Supplementary Materials

Supplementary Notes
 Supplementary Methods
 Supplementary Figures
 Supplementary Tables

Table S1. Linked-read sequencing technique comparisons
Table S2. Example sequencing library preparation costs
Table S3. Sequencing Summary
Table S4. Phasing performance in single individuals and comparisons with other platforms
Table S5. Sampling locations
Table S6. H. erato individuals collected by site and genotype.
Table S7. H. melpomene individuals collected by site and genotype.
Table S8. Validation results for STITCH at known color loci
Table S9. Top loci based on ω, sweeD and iHS in H. erato
Table S10. Top loci based on ω, sweeD and iHS in H. melomene
Table S11. Cline analysis at five different loci
Table S12. Loci with narrow clines in H. erato
Table S13. Loci with narrow clines in H. melpomene
Table S14. Maximum likelihood estimates for heterozygote deficit, $\hat{F}_{I S}$
Table S15. Maximum likelihood estimates for the correlation between loci ($R=$ $D / \sqrt{p_{1} q_{1} p_{2} q_{2}}$), together with the difference in log(likelihood) relative to $R=0$
Table S16. Testing for asymmetry of single-locus clines

Supplementary Data

Data S1. Oligonucleotide used for assembling haplotagging beads
Data S2. Structural rearrangements
Data S3. Insertions and deletions
Data S4. Detailed plots of $F_{\text {ST }}$, selection statistics and association by chromosome
Data S5. Locations of highly differentiated $\mathrm{F}_{\text {ST }}$ regions and signatures of selection

Supplementary References

Supplementary Notes

Segmental barcode design to maximize diversity within strict length limitations Due to the current limits of a maximum of 25 indexing cycles in the sequencing recipe design and reagent amounts in standard Illumina sequencing flow cell kits, the configuration supporting the highest barcode diversity would be achieved by partitioning a total of 25 indexing cycles into segments, each of which of 4 nt to up to 9nt long, as shown below.

Length	Single segment (with error correction)
$3 n t$	4
$4 n t$	12
$5 n t$	48
$6 n t$	85^{*}
$7 n t$	278
$8 n t$	727
$9 n t$	2620
* current chosen option	

For example, a 13 nt i5 index read can be split into segments of $6 \mathrm{nt}+7 \mathrm{nt}$, yielding 23,630 combinations; alternatively, it can be $5 \mathrm{nt}+8 \mathrm{nt}$, yielding 34,896 combinations. Combined with the costs of synthesizing the required oligonucleotide duplexes, then the slightly lower diversity in a $6 \mathrm{nt}+7 \mathrm{nt}$ barcode combination becomes favorable, because it only requires a total of 363 unique sets of duplexes, whereas $5 \mathrm{nt}+8 \mathrm{nt}$ would require nearly double the number of duplexes (775). This latter factor also has downstream effect on the amount of reagents used for the assembly and synthesis of beads.

Therefore, the practical solution for the lowest cost configuration would be to synthesize 4 segments of 6 nt or 7 nt barcodes, such that together they make up 12 and 13 cycles of i5 and i7 index reads.

Demultiplexing
The characteristics of robust barcode design at 6nt are shown below:

Description	6 nt barcodes (full set of 96)			6 nt barcodes (first 84)		
	Hamming	SeqLev	Levenshtein	Hamming	SeqLev	Levenshtein
Mean distance	4.54	3.19	4.08	4.54	3.19	4.08
Median distance	5	3	4	5	3	4
Minimum distance	2	1	2	3	1	2
Maximum distance	6	6	6	6	6	6
Guaranteed error correction	0	0	0	1	0	0
Guaranteed error detection	1	0	1	2	0	1

The table above shows the complexity statistics for a set of 84 barcodes and the effect of adding 12 additional barcodes to make it up to 96 , such that the entire split-and-pool assembly reaction can be performed on standard 96 -well plate formats, with minimal effects on the possibility to detect or where possible, correct
errors. With 96 barcodes per segment and a total of 4 segments or $24 n$ plus $2-4 n t$ for overhangs, a set of barcodes with up to approximately 85 million combinations can be encoded among the beadTags.

Given the strict limit on the combined length of the $i 5$ and $i 7$ index reads (25nt) under standard running conditions, the feasibility of efficient ligation with an 1nt overhang was evaluated. In addition, to avoid having the higher costs associated with synthesizing multiple attaching biotinylated primer in order to vary the overhang for ligation, 5 ' overhangs on the short, complementary strand (instead of the more stable and common 3 ' overhang) were designed. We found that we were able to use the Blunt/TA ligase kit from New England Biolabs to achieve robust ligation, despite having only 1 bp 5' overhang. With this result the possible combinations of barcodes were extended to over 85 million with four sets of duplexes of 96 each.

