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Abstract11

In the post-genome-wide association era, two-sample Mendelian Randomization (MR)12

methods have been applied to detect genetically-regulated risk factors for complex dis-13

eases. Two-sample MR considers single nucleotide polymorphisms (SNPs) associated14

with a putative exposure as instrumental variables (IVs) to assess the effect of the ex-15

posure on an outcome by leveraging two sets of summary statistics: IV-to-exposure and16

IV-to-outcome statistics from existing GWASs. Traditional MR methods impose strong17

assumptions on the validity of IVs, and recent literature has relaxed the assumptions18

allowing some IVs to be invalid but generally requiring a large number of nearly inde-19

pendent IVs. When treating expression-quantitative-trait-loci (eQTLs) as IVs to detect20
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gene expression levels affecting diseases, existing methods are limited in applicability1

since the numbers of independent eQTLs for most genes in the genome are limited.2

To address those challenges, we propose a robust two-sample MR framework that re-3

quires fewer IVs and allows moderate IV correlations and some IVs to be invalid. This4

is achieved by leveraging existing multi-tissue eQTL summary statistics (multiple sets5

of IV-to-exposure statistics) and GWAS statistics in a mixed model framework. We6

conducted simulation studies to evaluate the performance of the proposed method and7

apply it to detect putative causal genes for schizophrenia.8

Introduction9

For more than a decade, genome-wide association studies (GWAS) have uncovered tens10

of thousands of unique associations between single nucleotide polymorphisms (SNPs) and11

complex diseases/traits [1]. In the post-GWAS era, the next major challenge is to further12

understand the biological mechanisms underlying the observed associations and identify clin-13

ically actionable risk factors for various complex diseases/traits. Most of the disease/trait-14

associated SNPs have small effect sizes and reside in non-coding regions with unknown func-15

tions [2; 3]. In order to elucidate their mechanisms and functions, many efforts have been16

made to integrate GWAS summary statistics with other information (e.g., eQTL statistics)17

and to identify genetically-regulated risk factors (e.g., gene expression levels) for complex18

diseases. Those methods include transcriptome-wide association studies (TWAS) [4; 5; 6; 7],19

colocalization analyses [8; 9; 10; 11], two-sample Mendelian Randomization (MR) analysis20

[12; 13; 14; 15] and others.21

Compared to other integrative genomic analyses, MR analysis has its unique advantages.22

It steps beyond association towards causation, aiming to identify modifiable risk factors (ex-23

posures) for complex diseases while allowing unmeasured confounders affecting both expo-24

sures and disease outcomes of interest. Specifically, MR methods consider SNPs with known25

associations with an exposure of interest as instrumental variables (IVs) [16; 17; 18; 19]. Since26
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SNP genotypes were ‘Mendelian Randomized’ from parents to offspring during meiosis, they1

are assumed to be generally unrelated to external confounders. Under certain assumptions,2

SNPs can be used as IVs to estimate and test for the causal effects of an exposure on a dis-3

ease outcome from observational data. Two-sample MR methods refer to the MR methods4

requiring only two sets of summary statistics, IV-to-exposure and IV-to-outcome association5

statistics from two independent sets of samples, and thus are widely used to recapitalize on6

existing summary statistics.7

Traditional MR methods imposed strong assumptions on the validity of IVs [20]. A valid8

IV is a genetic variant that affects the complex disease through only the exposure of interest9

(no direct effect) and is independent of unmeasured confounders of the exposure and the10

disease outcome [21]. That is, there is no ‘horizontal pleiotropy’ [16] (a phenomenon where a11

genetic variant also affects the complex trait via other pathways not through the exposure)12

nor ‘correlated pleiotropy’ [22] (a phenomenon where a genetic variant affects both exposure13

and outcome through a heritable shared factor, i.e. IVs are associated with the confounder).14

See Figure 1 for an illustration. Note that valid IVs do not have to be the causal SNPs. Due15

to the pervasive pleiotropic effects of SNPs and linkage disequilibrium (LD) among SNPs16

in a region, it is commonly observed that SNPs may be associated with multiple molecular,17

intermediate and/or complex traits [23; 24; 25]. Both horizontal and correlated pleiotropy18

effects are prevalent in the genome. The inclusion of invalid IVs in traditional MR analyses19

may lead to biased causal effect estimation and inference. More recently, robust MR methods20

have been proposed to relax the assumptions by considering multiple IVs and allowing some to21

be invalid. Some methods allow up to half of the IVs being invalid but require individual-level22

genotype and phenotype data, which may limit the applicability of the methods [26]. Some23

methods require IVs to be nearly independent [13; 14; 27; 15] and/or require the number of24

IVs to be large [22; 28]. Those methods have been successfully applied to detect intermediate25

non-omics traits as exposures for complex diseases. For example, in detecting the protective26

effect of high-density lipoprotein cholesterol (HDL-C) on peripheral vascular disease, the27
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suspected modifiable exposure HDL-C has many established GWAS SNPs as potential IVs1

[28].2

When applying MR methods to detect gene expression as an exposure for a disease out-3

come (termed as “transcriptome-wide MR" [29; 30]), new challenges arise. First, few studies4

have genotype, gene expression and disease outcome data being measured on the same set5

of samples, and even when all data is available for the same set of subjects, sample sizes6

are generally limited. Thus, MR methods requiring individual-level data may have limited7

power and applicability. Second, invalid IVs can be quite prevalent when studying gene ex-8

pression as the exposure. Many genetic variants may affect complex diseases not completely9

via gene expression levels of a cis-gene [31]. Recent studies have reported the existence of10

many GWAS SNPs being also multi-omics QTLs (i.e., SNPs affecting both cis-gene expres-11

sion and methylation levels then affecting complex diseases) [25; 24], and QTLs with effects12

on diseases mediated via splicing events [32]. Methods allowing invalid IVs are necessary in13

studying gene expression as the exposure. Last but foremost, when treating cis-eQTLs as14

