more informed look into how brain
structure can be modeled effectively within deep networks [10,20].

In one direction, we can map a latent variable’s receptive field (left, Figure 1),
i.e. which pixels in the input space impact each latent factor’s activations. If
changing the content of a region of the input image does not impact a specific
unit, then the manipulated region is not in the unit’s receptive field. To model
this perturbation, let x̃ = x0 + wp` denote the perturbed input image, where
x0 is the original image, p` is a region specific (spatially localized) perturbation,
and w is the perturbation weight. By designing these perturbations to examine
the responses of the units to changes in specific brain regions of interest, we can
study the regional specificity of different units.

In the other direction, we can map a latent variable’s projective field (right,
Figure 1), or the parts of space that a latent variable affects when a new image
is generated. To make this precise, let vk be a canonical basis vector with a one
in the kth entry and zeros otherwise, and let c denote the interpolation weight.
The perturbed latent variable is given by z̃ = z0 + cvk. In the simplest case, to
visualize these changes, we collapse the generated outputs and measure their
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Fig. 2: Evaluation of image synthesis and denoising performance. (A) The left side
shows the average template of brain slice and the right side shows the atlas of the
interested regions of brain structures, including somatosensory areas (SSp), hippocampal
formation (HPF), striatum (STR), and parts of the thalamus (TH). (B) We show
examples of images with different types of artifacts and the reconstructions obtained
with all three models. The first column shows the corruption artifacts, the second column
shows the physical breakage artifacts, and the third column shows the grid-like artifacts.
These types of artifacts are representative in real-world dataset. The CW-SSIM and
PCA-based FD scores for all three models are compared in (C) and (D), respectively.

per-pixel variance. This provides a measure of which pixels are strongly modified
when a specific latent factor changes.

3 Results

3.1 Dataset and Pre-processing

To build a generative model of brain structure, we utilized a collection of 1,723
registered images from the Allen Institute for Brain Science’s (AIBS) Mouse
Connectivity Atlas [12] that is accessible through the Allen Institute’s Python-
based SDK [1] (http://connectivity.brain-map.org/). The connectivity atlas
consists of 3D image volumes acquired using serial 2-photon tomography (STP)
collected from whole mouse brains (0.35 µm x 0.35 µm x 100 µm resolution,
1TB per experiment). Rather than using the fluorescence signal obtained from
the viral tracing experiments (green channel), we obtained the auto-fluorescence
signal acquired from each of the injected brains (red channel), which captures
brain structure and information about overall cell density and axonal projection
patterns. Our models were trained on 2D slices extracted from near the middle
of the individual brains (slice 286 out of 528) from each of the individuals in our
dataset. This particular coronal slice was selected because it reveals key brain
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areas, including the hippocampus (HPF), regions of thalamus (TH), and parts
of striatum (STR) (Figure 2A). The images were then downsampled from 0.35
microns to 25 microns, and centre-cropped to produce an image of size 320× 448
(input dimension). In order to mitigate the effects of leakage of fluoresence signal,
we pre-processed the data by adjusting image brightness to the dataset’s average
brightness and removing the resulted outliers.

3.2 Evaluations and comparisons

To evaluate the image generation capability of our β-VAE, we compared its
performance qualitatively and quantitatively with a vanilla-VAE and PCA. We
first sought to examine the reconstruction and denoising properties of the models
by seeing how they performed when supplied with images containing three
different types of artifacts: (i) corrupted bright areas due to leakage from the
green channel, (ii) physical sectioning artifacts (missing data), and (iii) grid-like
artifacts from scanning (Figure 2B, Supp. Materials S1). In these and other
examples, we found that the β-VAE did the best job of removing artifacts from
data. This ability of the β-VAE is particularly pronounced in the case of class (i,
ii) artifacts, where both PCA and VAE fail to reject the signal leaking into the
channel of interest and fail to recover missing data respectively. We observe that
the β-VAE tends to learn a more accurate distribution over the dataset, while
the vanilla-VAE overfits to the noise, and PCA given its linear nature, does not
deviate much from the mean in terms of its structural details.

To quantify the quality of reconstructed images and investigate how changing
the latent dimension effects the the model performance, we computed the complex
wavelet structural similarity (CW-SSIM) [18] and the PCA-based Frechet distance
(PCA-FD) [6,11] for all three models as we varied the number of latent variables.
We found that after tuning the model’s latent dimension, the β-VAE (L = 8)
outperforms both the vanilla-VAE and PCA on our chosen metrics (Figure 2
C,D). Analysis of the CW-SSIM scores suggests that PCA was unable to capture
high-dimensional textural details and high-frequency components of brain images
for low dimensions and then as the dimension increases it quickly starts to
represent artifacts in data. The PCA-FD scores on the other hand suggest that
the VAE models capture more variability across the data and better matches
the overal global distribution. But it does so at the expense of overfitting to the
dataset and generates more noisy realizations. However, the β-VAE appears to
successfully capture variability without reconstructing artifacts. It is also worth
noting that when the latent dimension is very large, the performance of the
VAE drops significantly, in line with previous observations of how VAEs fail in
higher dimensions [20]. These results provide initial evidence that regularization
is helpful for denoising the wide variety of artifacts, while also capturing the
data’s distributional properties.
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Fig. 3: Model interpretability. (A) Stratified pixel-level variance heatmaps, where cyan
and magenta represent variance generated from interpolation weights in the quartile
above average and below average, respectively, and yellow represents points with high
interpolation weights. (B) Each entry of this matrix contains the KL-divergence between
a specific latent factor’s activation distribution when perturbing a specific brain ROI.
For each ROI, the KL-divergence across all eight latent dimensions is normalized and
their relative impact are displayed in color (blue is low impact, yellow is high impact).
(C) We show how perturbing the image brightness in HPF region impacts the activation
distribution for two factors (F1, F5). (D) The covariance between the impact across
factors provides a visualization of the similarity between how different latent variables
impact specific ROIs. (E) We score the β-VAE, VAE, and PCA models by measuring
how uncorrelated two latent factors are in terms of how they are impacted by ROI-based
perturbations. The β-VAE model has the highest score, suggesting that it has the most
uncorrelated representation of the tested ROI-specific perturbations.