Differences from other LR platforms

The CPT-seq method, as disclosed by Amini et al. 2014, involves two or more separate step (6). The first step of CPT-seq introduces a first set of barcodes through Tn5 transposition, followed by splitting of the bulk samples into separate pools for subsequent amplification or ligation of a second set of barcodes. Having these two steps is cumbersome and the required additional handling involving PCR amplification increases the chance of introducing undesired nucleic acid exchanges that can decrease sequencing accuracy. Most crucially, the method does not lend itself to high-throughput, highly multiplexed applications, which would be necessary if CPT-seq were to be performed on a large number of samples simultaneously.

CPTv2-seq as described by Zhang et al. 2017 uses a slightly different strategy involving beads (8). Their single-tube variant involves tagmenting target DNA with pre-assembled transposome complexes and hybridization thereof to beads comprising bead-specific oligonucleotides comprising two barcode sequences separated by a splint 1 and splint 2 sequence. While the method avoids an amplification step, the hybridization of the beads and the transposome complexes adds additional complexity to the protocol that may introduce errors. They also require an aldehyde modification to the primers. In their study, this was carried out using custom processes.

Another major limitation of CPTv2-seq of Zhang et al. is that this method only employs 147,456 different barcode combinations. As described in more detail below, a set of only 147,456 unique barcodes falls far short of the number required to avoid barcode re-use (a form of "barcode collisions") due to the high number of DNA molecules present in a typical reaction volume.

Importantly, CPTv2-seq has the disadvantage of producing sequencing libraries that are not compatible with standard Illumina Nextera sequencing reagents and thus require customized sequencing primers and run protocols for both sequencing the barcodes and the target sequence. As it is presently configured, it precludes the ability to run samples generated through CPTv2-seq together with Nextera or TruSeq protocols in the same Illumina flow cell. This is a major drawback that greatly limits the reach of CPTv2-seq. Due to the design of the beads used in CPTv2-seq, it is highly inconvenient, if not impossible, to operate the libraries generated with this method on an Illumina HiSeq or NovaSeq sequencing instrument with standard sequencing primers and settings. Instead, whole sequencing runs featuring exclusively CPTv2-seq libraries may have to be scheduled to enable access to the CPTv2-seq technology. This significantly reduces the multiplexing capability and leads to additional costs and unnecessary delays.

Yet another method, single-tube long fragment reads (stLFR) described in

Wang et al., 2019 (9), also uses a hybridization step following tagmentation in solution. This configuration bears many similarities to CPTv2-seq, and is optimized for BGl's proprietary sequencers. Although they provide an option for sequencing on Illumina's platform, their barcode design also involves long splint segments, extended index read-lengths, as well as custom primers.

Phasing in single individuals and large populations
We evaluated phasing performance by haplotagging DNA from an additional recombinant mouse and the human cell line GM12878 that is widely used in genome assembly and phasing comparisons (56). Consistently, we achieved robust diploid phasing success (98.59% to 99.91% heterozygous single nucleotide polymorphisms or SNPs phased, with molecule N_{50} ranging from 40.87 to 63.47 kbp ; the largest molecule spans 573 kbp). Phased block size was 1.08 Mbp in GM12878 and around 15 Mb in mice (maximum: 61.46 Mbp). Phasing errors, both as short switches (single mismatch positions, 0.95% in human and $<0.18 \%$ in mice) and long switches, e.g., 0001111, were minimal ($<0.04 \%$ in all cases, Table S4).

These performances are comparable to benchmarks set previously by CPTseqv2 and 10X Chromium (Table S4). For example, haplotagging produces on average only one to two molecules per barcode due to its greater barcode diversity, well below the average of 6 from CPTseqv2 and 10X Genomics's Chromium platform (7,8). It should be noted, however, that direct comparisons are not always possible due to underlying technical differences, e.g., the power to detect long switch errors increases with longer molecules and greater number of reads per molecule.

Supplementary Methods

Material and Methods

Animal Care and Use
All experimental procedures described in this study have been approved by the applicable University institutional ethics committee for animal welfare at the University of Calgary (HSACC Protocols M08146 and AC13-0077); the local competent authority: Regierungspräsidium Tübingen, Germany, permit and notice numbers 35/9185.46-5 and 35/9185.82-5. The study and collection of Heliconius butterflies has been approved by the Ecuadorian government with permits to C.D.J and P.A.S.: Collection permits: 033-10-IC-FAU/FLO-DPN/MA, research permits: 0007-IC-FAU/FLO-DPPZ/MA and 013-09 IC-FAU-DNB/MA. Export permits: 01-2011-FAU-DPAP-MA and 002-EXP-CIEN-FAU-DPN/MA.