IVs, the numbers of independent cis-eQTLs for most genes in the genome are very limited.15

Existing robust two-sample MR methods allowing invalid IVs generally require either multi-16

ple independent IVs or a large number of (weakly correlated) IVs, and those existing methods17

would have limited applicability in analyzing most genes in the genome.18

To address those challenges in analyzing gene expression as the exposure for a disease19

outcome, we propose a two-sample Mendelian Randomization method ROBust to correlated20

and some INvalid instruments, termed “MR-Robin”. It requires only summary-level marginal21

GWAS and multi-tissue eQTL statistics as input, considers multi-tissue eQTL effects for22

multiple IVs of a gene, allows IVs to be correlated and some of them to be invalid, and can be23

applied to genes with only a small number of cis-eQTLs. Compared to existing two-sample24

MR methods allowing invalid IVs, MR-Robin lessens the required number of independent25

IVs by integrating GWAS statistics with multi-tissue eQTL statistics (i.e., multiple sets of26

IV-to-exposure summary statistics) in a mixed model framework. Moreover, by carefully27

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.135541doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.135541


selecting cross-tissue eQTLs as IVs, MR-Robin also improves the robustness of IV effects1

across “two-samples” and may improve the reproducibility of estimation and inference based2

on two-sample MR analyses. Specifically, MR-Robin considers the estimated effect of a3

gene on a disease from each IV as an observed value of the true effect plus a SNP-specific4

bias. By jointly considering multiple IVs, MR-Robin decomposes the estimated effects of5

multiple IVs into two components – a concordant effect shared across IVs and a discordant6

component allowing some IVs to be invalid with SNP-specific deviations from the true effect.7

MR-Robin makes the estimation identifiable by taking advantage of the multi-tissue eQTL8

effects for multiple IVs of a gene and treating them as the response variable in a reverse9

regression, with GWAS effect estimates as the predictor. The rich multi-tissue eQTL effect10

information in the response variable allows the estimation of SNP-specific random-slopes11

(i.e. deviated effects) due to potentially invalid IVs. Thus, with only a limited number of12

potentially correlated IVs, MR-Robin can test the effect from a gene to a disease by testing the13

shared (fixed effects) correlation between eQTL and GWAS effects across IVs. We conducted14

extensive simulations to evaluate the performance of MR-Robin under various scenarios in15

analyzing gene expression as the exposure for a disease outcome in the presence of invalid16

IVs. We applied MR-Robin to identify gene expression levels affecting schizophrenia risk17

by leveraging multi-tissue eQTL summary statistics from 13 brain tissues in the Genotype-18

Tissue Expression (GTEx) project [33] and GWAS summary statistics from the Psychiatric19

Genomics Consortium (PGC) [34].20

Methods21

Let βxi (i = 1, . . . , I) denote the marginal eQTL effect of a local eQTL/IV i for a gene and22

βyi denote the marginal GWAS association effect on a complex trait of the eQTL/IV i in23

the GWAS study. Note that both βxi and βyi’s are effects in the GWAS study, though βxi24

is latent since expression data is not available for the GWAS samples, which is typical for25

5
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most GWASs. Our goal is to test whether the effect of gene expression on the trait (γ in1

Figure 1) is zero, H0 : γ = 0 vs. HA : γ 6= 0. Traditional two-sample MR methods often2

take the ratio βyi/βxi as an estimand for γ based on IV i. In the following subsections, we3

will first show that when there is a SNP j with a horizontal or correlated pleiotropic effect,4

and SNP j is in LD with the selected IV i, the ratio βyi/βxi is a biased estimate for γ with5

a SNP-specific bias depending on many factors. Then we will introduce MR-Robin with6

a mixed model framework based on reverse regressions taking multi-tissue eQTL summary7

statistics (multiple sets of IV-to-exposure statistics) as response and IV-to-outcome statistic8

as predictor to test for a non-zero effect from gene to disease.9

Bias in βyi/βxi as an estimand for γ when SNP with pleiotropy is in10

LD with IV i11

Without loss of generality, we assume that there are two SNPs i and j in LD, and SNP i is a

valid IV if conditioning on SNP j, and SNP j has a horizontal pleiotropic effect as depicted in

Figure 1. For multiple eQTLs in an LD block, one can consider them as being conditionally

valid IVs and invalid IVs. Below are the data generating models in a GWAS:

X = µx0 + µiLi + µxjLj + εx, (1)

Y = µy0 + γX + µyjLj + εy, (2)

where X is the gene expression levels and Y is the continuous complex trait of interest in a12

GWAS study; and Li and Lj are the genotypes for SNPs i and j, respectively. As a valid13

IV given Lj, the genotype of SNP i (Li) is independent of the error terms εx and εy. In the14

above models, the conditional association between X and Li given Lj is captured by µi, and15

the conditional association between Y and Li given Lj is γ · µi. And the ratio of the two,16

γµi
µi

, recovers the true effect of interest, γ.17

Without adjusting for SNP j, the summary statistics for SNP i are calculated based on

6
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the following marginal models:

X = βx0 + βxiLi + ε′x, (3)

Y = βy0 + βyiLi + ε′y, (4)

where βxi and βyi are the marginal eQTL and GWAS association effects, respectively, in1

the GWAS study. Note that one could also adjust covariates in the above models (1)-2

(4) and that does not affect our conclusion. We ignore covariates for simplicity. Define3

ρij =
Cov(Li,Lj)

Var(Li)
, in terms of parameters in (1) and (2), it can be derived that the marginal4

effects βxi = Cov(X,Li)
Var(Li)