3.3 Interpreting the latent factors

After confirming that our model can generate high quality images and denoise
data, we next explored its interpretability with the bi-directional analysis method
described in Section 2.2 (Figure 1).

We first examined the latents’ projective field, by generating a collection of
images via a dense uniform interpolation of the latent space, varying a single
latent factor at a time (c = ±7, with a step size of 0.005). When we examined the
resulting images, in many of the factors, we observed that localized bright noise
artifacts (type i) were essentially synthesized at the extrema of the interpolation
space. Interestingly, we observed asymmetries in this representational strategy:
Type (i) artifacts, while not usually recovered by the decoder, were more likely
recapitulated when moving far into the space of negative interpolation weights
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(Supp. Material S4). This indicates that a data example is encoded in the
left tail of the distribution, centered about the original sample. On the other
extreme, in high positive interpolation weights, we observed some high variance
regions, but they all aligned with patterns of variability that we know are useful
for encoding biologically meaningful variance in the whole dataset. We thus
divided the interpolation space into three groups: (i) small negative weights,
(ii) small positive weights, and (iii) large weights. All three groups of images
were compressed by computing their pixel-level variances and stacking them into
different channels of an RGB color image; thus allowing for the visualization of
the impact of all three types of perturbations to the latent space, on the image
domain jointly (Figure 3A). When we examined the variability heatmaps, we
observed that factors 2, 6, and 8 (marked with stars in Figure 3A) recapitulated
structures present due to outliers. As mentioned before, these noise artifacts
appear to be stored in parts of the latent space that are accessed when we apply
large negative interpolation weights to true examples (visualized in the stratified
variance map). In the other parts of this interpolation space, we found biologically
meaningful variance, where the model highlights key ROIs including the barrel
fields of somatosensory cortex, hippocampus, and retrosplenial areas in cortex.
These results provide initial evidence that VAE models can be used to decompose
variability in complex data with different types of noise and artifacts.

After exploring the projective field of the units in the latent space, we next
asked whether we could understand properties about each unit’s receptive field. To
do so, we selected a set of high-quality images without obvious artifacts, applied
masks to remove all content from different ROIs, modulated their intensity with
perturbation weights w, and fed these perturbed images into the encoder (Supp.
Material S2). We then fit a Gaussian to the resulting latent codes across all
image examples (n = 832) (Figure 3C, Supp. Materials S3). The results of this
perturbation analysis revealed multiple units that are not modulated by certain
ROIs, and also that many factors have spatially localized receptive fields. We
found that perturbations to the hippocampus (HPF) impacted almost all of
the latent variables, and striatum also has wide reaching impacts. This seems
to align with the fact that variability in these areas is more complex and thus
it is necessary to encode this variance over multiple factors. We computed the
KL-divergence between the activation distributions for two extreme brightness
values, and then compiled all these distances into a 6x8 matrix (Figure 3B).
This matrix quantifies the impact that missing information from a ROI has on
activations in each latent variable in the model. One interesting result from our
analysis is that, in some cases, the receptive field and projective field may not
be spatially aligned (see Factor 8, HPF). Our results reveal that receptive and
projective fields can be asymmetric, and thus it is critical to map input-output
relationships from the image space to the latent space and back again.
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4 Discussion

In this paper, we have developed a methodology to interpret the population-level
variability in structural brain images in deep generative models. We introduced a
method for visualizing the impact of perturbations to the latent space of a β-VAE
and used it to dissect models trained on brain imagery from many individuals.

In our current study, we used a β-VAE model because of its simplicity
and flexibility. However, there are other interpretable VAE variants that have
been proposed to facilitate disentanglement [2,20,3]; these methods incorporate
additional priors to encourage separability across latent dimensions. As our
approach is relatively general, exploring deep representations in the way described
could provide a way to visualize the representations formed in generative models
for other applications in medical imaging. With new strategies for interpreting
how deep networks represent data, we may be able to develop new regularization
strategies to disentangle and interpret population-level variability.
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Supplementary Materials

Fig. S1: Additional examples of model comparison. Similar as Figure 2B where different
types of artifacts are fed into three models.
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Fig. S2: Examples of masked images used to probe the latent space. Different brightness
levels of different ROIs are calculated specifically to mask the original images.

Fig. S3: Results of image perturbation experiment. Each row represents a different latent
factor and each column represents a specific ROI. A complete version of Figure 3C.
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Fig. S4: Examples of output images generated with latent interpolation. They are used
to produce the heatmaps in Figure 3A.
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