Data and code availability
Analysis codes are available at the following repositories: https://github.com/joanam; https://github.com/evolgenomics; and https://github.com/rwdavies. Sequence data have been deposited at the NCBI Short Read Archive under accession numbers: [PENDING]. Phenotype data are available at Dryad.

Reference genome assemblies
All co-ordinates in the human genome refer to GRCh 38 , specifically the hg38 assembly as part of the Resource Bundle hosted by the Broad Institute (ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg38). Mouse genome co-ordinates refer to Mus musculus reference mm10, which is derived from GRCm38. Butterfly genomic data are placed against the Heliconius erato demophoon version 1 assembly (helera1_demo;
http://download.lepbase.org/v4/sequence/Heliconius erato demophoon v1 scaffolds.fa.gz) and the Heliconius melpomene melpomene version 2.5 assembly (Hmel2. 5; (http://download.lepbase.org/v4/sequence/Heliconius melpomene melpomene Hme 12.5.scaffolds.fa.gz) according to each individual.

Tn5 transposase

Sequencing libraries for high-throughput sequencing were generated using Tn5 transposase expressed in-house as previously described (57). Briefly the bacterial expression plasmid pTXBX1-Tn5 (Addgene plasmid \#60240) containing the hyperactive Tn5 transposase (carrying the E54K, L372P mutations) fused to an intein chitin-binding domain was transformed into the C3013 competent cells (New England BioLabs, Frankfurt am Main, Germany). Expression was induced under addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) and cells were lysed using an Emulsiflex c3 (Avestin, Mannheim, Germany). The lysate was applied to a chitin resin column (New England BioLabs). The Tn5 transposase domain was cleaved and eluted using 1,4-dithiothreitol (DTT, Sigma Aldrich, Taufkirchen, Germany). Concentration of the eluted protein and DTT removal was achieved through a concentration column with a cut-off of 10 kilodaltons (Amicon Ultra-15, 10kDA, Merck-Millipore, Darmstadt, Germany).

Oligonucleotide design

Custom oligonucleotides were synthesized by Integrated DNA Technologies (Leuven, Belgium) at ready-to-use $10 \mu \mathrm{M}$ concentration in a 96 -well plate format. A list of the oligonucleotides can be found in Data S1.

Haplotagging bead assembly

Haplotagging beads are individually barcoded "Dynabeads M-280 Streptavidin magnetic beads" (Thermo Fisher Scientific) that are capable of DNA tagmentation through active Tn5 transposase that is immobilized on the surface (fig. S1). Briefly, the barcode is made up of four segments ("A", "B", "C" and "D"), which are added to each bead through a split-and-pool procedure and together form bead-bound and barcoded Tn5 transposon heterodimers (fig. S1B). Briefly, each of the $10 \mu \mathrm{M} 96 \mathrm{~A}, \mathrm{~B}$, C and D segment oligonucleotides was annealed with its reverse-complement counterpart to form a double stranded segment with one base pair overhang. Single A and B double-stranded segments were immobilized to the surface of a bead ($1.5 \mu \mathrm{l}$ of each $5 \mu \mathrm{M}$ segments per $40 \mu \mathrm{l}$ of $\mathrm{M}-280$ beads) via the streptavidin-biotin binding. Using Blunt/TA Ligase Master Mix (New England BioLabs) segments A and C, and B and D, were ligated together to form the complete and barcoded Tn5ME-B and Tn5ME-A heterodimers, respectively. Tn5 heterodimers were then single-stranded using 0.15 M NaOH induced chemical lysis and re-annealed with the $19-\mathrm{bp}$ Tn5MErev oligonucleotide. Haplotagging beads are activated by loading of Tn5 transposase prior to use, and can be stably stored at $4^{\circ} \mathrm{C}$ for at least a year. The final " 96 -well Haplotagging bead plate" contains beads carrying 84,934,656 unique barcodes split into 96 wells, with all barcodes of a well identified by the Csegment, or alternatively D-segment in the initial F1(CASTxBL6) mouse experiment. Each bead of any well thus carries many copies of one of 884,736 well-specific barcodes. There are ~ 3.25 million beads in $5 \mu \mathrm{l}$ M-280 Dynabeads; but only 884,736 unique barcodes in a well. Therefore, when tagmenting small quantities of samples with 5μ l of beads, pooling haplotagging beads from several wells will increase number of barcodes per sample up to the maximum of ~ 3.25 million barcodes per sample (e.g. pooling beads from 24 wells of the " 96 -well Haplotaging bead plate" makes up 21.2 million possible barcodes, so in this case, 5μ of haplotagging beads contain approximately 3.25 million beads/barcodes from a pool of 21.2 million possible barcodes).