= µi + µxjρij, and βyi = Cov(Y,Li)
Var(Li)

= [γ + (γµxj + µyj)
ρij
µi

]µi.5

It can be seen that the bias of marginal eQTL effect estimate for SNP i on gene expression,6

βxi, with respect to the true eQTL effect, µi, is µxjρij. And the bias of marginal GWAS effect7

estimate for SNP i on complex trait, βyi, with respect to the mediated effect from SNP to8

gene to trait, γµi, is (γµxj + µyj)ρij. And it can be derived that the bias of the ratio of9

marginal GWAS to eQTL effect estimates, βyi/βxi, with respect to the true effect, γ, is given10

by µyjρij
µi+µxjρij

. All the biases are functions of SNP i’s eQTL effect size, LD strength to the11

pleiotropic SNP j and effect size of the pleiotropy. Therefore, the bias will vary from SNP12

to SNP. Similarly, in the presence of correlated pleiotropic SNPs being in LD, the bias will13

also vary from SNP to SNP.14

In the presence of horizontal or correlated pleiotropy in the LD region, an eQTL would be15

an invalid IV. And in such a case, the effect from gene to trait (γ) is not separable/identifiable16

from the direct effect of the eQTL nor confounding effects when only the total effect esti-17

mate (marginal summary statistic) is available. The presence of horizontal or correlated18

pleiotropy makes it challenging to infer the effect of a gene on a trait using single-IV-based19

MR approaches. When there are multiple eQTLs in the gene region, as shown in Figure 1,20

the presence of one SNP with horizontal or correlated pleiotropic effect would also render all21

eQTLs invalid if they are in LD.22
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It should be noted that the above bias is derived for analyzing gene expression as exposure1

for disease outcome based on marginal eQTL statistics. Due to the fact that all IVs (cis-2

eQTLs) are from the same cis-region and are in LD, the bias caused by pleiotropy in the region3

is particularly pronounced. When analyzing intermediate non-omics trait as the exposure4

and there are many known susceptibility loci from different genomic regions being associated5

with the non-omics exposure of interest, the IVs are generally less dependent and the bias6

due to local pleiotropy is generally specific to each locus.7

MR-Robin – a reverse-regression-based mixed model framework with8

multi-tissue eQTL statistics as response9

Given the bias derived for βyi/βxi w.r.t γ, we model that βyi/βxi = (γ+γi), where γi denotes10

the SNP-specific bias. The bias is zero if there is neither a horizontal nor correlated pleiotropic11

effect in the region. The bias is small to negligible for some eQTLs if those eQTLs themselves12

are valid IVs when adjusting for invalid IV Lj, those eQTLs are in moderate-to-weak LD with13

the invalid IV(s), and the pleiotropic effect of SNP j is not strong (i.e., small ρij · µyj). It14

follows that15

βyi = (γ + γi)βxi,∀i = 1, . . . , I. (5)

And equivalently,16

βxi = (θ + θi)βyi,∀i = 1, . . . , I. (6)

where θ captures the dependence between βxi and βyi, and θi is the SNP-level deviation from17

the shared effect θ in the presence of pleiotropy.18

In the above equation, βxi is the marginal eQTL effect of SNP i to gene expression in19

the GWAS study and is often not available, since most GWAS studies do not have gene20

expression data measured. The availability of multi-tissue eQTL summary statistics from21

trait-relevant tissue types in a reference eQTL study such as GTEx provides a valuable22

resource to estimate βxi, given many cis-eQTL effects are shared across tissue types and are23
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replicable across studies.1

We model SNP i’s eQTL effect in tissue k (k = 1, . . . , K) in the reference multi-tissue2

eQTL data as a function of the eQTL effect in the GWAS data (βxi) and an error term.3

Based on (6), we propose the following model of MR-Robin for testing trait-association of a4

gene using only summary statistics from GWAS and multi-tissue eQTL reference:5

β̂Rxik = (θ + θi)β̂yi + εRxik, (7)

where β̂Rxik is the marginal eQTL effect estimate of the cross-tissue IV/eQTL i (i = 1, . . . , I) in6

the k-th tissue with the cross-tissue effect in the reference eQTL data, and β̂yi is the marginal7

GWAS effect estimate for SNP i; and θ captures the shared correlation of GWAS and eQTL8

statistics among all SNPs and is non-zero and bounded if and only if the true effect from the9

gene on the complex trait, γ, is non-zero and bounded; θi represents the SNP-specific bias10

due to horizontal or correlated pleiotropy in the region and is a SNP-specific random-slope;11

and εRxik is a random error that follows a multivariate normal distribution N(0,ΣR
x ). Note that12

there are both SNP-SNP correlations due to LD and tissue-tissue correlations due to sample13

overlapping. In the P -value estimation procedure, we account for the correlated errors by14

resampling.15

In the reverse regression (7), the eQTL effect estimates from multiple tissue types, β̂Rxik, are16

considered as the response variable while the GWAS association effects β̂yi are considered as17

the predictor. This is mainly to take advantage of the rich information in multi-tissue eQTL18

datasets (i.e., variation in response). If there are multiple sets of correlated or independent19

GWAS summary statistics from the same population/ethnicity without study heterogeneity,20

often consortium-based meta-analysis may have been conducted with improved power and21

precision, and a single set of GWAS summary statistics would be made available. Each22

observation in the regression (7) is an estimated/observed marginal eQTL effect, with a total23

of I × K (SNP-by-tissue) observations. By testing the shared correlation of tissue-specific24

eQTL effects and the corresponding GWAS association effects for multiple eQTLs in the25

9
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same gene (H0 : θ = 0 vs. HA : θ 6= 0) while also allowing for SNP-level deviation, we can1

test the effect of gene expression on trait (H0 : γ = 0 vs. HA : γ 6= 0), allowing invalid and2

correlated IVs.3

Many existing methods in the MR literature allowing invalid IVs [22; 14; 26] include4

an intercept or a random intercept in the model to capture the direct effect from genotype5

to trait, i.e. horizontal pleiotropy. That is, SNP-to-disease association effects from GWAS6

are modeled as βyi = γ · βxi + γi,∀i = 1, . . . , I. The model fits better when individual-level7

data are available and statistics conditional on other SNPs in the region can be obtained8

or when summary statistics from joint models of multi-SNPs in the region are available. In9

contrast, in the MR-Robin model, there is no intercept nor random intercept. Instead, we10

include a random slope for each SNP to capture the effect due to potential pleiotropy in the11

region. This is because, by allowing correlated IVs and considering all eQTLs in a region,12

as shown above when there is a non-zero pleiotropic effect, most of the SNPs in the LD13

region would be affected with a non-zero (but possibly negligible) SNP-specific deviation θi.14

Allowing correlated IVs and some invalid IVs even when the number of IVs are limited is also15

a major innovation of our model. Due to limited numbers of eQTLs/IVs for most genes in16

the genome, a model with both an intercept and a random slope may not be identifiable and17

thus is not explored.18

To account for uncertainty in the eQTL effect estimation, we perform a weighted mixed-19

effects regression analysis and weight each “observation” (i.e., a tissue-specific eQTL effect)20

by the reciprocal of the estimated standard error for β̂Rxik, i.e., wik = 1/
(
σ̂Rxik

)
. We obtain21

the t-statistic for testing the fixed effect of interest θ as our test statistic. To obtain the22

P -value while accounting for LD and tissue-tissue correlation as well as the uncertainty in23

the estimation of βyi’s, we adopt a resampling-based approach to generate the null test24

statistics. In each resampling b (b = 1, . . . , B), we sample a vector of GWAS effects from a25

multivariate distribution, β0(b)
y ∼ N(0,Σ2

y), where the diagonal and off-diagonal elements are26

Σ2
yii′ = σ̂yirii′σ̂yi′∀i, i′ with rii′ being the genotype correlation and σ̂yi being the estimated27

10
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standard error for β̂yi. We apply the same weighted model (7) on data β̂Rxik’s and β0(b)
yi ’s to1

obtain a null statistic. We repeat the resampling process at least B = 10, 000 times and2

calculate the P -value. The MR-Robin algorithm is summarized in the algorithm below.3

Algorithm 1 MR-Robin for assessing the causal effect of gene expression of a gene on a
complex trait with summary statistics from GWAS and a multi-tissue eQTL study

Step 1. Obtain the summary statistics from GWAS study and eQTL study. For
each of I cis-eSNPs of the gene being selected, we obtain the association statistics between
the SNP and the gene expression in the k-th tissues {β̂Rxik} along with the standard errors
{σ̂Rxik} (k = 1, . . . , K) from the multi-tissue eQTL study. And we obtain the association
statistics between the SNP and the complex trait {β̂yi} and the standard error estimates
{σ̂yi} from the GWAS study.
Step 2. Obtain the test statistic. We perform a weighted analysis of the mixed-effects
model (7) on data {β̂Rxik} and {β̂yi} with weight being 1/σ̂Rxik for each β̂Rxik to obtain the
test statistic tMR for testing H0 : θ = 0 vs. HA : θ 6= 0.
Step 3. Calculate the MR-Robin P-value based on resampling. In each resampling
b (b = 1, · · · , B), we generate a vector of GWAS effects β0(b)

y from N(0,Σ2
y) to account for

GWAS effect estimation uncertainty and LD. We then apply the weighted analysis of the
model (7) on data {β̂Rxik} and {β0(b)

yi } with the weight of SNP i in the k-th tissue being
wik = 1/σ̂Rxik to obtain a null test statistic t0(b)MR. We then calculate the P -value of trait-
association for the gene as, P -value = 1

B

∑B
b=1 I

(
|t0(b)MR| ≥ |tMR|

)
, where I(·) is the indicator

function.

Results4

Simulations to evaluate the performance of MR-Robin when IVs are5

correlated, some being invalid, and/or limited in number6

In this section, we conducted simulation studies to evaluate the performance of MR-Robin7

as a two-sample MR method in the settings where a limited number of potentially correlated8

and/or invalid genetic variants are available as candidate instrumental variables (IVs). We9

showed that with multi-tissue eQTL statistics as input, MR-Robin is robust to the inclusion10

of correlated and some proportions of invalid IVs even when the number of IVs is small.11

We compared MR-Robin to several existing MR methods in the literature that are based on12

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.135541doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.135541


single-tissue eQTL and GWAS summary statistics and are robust to invalid IVs: MR-Egger1

[27], MR-RAPS [14], MRMix [13], and BWMR (a Bayesian weighted Mendelian random-2

ization method) [15]. Note that those existing methods were developed for settings where3

a polygenic trait is analyzed as an exposure for other complex diseases and so many inde-4

pendent genetic variants associated with the exposure trait are available as candidate IVs.5

Those methods may not be suited for our target settings in which gene expression levels is6

considered as the exposure, and there are often only a limited number of correlated cis-eQTLs7

as IVs (trans-eQTLs are not considered as IVs in our two-sample MR analysis because trans-8

eQTL effects are less replicable across eQTL and GWAS samples). Some of those existing9

methods also do not allow the IVs to be correlated. Nonetheless, we included the methods10

for comparison. None of the existing methods were developed for taking multi-tissue eQTLs11