Sequencing library construction

Haplotag library generation involves many of the same steps of the standard Nextera/DNAflex tagmentation procedure widely used for constructing Illumina sequencing libraries. Depending on the number of samples, haplotagging beads can be added to either single DNA sample or up to 96 samples in a plate format, mixed and incubated at $55^{\circ} \mathrm{C}$ for 10 minutes to tagment the DNA. Tn5 is then stripped from the DNA using 0.3% SDS. The barcoded DNA libraries are then directly amplified off of the beads with PCR using universal forward and reverse primers TruSeq-F AATGATACGGCGACCACCGAGATCTACAC and TruSeq-R CAAGCAGAAGACGGCATACGAGAT.

Single-plex haplotagging, in human and F1(CASTxBL6) mouse:
To prepare haplotagging library from a single DNA sample, $5 \mu \mathrm{l}$ of pooled haplotagging beads (e.g. wells A1-H3 or C-segments 1-24, corresponding to a pool of 21.2 million barcodes) were transferred into one tube of an 8-tube-PCR-strip. In the next tube, tagmentation mix was prepared by adding $110 \mu \mathrm{l}$ of WASH buffer (20 mM Tris $\mathrm{pH} 8,50 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Triton X-100), $10 \mu \mathrm{l}$ of $0.15 \mathrm{ng} / \mu \mathrm{l}$ HMW DNA and
$30 \mu \mathrm{l}$ of 5 x TAPS-Mg-DMF buffer (50 mM TAPS pH 8.5 with $\mathrm{NaOH}, 25 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2}$, 50% N,N-dimethylformamide). Next, while on a magnetic stand, storage buffer was removed from the beads and the tagmentation mix was carefully transferred onto the beads with a wide-orifice pipette tip and mixed 5 times or until complete resuspension of the beads. Sample was incubated at $55^{\circ} \mathrm{C}$ for 10 min to tagment the DNA. $8 \mu \mathrm{l}$ of 6% SDS was added into the sample immediately after tagmentation; sample was mixed by inverting the tube and incubated at $55^{\circ} \mathrm{C}$ for 10 minutes to inactivate and strip Tn5 from the DNA. Sample was then pulse spun-down for 10 seconds and placed on a magnetic stand. Supernatant was removed and beads were washed twice with WASH buffer and kept in the second wash until further use.

With sample on magnetic stand, the buffer was removed and $30 \mu \mathrm{l}$ of 1 x Lambda Exonuclease buffer, supplemented with 10 units U of Exonuclease I and 5 units U of Lambda Exonuclease (New England BioLabs), was added to the sample to remove excess of unused barcoded Tn5 heterodimers. Sample was incubated at $37^{\circ} \mathrm{C}$ for 30 minutes, and then washed twice for 5 minutes with 150μ of WASH buffer. Bead bound haplotagged DNA was PCR amplified with Q5 High-Fidelity DNA Polymerase (New England BioLabs) in a 50μ reaction according to manufacturer's instructions, using 4μ of $10 \mu \mathrm{M}$ TruSeq-F and TruSeq-R primers, with the following cycling conditions: 10 min at $72^{\circ} \mathrm{C}, 30 \mathrm{sec} 98^{\circ} \mathrm{C}$ and 12 cycles of: $98^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, 65^{\circ} \mathrm{C}$ for 20 sec and $72^{\circ} \mathrm{C}$ for 60 sec . Library was purified and size selected using Ampure magnetic beads (Beckman Coulter) to 300-700 bp fragment size and quantified using Qubit (Thermo Fisher Scientific). The purified size-selected library was again cleaned with Ampure magnetic bead at an 1:1 ratio and adjusted with 10 mM Tris, $\mathrm{pH} 8,0.1 \mathrm{mM}$ EDTA to 2.5 nM concentration.

96-plex haplotagging, in Longshanks mice and butterflies:
To prepare haplotagging library from 96 HMW DNA samples, 30 ng of each HMW DNA samples was diluted to $0.15 \mathrm{ng} / \mu \mathrm{l}$ with 10 mM Tris, pH 8 in a 96 -well plate and quantified with Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific). $2.5 \mu \mathrm{l}$ of haplotagging beads from the stock-96-well plate (~ 1.6 million, each carrying one of 884,736 well-specific barcodes) were transferred into twelve 8 -tube-PCRstrips and closed with strip lids. On magnetic stand, the storage buffer was removed and replaced with $110 \mu \mathrm{l}$ of WASH buffer (20 mM Tris $\mathrm{pH} 8,50 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Triton X-100). Next, $10 \mu \mathrm{l}$ of $0.15 \mathrm{ng} / \mu \mathrm{I}$ DNA was transferred with a multichannel pipette and 200μ l wide-orifice pipette tips strip-by-strip, and mixed 5 to -10 times to re-suspend the beads. Next, 30μ l of $5 x$ tagmentation buffer (50 mM TAPS pH 8.5 with $\mathrm{NaOH}, 25$ $\mathrm{mM} \mathrm{MgCl}_{2}, 50 \% \mathrm{~N}, \mathrm{~N}$-dimethylformamide) was pipetted into each strip, closed with the lid, mixed by inverting the tubes 3 to 5 times, and incubated at $55^{\circ} \mathrm{C}$ for 10 min . During the incubation, strip-tubes were mixed by inverting 3 to 5 times every 3 minutes. After the incubation, samples were placed on ice for 1 minute, pulse spundown, and $8 \mu \mathrm{l}$ of 6% SDS was pipetted into each sample to inactivate and strip Tn5 from the DNA. Samples were incubated at $55^{\circ} \mathrm{C}$ for 10 min , then pulse spun-down, and placed on magnetic stand. All liquid was removed and beads were washed twice with $150 \mu \mathrm{l}$ of WASH buffer, while not disturbing the beads. Beads were kept in the second wash until further use.

Efficient linked read sequencing benefits from keeping the number of total molecules in a sequencing lane to within a range of approximately $50-250$ million read-pairs per 1 million barcodes. This was achieved by subsampling a fraction of each sample's beads after tagmentation. For the 96 -plex experiment of butterfly DNA, only $1 / 24^{\text {th }}$ of each tagmentation reaction was used during PCR to decrease the relative
plexity of 96 -plex to a 4 -plex. Thus, $1 / 24^{\text {th }}$ of each sample's beads was transferred with a multichannel pipette, strip-by-strip, into one 8 -tube-PCR-strip. This corresponds to approximately ~ 68.000 beads (barcodes) and $\sim 62.5 \mathrm{pg}$ DNA per sample, or ~ 135 haploid copies of the butterfly genome. For Longshanks mice, due to the larger genome size, only $1 / 10^{\text {th }}$ of the beads was taken from each sample. With only 8 samples on the magnetic stand, the buffer was removed, and $30 \mu \mathrm{l}$ of 1 x Lambda Exonuclease buffer, supplemented with 10 units of Exonuclease I and 5 units of Lambda Exonuclease (New England BioLabs), was added to each sample. Samples were incubated at $37^{\circ} \mathrm{C}$ for 30 minutes, and then washed twice for 5 minutes with 150μ l of WASH buffer.

DNA library was then amplified using Q5 High-Fidelity DNA Polymerase (New England BioLabs) in a $50 \mu \mathrm{l}$ PCR reaction according to manufacturer's instructions, using $4 \mu \mathrm{l}$ of $10 \mu \mathrm{M}$ TruSeq-F and TruSeq-R primers, with the following cycling conditions: 10 min at $72^{\circ} \mathrm{C}$ followed by $30 \mathrm{sec} 98^{\circ} \mathrm{C}$ and 10 cycles of: $98^{\circ} \mathrm{C}$ for 15 $\mathrm{sec}, 65^{\circ} \mathrm{C}$ for 30 sec and $72^{\circ} \mathrm{C}$ for 60 sec . Libraries were pooled after PCR into a single library pool, size selected using Ampure magnetic beads (Beckman Coulter) Qubit quantified, and adjusted with 10 mM Tris, $\mathrm{pH} 8,0.1 \mathrm{mM}$ EDTA to 2.5 nM concentration for sequencing.

Sequencing and demultiplexing
Pooled libraries were sequenced by a HiSeq 3000 (Illumina) instrument at the Genome Core Facility at the MPI Tübingen Campus with a 150+13+12+150 cycle run setting, such that the run produced 13 and $12 n$ in the i7 and i5 index reads, respectively. Sequence data were first converted into fastq format using bcl2fastq v2.17.1.14 with the following parameters --use-basesmask $=\mathrm{Y} 150$, $113, \mathrm{I} 12, \mathrm{Y} 150$--minimum-trimmed-read-length=1 --mask-short-adapter-reads=1 --create-fastq-for-index-reads, or if using Illumina's sample demultiplexing feature with a $150+12+13+150$ run configuration: --use-bases-mask=Y150,Y12,I7Y6,Y150 --minimum-trimmed-readlength=1 --mask-short-adapter-reads=1 --create-fastq-for-index-reads --barcode-mismatches=0 (Illumina; and where applicable, demultiplexed samples by the " C " or " D " segments of the beadTag barcode).