(multiple sets of IV-to-exposure association statistics) as input and that is an innovation of12

our method.13

Data generation14

In each simulation scenario, we simulated data for a total of N = Ng + NR = 10, 30015

independent subjects: Ng = 10, 000 subjects in a GWAS study, and NR = 300 subjects in a16

reference multi-tissue eQTL study of K = 10 tissues.17

First, we simulated an N×I genotype matrix L for each gene, comprised of Q independent

LD blocks with 20 SNPs in each block (thus, a total of I = 20×Q SNPs for each gene). The

correlation between SNP index i and SNP index j in a given LD block is rij = 0.95|i−j|, with

the minor allele frequency (MAF) of SNP i, MAFi ∼ Unif(0.05, 0.5). From each LD block,

we randomly selected 1 SNP to be the true eQTL. The Ng×Q genotype matrix of the Q true

eSNPs in the GWAS study is denoted G. For M (M ≥ 0) LD blocks, we randomly selected

1 SNP to be an invalid IV having a direct effect on the complex trait (the value of M varies

across simulation scenarios). The Ng ×M genotype matrix of the M SNPs that are invalid

IVs is denoted H. We generated phenotypes in the GWAS study according to the following
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data generation models:

X = Gµx + ηxZ + εx, (8)

Y = γX + Hµy + ηyZ + εy, (9)

In Model (8), X is a vector of gene expression levels; G are the genotypes of eSNPs; µx ∼1

NQ(0,Σµx) are the eQTL effects of eSNPs from independent LD blocks, with Σµx a diagonal2

matrix with diagonal elements σ2
µxqq = 0.02

MAFq(1−MAFq)
; Z ∼ N(0, 1) is a vector of a latent3

confounder; ηx ∼ Unif(0, 0.1) is the effect of the confounder on gene expression levels; and4

εx ∼ N(0, 1) are error terms. In Model (9), Y is a vector of a continuous complex trait5

value; γ is the parameter of interest, the effect of gene X on trait Y , with γ = 0 under the6

null and γ = 0.3 under the alternative; H are the genotypes of SNPs having a direct effect7

on Y not through gene expression of X; µy ∼ NM(0,Σµy) are the direct effects on Y of8

M SNPs from independent LD blocks, with Σµy a diagonal matrix with diagonal elements9

σ2
µymm = 0.002

MAFm(1−MAFm)
; ηy ∼ Unif(0, 0.1) is the effect of the confounder on the complex10

trait; and εy ∼ N(0, 1) are the error terms. Across scenarios we vary M , the number of LD11

blocks having an invalid IV.12

Data from the eQTL study was generated based on the model:13

XR = GRµR
x + εRx , (10)

where XR is an NR ×K matrix of expression levels measured in K tissues; GR is a NR ×Q14

genotype matrix of Q eSNPs in the eQTL study; µR
x is a Q×K matrix of the tissue-specific15

eQTL effects; and εRx ∼ N(0, 1) are the error terms. Each column of µR
x is independently16

drawn from NQ(µx, 0.02 · I), where µx is from Model (8).17

After individual-level data were generated in each simulation, we calculated the marginal18

eQTL and GWAS summary statistics. For two-sample MR analyses, we then obtained the19

marginal effect estimate of each SNP i on gene expression in tissue k in the reference eQTL20
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study, β̂Rxik; and obtained the marginal effect estimate of each SNP i on its simulated trait1

in the GWAS study, β̂yi. We also obtained the standard error estimates for marginal eQTL2

and GWAS effects.3

Results of simulation studies4

In Scenario 1, we evaluated the robustness of MR-Robin to the proportion of invalid IVs5

compared to existing two-sample MR methods. P < 0.05 was used as the significance6

criterion for each method. Table 1 shows the type I error rate and power comparison in the7

presence of 0, 10, . . ., 50% invalid IVs, allowing IVs to be correlated (pairwise LD r2 < 0.5 or8

0.3) over 10,000 simulations of Q = 10 LD blocks. Since our method allows for correlated IVs9

and it is hard to define invalid versus valid IVs when SNPs are correlated, the proportions10

of invalid IVs in the tables are the proportion of LD blocks with pleiotropy, and is only an11

approximation of the invalid IVs among all selected ones. In each table, we also presented12

the average numbers of selected IVs that are from valid versus invalid LD blocks. For the13

competing methods, which were not developed for multi-tissue eQTL datasets, we used the14

eQTL summary statistics from one randomly selected tissue as input for the IV-exposure15

summary statistics. As shown in the table, whereas competing methods are unable to control16

the type I error rate when there are any invalid instruments and instruments are in LD, MR-17

Robin maintains reasonable control of the type I error rate if a majority of instruments are18

valid (e.g. up to 30% invalid IVs). The last three methods in the table were developed19

for independent instruments; since they do not account for correlation (LD) among the20

instruments, they do not control the type I error rate even when all instruments are valid.21

Power is reasonable for all methods when a majority of IVs are valid. In Supplemental22

Materials, Tables S1-2, we compared the type I error rates and powers using alternative LD23

selection criteria for the IVs (pairwise LD r2 < 0.1 or 0.01).24

In the second simulation scenario, we evaluated the performance of MR-Robin when the25

number of selected IVs is small. We simulated the data using Q = 3 LD blocks, with two26
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blocks without pleiotropy and one block with pleiotropy (thus the proportion of LD blocks1

with pleiotropic effects is fixed at 33.3%). Table 2 shows the type I error rates and power2

when the selection LD r2 threshold is set to 0.5, 0.3, 0.2, 0.1 and 0.01. As shown in the table,3

MR-Robin performs reasonably well even when the number of IVs is very limited. Though4

in this setting, MR-Robin requires the IVs to be less dependent (r2 < 0.3). MR-Robin5

outperforms competing methods in this setting.6

The simulation results showed that MR-Robin is able to control the type I error using7

correlated instruments provided that a majority (≥ 70%) of the instruments are valid IVs.8