Then we performed beadTag demultiplexing to generate the modified fastq files using a custom programme filterFastq_by_bc, resulting in a fastq file supplemented with beadTag information. This programme is available at https://github.com/evolgenomics/haplotagging.

Analysis and phasing of molecules

The beadTag-annotated fastq files were then mapped onto reference genome assemblies using bwa v0.7.10-r789 (58) and processed using samtools v1.2 (59), marking and ignoring PCR and optical duplicate reads in subsequent analyses. For the human GM12878 sample, a set of "gold standard" variant positions were examined, made available by the Genome-in-a-bottle consortium website (56). For mouse samples, We examined a set of $6,620,436$ biallelic SNP positions in the genome positions known to be different between the C57BL/6NJ and CAST/EiJ strains, made available by the Wellcome Trust Sanger Centre (Mouse Genomes Project version 5 dbSNP v142 release (60).
For all files, we processed them following the same dual-pronged pipeline: first, we determined molecules from sets of reads sharing the same beadTag encoded with the BX tag with a maximum gap size of 50 kbp using custom Perl and bash scripts.

These provided basic statistics on the molecule size, molecular coverage and reads per molecule. Second, we extracted reads overlapping phase or haplotypeinformative positions following the pipeline as outlined by HAPCUT2 (10). These phase-informative molecules were used to determine the number of phaseinformative reads per molecule, informative molecule size, haplotype phasing, phase blocks, as well as short and long switch error rates for molecules spanning at least 4 phase-informative SNPs. The results are summarized in Table S4.
We then parsed the beadTag output to identify "molecules". We also followed the definition used by longranger and defined each molecule as a cluster of reads sharing the same beadTag within 50 kbp of each other. We then analyzed the molecules for the SNP alleles and classify them as "concordant" if a given position belongs to the majority allele and otherwise as "discordant" positions. We discarded molecules overlapping 2 or fewer SNPs, and assigned phasing of each molecule to Haplotype 0 or Haplotype 1 if they carry one or no discordant positions. We classified molecules carrying 2 or more discordant positions as "mixed molecules".

Comparison to 10X Chromium-generated data

Sequencing data was generated from the same DNA extraction as used in haplotagging. We subsampled the mapped BAM file to match the sequencing depth from the haplotagging dataset while retaining the paired-end structure by using samtools view module with the -s option. We then applied the exact same analysis and phasing pipeline as described above, in order to allow direct comparison of the performance of the two techniques in recovering phasing information from the F1(BL6xCAST) hybrid mice.

Heliconius butterfly field sampling

In all sampling sites, butterflies were captured using entomological nets, their wings preserved in glassine envelopes and their bodies in DMSO buffer solution (61) to preserve their DNA for future molecular genetic analyses. At each sampling site along the transect, we aimed to collect at least 30 individuals of the more abundant species H. erato individuals, the most abundant of the two species, and as many H. melpomene as could be collected in the same time. Field sampling was performed in several trips to the study area: May 2009, December 2009 - March 2010, July September 2010 and February 2011.
Subsequent to sampling, genetic analysis demonstrated that cryptic individuals of the morphologically indistinguishable H. timareta exist among the lowland samples of H. melpomene (28). All putative H. melpomene samples from the lowland were thus tested for their mitochondrial COI genotype following (62). In addition, it turned out later that three individuals from the hybrid zone centre clustered together with H . timareta in a PCA analysis that was performed with pcangsd (63) on the haplotagging data of all H. melpomene samples and three H. timareta samples. These three H. timareta samples were excluded from all analyses.

Population phasing and imputation

Three linked read dataset from large set of population samples were generated: mice from generations F11, F16 and F17 from the Longshanks selection experiment ($\mathrm{N}=245$) $(12,13)$ and butterflies from the two species Heliconius erato ($\mathrm{N}=484$) and Heliconius melpomene ($\mathrm{N}=187$) from an overlapping hybrid zone in Ecuador (see section below for details). In all three datasets, the initial pipeline involved beadTag demultiplexing, read trimming, placement (against mm10, Hmel2.5 and helera1_demo respectively), duplicate marking, molecule identification and initial SNP calling using bcftools call with the multiallelic calling algorithm (-m) ([NO

STYLE for:]). The set of BAM files and the raw SNP set were then used as input for the statistical phasing program STITCH (11). Initial parameter tuning were performed to maximize call rate and genotype concordance at focal loci with known genotypes or major color pattern loci: Chr5:415,36,431 (rs33219710) and 41,536,498 (rs33600994) for the Longshanks mice (13); WntA, optix and Ro for H. erato; and WntA, optix and cortex for H. melpomene (Table S8). The color loci are co-dominant except for Ro in H. erato and cortex in H. melpomene (27). Then these parameters were refined to maximize informativeness (INFO_SCORE) and SNP diagnostic statistics such as the transition/transversion (TsTv) ratio. Phasing parameters for the different datasets are shown below in their own sections.

Evaluation of phasing performance under subsampling

In the Longshanks dataset, the chosen non-default key parameters were: method=diploid, $\mathrm{nGen}=20$, $\mathrm{K}=4$, iSizeUpperLimit $=500000$, niterations $=60$, readAware $=$ TRUE, shuffleHaplotypeIterations $=\mathrm{c}(5,10,15,20,30,40)$, reference_iterations $=40$, reference_shuffleHaplotypeIterations = c(4, 8, 12, 16), maxDifferenceBetweenReads $=1 \mathrm{e} 10$. Here, our main objective was to determine if linked read information would improve phasing performance. STITCH features a read-aware mode in standard paired-end reads using the shared read name. To incorporate linked read information, we substituted the read names with the $B X$ tag. We compared the average INFO_SCORE and the imputed allele frequencies. For imputation runs using linked reads, an additional parameter splitReadIterations $=c(20,40)$ was used to split the linked reads where appropriate. We also subsampled each input BAM in two different ways to simulate progressively high multiplexing: by randomly picking read pairs or by molecules. Molecular subsampling is appropriate for haplotagging, because during the multiplexing of a large number of samples, only a small subset of beads, and thus molecules, from each sample is used (see section "Sequencing library construction" for details). Subsampling by random read pairs would have disproportionately diminished the information content of linked reads. The results are shown in fig. S2.

Population genomics analysis of the parallel Heliconius hybrid zones
For the Heliconius datasets, the chosen non-default parameters were: method = diploid, nGen = 500, readAware = TRUE, --
shuffle_bin_radius=500 --expRate=5 --iSizeUpperLimit=500000, niterations $=40$. A K value of 30 was used for H. erato and 40 was used for melpomene. These parameters were applied genome-wide in windows of 1 and 0.5 Mbp (with an overlap of 25 kbp between adjacent windows) for H. erato and H. melpomene respectively. The resulting imputed variant call files (VCF) were merged and annotated with allelic depth and coverage from the original BAM files. We also removed positions with poor information content (INFO_SCORE <= 0.2). This call set contained 49.2 million SNP positions for H. erato (131 SNPs / kbp) and 26.3 million for H. melpomene (97 SNPs / kbp).
For each individual, molecular phasing using HAPCUT2 was performed at actual or likely heterozygous positions in the "10X" or linked read aware mode with a maximum gap of 50 kbp , a phase block PHRED-scaled threshold of 30 and the call_homozygous option. The resulting VCF file thus integrate both STITCHimputed genotypes and phasing information from HAPCUT2. For population genomics analyses using NGSadmix and angsd (65, 66), more stringent INFO_SCORE filter at 0.5 was used.

Population structure

In order to assess the genetic variation across the hybrid zone, we inferred admixture proportions for each species separately. We used the genotype likelihoods computed by STITCH to generate the input files with angsd v0. 931 (66). angsd is wellsuited for low-coverage sequencing data as it takes into account genotype uncertainty by using genotype likelihoods in a Bayesian framework. To infer admixture proportions, we used NGSadmix (65), a maximum-likelihood method which uses genotype likelihoods to infer genomic clusters and assign ancestry proportions to each individual. We ran NGSadmix on sites with a minor allele frequency of at least 0.05 and specified two clusters ($K=2$) or three clusters ($K=3$). In order to infer the optimal number of clusters, we ran 10 replicates each with $\mathrm{K}=1$ to $\mathrm{K}=4$ and assessed the optimal number of clusters with the method by (67) implemented in Clumpak (68).