Moreover, in Table 2, we showed that even when the number of available IVs is very small9

(3-10), the proposed MR-Robin can still yield reasonable results if the small number of IVs10

are relatively less dependent (r2 < 0.3). Last but not least, we want to emphasize that when11

IVs are correlated, if one IV is an invalid IV, all the other correlated IVs are also affected to12

some degree, and as such the random-slope model of MR-Robin with its resampling-based13

inference procedure fits the need for allowing correlated IVs when considering the effect of14

gene expression on a complex trait.15

Application: Identifying schizophrenia (SCZ) risk-associated genes16

via MR-Robin17

To detect genes with expression levels being associated with schizophrenia risk, we applied18

MR-Robin using summary statistics from two-samples: schizophrenia risk GWAS statistics19

from the second schizophrenia mega-analysis (SCZ2) conducted by the Psychiatric Genomics20

Consortium (PGC) [34], and multi-tissue eQTL statistics from the 13 brain tissues in version21

8 (V8) of the Genotype-Tissue Expression (GTEx) project [33]. Details of the two datasets22

can be found in Supplemental Materials.23

We first formed the set of instrumental variables (IVs) for each gene by selecting the24

cis-eSNPs/IVs (within 1 Mb of transcription start site) and the brain tissue types in which25

they have strong IV effects. All the cis-SNPs being selected are cross-tissue IVs (with median26
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eQTL P < 0.05). However, it is well known in the IV literature that weak IVs, i.e., SNPs1

being only weakly associated with the genes, would result in high variance and misleading2

inferences even when they are valid IVs [35; 36]. And therefore, we will choose cross-tissue3

eQTLs with significant eQTL effects of P -value ≤ 0.001 in at least three tissue types, i.e.,4

being reasonably strong IVs to provide reliable inferences [37] in at least three tissue types.5

And we restrict the analysis to the cross-tissue IVs in the tissue types with strong cross-tissue6

(or shared) effects. Since this step involves only the selection of IV based on the strength of7

the eQTL effects, with no information regarding the outcome, the selection of IV and tissue8

types would not induce inflation in false positive findings.9

While the analysis is restricted to strong IVs with P < 0.001 in at least 3 tissues, we10

iteratively selected the (next) best eSNP satisfying the IV selection criteria and having pair-11

wise LD r2 < 0.5 with each of the eSNPs already selected. Note that here we conducted the12

primary analysis with a relatively liberal LD threshold to improve the power of the analysis.13

Following the primary analysis, we later conducted a sensitivity analysis on the implied genes14

to check the robustness of our results to the choice of IVs. If the gene has only 1 cis-eQTL,15

MR-Robin would be reduced to a single-IV analysis, which can be heavily affected by the16

validity of the IV with assumptions that cannot be adequately checked in general. Therefore,17

we restricted the MR-Robin analysis to 3,127 protein-coding genes with at least 5 IVs se-18

lected based on this criteria. For each SNP/IV used in the analysis, we used eQTL statistics19

only from those brain tissues where the SNP had eQTL P < 0.001 (with strong IV effects).20

Thus, each SNP/IV has 3-13 observed eQTL effect estimates from different tissue types in21

the unbalanced mixed effects model.22

At a false discovery rate (FDR) < 5%, we identified 43 genes as showing evidence of a23

dependence between gene expression levels and SCZ risk. For the 43 genes whose expression24

showed an association with SCZ risk in the primary analysis, we performed a sensitivity25

analysis using different IV selection criteria. Specifically in the sensitivity analysis, for each26

gene, among the cross-tissue IVs with median eQTL P < 0.05 having strong IV effects in27
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at least 3 tissues (P < 0.001), we iteratively dropped the eSNP with the highest correlation1

to others until all pairwise LD r2 < 0.3 among remaining eSNPs or only 5 eSNPs remained.2

For each eSNP, we still only used eQTL statistics from tissues where that eSNP had eQTL3

P < 0.001. In the sensitivity analysis, there were 39 and 42 genes with MR-Robin P < 0.054

and P < 0.1, respectively, all of which had a fixed effect estimate matching the sign of the5

fixed effect estimate from the primary analysis.6

Figure 2 plotted the multi-tissue eQTL effect sizes in the GTEx brain tissues against the7

GWAS effect sizes in the PGC dataset for two selected genes in the primary analysis (left8

column) versus the sensitivity analysis (right column). The gene THOC7 (Figure 2A) showed9

consistent correlations between eQTL and GWAS effects based on two sets of correlated IVs10

in the primary and sensitivity analyses (both with P < 5× 10−3). Despite some SNPs hav-11

ing a potentially larger deviation from the shared effect than the others – indicated by the12

random slopes (colored lines) deviating from the fixed effect estimate (black line) – the plot13

shows a clear pattern of association between the magnitude of eQTL effects and magnitude of14

GWAS effects, implying that the expression levels of THOC7 affect schizophrenia risk. The15

protein encoded by THOC7 is a component of the THO complex of the TRanscription and16

EXport (TREX) complex which couples transcription to mRNA export, specifically associat-17

ing with spliced mRNA [38; 39]. Mutations in subunits of TREX have been associated with18

neurodevelopmental disorders [40], and a recent TWAS study that imputed gene expression19

in brain tissues found an association between expression levels of THOC7 in cerebellum and20

schizophrenia risk [41]. In contrast, the gene RNF149 (Figure 2B) was the only gene no21

longer significant in the sensitivity analysis (P = 0.15), and prompts further exploration.22

The change in significance for RNF149 may be at least partially due to an increase in the rel-23

ative proportion among selected IVs that have potential pleiotropic effects (i.e. better fitted24

by a line with non-zero intercept in Figure 2B) when using more stringent LD r2 selection25

criteria. In the Supplemental Materials, we presented additional details and the scatterplots26

of multi-tissue eQTL effect estimates against SCZ GWAS effect estimates for selected IVs of27
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all 42 genes identified by MR-Robin in the primary analysis having P < 0.1 the sensitivity1

analyses.2

In summary, we applied the newly proposed two-sample MR method, MR-Robin, to3

integrate multiple sets of brain tissue eQTL summary statistics from GTEx and SCZ GWAS4

summary statistics from PGC, and have identified 42 genes with potential causal associations5

to schizophrenia risk. These 42 genes demonstrated consistent dependencies between brain6

eQTL and SCZ GWAS association effects using two sets of SNPs as IVs based on different7

selection criteria. The results highlighted the value of MR-Robin as a robust two-sample8

MR method that allows moderately correlated and some invalid instrumental variables and9

identifies gene expression levels as causal exposures for complex diseases.10

Discussion11

In this work, we proposed a robust two-sample MR method – MR-Robin – allowing cor-12

related and invalid IVs. MR-Robin was motivated by analyses of gene expression levels as13

causal exposures for complex diseases/traits. In those settings, often only a limited number14

of potentially correlated cis-eQTLs are available as candidate instrumental variables (IVs),15

posing new challenges to MR analyses. MR-Robin integrates GWAS statistics with multi-16

tissue eQTL statistics in a mixed model framework, considering the estimated effect of gene17

expression levels on disease from each IV as an observed value of the true effect plus a SNP-18

specific bias. Compared to existing robust two-sample MR methods, a major innovation of19

MR-Robin is the use of multi-tissue eQTL summary statistics (multiple sets of IV-to-exposure20

statistics). Based on a reverse regression framework with multi-tissue eQTL effects as re-21

sponse, the rich information in multi-tissue eQTL data allows the estimation of SNP-specific22

random slopes (due to being in LD with SNPs with horizontal and/or correlated pleiotropy)23

as well as the fixed-effects correlation of eQTL and GWAS effects across all IVs based on a24

limited number of IVs. In contrast, existing models and methods based on the deconvolution25
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of mixture distributions or penalized regressions in general require a large number of IVs to1

achieve stability in estimation. To account for correlation among IVs due to LD and tissue-2

tissue correlations, MR-Robin utilizes a resampling procedure when testing the effect from3

gene expression levels to the complex trait. We showed through simulations that MR-Robin4

was able to control the type I error rates using a limited number of moderately correlated5

IVs when the proportion of IVs that are invalid is moderate.6

We applied MR-Robin to identify genes with expression levels affecting schizophrenia risk7

by integrating multiple sets of brain tissue eQTL statistics from GTEx and SCZ GWAS8

statistics from PGC. We identified 42 genes showing consistent dependencies between multi-9

tissue eQTL and GWAS association effects based on two different sets of IVs with different10

selection criteria from primary and sensitivity analyses. Our analysis illustrated that MR-11

Robin and two-sample MR methods, requiring only multi-tissue eQTL and GWAS summary12

statistics as input, could be used as another integrative method in recapitalizing on existing13

summary statistics to further map gene expression levels or other omics traits affecting a14

complex trait of interest, to explain the potential mechanisms underlying trait susceptibility15

loci, and to identify clinically actionable targets with larger effects on complex diseases and16

traits.17

There are several caveats and limitations to the current work. First, similar to other two-18

sample MR methods, MR-Robin cannot by itself prove a causal relationship from a gene to19

a complex trait but rather suggests instances consistent with a causal model. Nevertheless,20

analyses using MR-Robin may be useful in prioritizing candidate genes for additional follow-21

up and research. Second, MR-Robin requires summary statistics from a multi-tissue eQTL22

dataset as input. For some complex traits being considered as the outcome, it may not be23

obvious which tissues are most relevant to the trait being studied. Several recent works have24

proposed methods or provided resources to identify trait-relevant tissues [42; 43; 44], and25

these works may be useful in such cases. Third, to accurately estimate the SNP-specific26

bias, MR-Robin requires more than one SNP to be used as an IV. Depending on the dataset27
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and IV selection criteria, there may be some genes whose association with the complex trait1

cannot be appropriately tested using MR-Robin.2

MR-Robin was developed as a two-sample MR method to test for effects from the expres-3

sion levels of a gene on a complex trait. MR-Robin can be applied to discover genes that4

may be causally associated with a complex trait of interest or to confirm that a putative5

gene demonstrates consistency with a model in which its gene expression causally affects the6

complex trait. The method may also be extended more generally to settings where a limited7

number of potentially correlated candidate IVs are present provided that multiple estimates8

of either the IV-exposure or IV-outcome statistics are available.9

The R package MrRobin is available at https://github.com/kjgleason/MrRobin.10
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Figure 1: Illustrations of Mendelian Randomization analysis and assumptions. (A) When a
SNP (or is in LD with a SNP that) is affecting the outcome not via the exposure of interest
or is correlated with an unmeasured confounder for both the exposure and the outcome, the
SNP is an invalid instrument. Note that the presence of unmeasured confounders is allowed
in MR analysis, but instruments are assumed to be independent of the confounders. (B) An
illustration of pleiotropy of SNP j in an LD block affecting the validity of SNP i of interest as
an IV. A SNP j is in LD with an IV SNP i of interest. SNP j is an eQTL of the targeted gene
and has a direct effect on the trait (horizontal pleiotropy). When conducting MR analysis
with only marginal summary statistics, the effect of SNP j is not accounted for and will
confound the relationships among the SNP i, the gene expression and the trait. That is,
horizontal (and/or correlated) pleiotropy in a gene region will bias the effect estimate based
on marginal statistics for SNP i, without conditioning on SNP j.

28

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.135541doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.135541


●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●
●

●●

●
●

●

●

●

●

●

●

−0.4

−0.2

0.0

0.2

0.4

−0.06 −0.03 0.00 0.03 0.06

GWAS effect size(β̂y)

eQ
T

L 
ef

fe
ct

 s
iz

e 
(β̂

 xkR
)

THOC7A

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−0.2

0.0

0.2

0.4

−0.03 0.00 0.03 0.06

GWAS effect size(β̂y)

THOC7

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●
●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−0.6

−0.3

0.0

0.3

0.6

−0.02 0.00 0.02

GWAS effect size(β̂y)

eQ
T

L 
ef

fe
ct

 s
iz

e 
(β̂

 xkR
)

RNF149B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−0.6

−0.3

0.0

0.3

−0.03 −0.02 −0.01 0.00 0.01 0.02

GWAS effect size(β̂y)

RNF149

Figure 2: Illustrations of two example genes in the primary analysis (left column) and the
sensitivity analysis (right column). Multi-tissue eQTL effect sizes in the GTEx brain tissues
were plotted against SCZ GWAS effect sizes in the PGC dataset for the genes, THOC7
and RNF149. In the sensitivity analysis using alternative IV selection criteria, the SCZ risk
association remained for THOC7 (A) (P < 0.1) with consistency in the sign of the fixed
effect estimate. The association was no longer significant between RNF149 expression (B)
and SCZ risk in the sensitivity analysis (P = 0.15). Points are colored by SNP. Colored
lines represent SNP-specific slope estimates. The slope of the black line is the fixed effect
estimate from the MR-Robin reverse regression. The results imply a non-zero effect of the
gene THOC7 on schizophrenia risk.
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Table 1: Simulation results evaluating the performance of MR-Robin. Averaged type I error
rates and power over 10,000 simulations are shown by percentage of invalid instruments (using
P < 0.05 as the significance criterion for each method). 10 LD blocks were simulated, with
one true eQTL per LD block. Instruments were selected sequentially: the eSNP with the
strongest association with gene expression was selected, and the next selected eSNP is the
strongest-associated SNP remaining also with LD r2 < ρ with any already-selected eSNPs.
Results shown for ρ = 0.5 (A) and ρ = 0.3 (B)

(A) pairwise LD r2 < 0.5

Method
Proportion of invalid IV (%)

0 10 20 30 40 50
Type I error rate

MR-Robin 0.047 0.051 0.059 0.061 0.071 0.085
MR-Egger 0.032 0.057 0.087 0.110 0.122 0.138
MR-RAPS 0.255 0.303 0.348 0.380 0.399 0.426
MRMix 0.136 0.175 0.207 0.223 0.256 0.267
BWMR 0.279 0.349 0.396 0.440 0.452 0.479

Power
MR-Robin 0.800 0.763 0.725 0.685 0.659 0.615
MR-Egger 0.942 0.931 0.923 0.917 0.914 0.905
MR-RAPS 0.996 0.993 0.986 0.979 0.976 0.962
MRMix 0.511 0.499 0.498 0.502 0.491 0.493
BWMR 0.998 0.994 0.988 0.981 0.978 0.966

Avg number of SNPs selected (valid/invalid)
All Methods 30.4 /0.0 27.4 /3.0 24.4 /6.0 21.4 /9.2 18.3 /12.1 15.2 /15.2

(B) pairwise LD r2 < 0.3

Method
Proportion of invalid IV (%)

0 10 20 30 40 50
Type I error rate

MR-Robin 0.047 0.051 0.055 0.051 0.061 0.062
MR-Egger 0.027 0.062 0.097 0.126 0.137 0.161
MR-RAPS 0.084 0.118 0.147 0.170 0.186 0.214
MRMix 0.130 0.199 0.237 0.273 0.288 0.307
BWMR 0.097 0.141 0.182 0.206 0.222 0.246

Power
MR-Robin 0.679 0.640 0.605 0.577 0.549 0.505
MR-Egger 0.894 0.886 0.878 0.870 0.860 0.853
MR-RAPS 0.986 0.979 0.969 0.955 0.944 0.925
MRMix 0.512 0.515 0.517 0.509 0.500 0.498
BWMR 0.992 0.985 0.975 0.962 0.952 0.936

Avg number of SNPs selected (valid/invalid)
All Methods 14.1 /0.0 12.7 /1.4 11.3 /2.8 9.9 /4.2 8.5 /5.6 7.0 /7.0
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Table 2: Simulation results evaluating the performance of MR-Robin when there is a small
number of IVs. Averaged type I error rates and power over 10,000 simulations are shown by
IV selection criteria. 3 LD blocks were simulated, with two blocks without pleiotropic effects
(valid IVs) and one block with (invalid IV). Results shown for five IV selection criteria (LD
r2 < 0.5, 0.3, 0.2, 0.1, and 0.01).

Method
LD selection criteria (r2)

0.5 0.3 0.2 0.1 0.01

Type I error rate
MR-Robin 0.084 0.056 0.048 0.039 0.032
MR-Egger 0.087 0.100 0.111 0.139 0.158
MR-RAPS 0.380 0.203 0.144 0.104 0.091
MRMix 0.254 0.240 0.239 0.227 0.223
BWMR 0.431 0.227 0.154 0.103 0.087

Power
MR-Robin 0.586 0.455 0.391 0.320 0.292
MR-Egger 0.676 0.625 0.602 0.553 0.504
MR-RAPS 0.860 0.799 0.773 0.740 0.726
MRMix 0.473 0.470 0.480 0.487 0.496
BWMR 0.884 0.811 0.769 0.722 0.695

Avg # of SNPs selected
All Methods 7.4 /3.7 3.5 /1.8 2.7 /1.4 2.2 /1.1 2.0 /1.0
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