Signatures of selection

We computed genetic differentiation ($\mathrm{F}_{\text {ST }}$) between the subspecies using phenotypically pure individuals from the two sampling sites at either end of the transect (32 H. e. notabilis and 28 H. e. lativitta and $41 \mathrm{H} . \mathrm{m}$. plesseni and $40 \mathrm{H} . \mathrm{m}$. malleti). We used the HAPCUT2-emitted genotype likelihoods in angsd to calculate the site frequency spectrum (SFS) for each population using the method by (66). Then, we computed folded 2D-SFS for both populations together which we used as a prior for the joint allele frequency probabilities at each site to compute per-site F_{st} values using the Weir-Cockerham correction (69) as implemented in angsd. Finally, we computed weighted $\mathrm{F}_{\text {st }}$ averages across adjacent 10 kbp windows, excluding windows with less than 100 SNPs. In order to infer divergence peaks, we ran a Hidden Markov Model (HMM) analysis with two states (high and normal differentiation) on normalized $\mathrm{F}_{\text {ST }}$ values (z-scores=number of standard deviations from the mean). Following (70-72), we optimized transition and emission probabilities with the Baum-Welch algorithm (6 runs with 1,000 iterations each (73)) and inferred the most likely sequence of states given the observed z -scores with the Viterbi algorithm (74). To best compare the high differentiation peaks between the two species, we fixed the means of the state distributions to 0 (normal) and 3 (high differentiation) and the standard deviations to 1.
Next, we identified signatures of selection by computing the nucleotide diversity (π) for each race with the same individuals as above in windows of 10 kbp and 50 kbp using vCFtools v0.1.14 (75). We expect decreased nucleotide diversity in the race where a selective sweep occurred. We computed the difference in nucleotide diversity between highland and lowland races ($\Delta \pi$, specifically $\Pi_{\text {notabilis }}$ - $\pi_{\text {ativitta }}$ and $\Pi_{p l e s s e n i}-\Pi_{\text {malleti) }}$.
We calculated integrated haplotype score (iHS) using selscan v.1.2.0a (35, 76), excluding low-frequency variants and based on a genetic map interpolated onto our SNP sets. Raw genome-wide values were then normalized using the associated norm v.1.2.1a utility, with 100 frequency bins over 10 kbp windows. The genetic maps and the code for interpolation is available at our Dryad data repository. We calculated ω using omegaPlus v3.0.3 (77) and the composite likelihood ratio according to Nielsen et al, 2005 using sweed (78). It implements the ω statistic proposed by Kim and Nielsen, 2004 (34). To further minimize phasing errors, we coded all low-confidence sites as unknowns, and ran OmegaPlus under binary mode with imputation. For each scaffold we performed exhaustive searches with a grid spacing of 10 bp , and report the $\omega_{\text {max }}$ found in a 10 kbp window. For SweeD we used a grid spacing of 1 kbp .

For comparison between the species we mapped the H. melpomene windows to the H. erato reference genome with the liftOver utility (79) using a chain file. See section Cross-species alignments on details on the chain file.
If entire windows are lifted over between species, the windows of the two species start at different positions and are thus not directly comparable. In order to assess the interspecific correlation in genome-wide patterns of differentiation, we thus defined 10 kbp windows for H . melpomene directly on H . erato reference genome positions. First, we extracted alpha and beta values for each H. melpomene SNP with realSFS fst print. Next, we mapped the position of each H. melpomene SNP to the H. erato reference genome with liftover. To increase the mapping success, we added 5 kbp flanking regions on either side of the SNP. We combined multiple mapping locations with bedtools groupby and used the middle position as the H. erato position of the H. melpomene SNP. We computed weighted $\mathrm{F}_{\text {ST }}$ averages for 10 kbp windows as the ratio of average alpha and average beta values (80).

Identifying the genomic regions underlying color pattern differences

We performed association mapping to identify genomic regions that control wing coloration. Again, we used angsd (66) to account for genotype uncertainty. We used the admixture proportion inferred with NGSadmix as a co-variate to account for population substructure in our dataset. Elements of color patterns of all individuals were scored using standardized photos, informed by trait segregations in controlled lab crosses (27). We performed likelihood ratio test (81) and classified the phenotypes as quantitative traits (-yQuant option) with an additive model (-model 1). For phenotypes where heterozygotes could not be identified visually, we used a binary classification (-yBin option) with a dominant model (-model 2). Sites with a minimum allele frequency of 0.05 were used to compute 10 kbp sliding window averages with a step size of 2.5 kbp .

Cross-species alignment
Genome assemblies from H. erato demophoon (helera1_demo) and H. melpomene melpomene (Hmel2.5) were first masked for repeats using trf v4.07b (82) and then aligned to each other using lastz v.1.03.54 (83), with the following parameters: $\mathrm{C}=0 \mathrm{E}=150 \mathrm{H}=0 \mathrm{~K}=4500 \mathrm{~L}=3000 \mathrm{M}=254 \mathrm{O}=600$ $\mathrm{Q}=$ human_chimp.v2.q $\mathrm{T}=2 \mathrm{Y}=15000$ optimized for closely-related species. The resulting all-to-all pairwise alignments were grouped and alignment hits chained using the axtChain and chainMergeSort programmes. The distribution of scores were examined and only hits above 14000 were retained.

Comparison of haplotagging data to RAD data
An alternative to sequencing many whole genomes at low coverage is to sequence many individuals at only a fraction of the genome, e.g. by using restriction site associated DNA (RAD) sequencing (84). In order to compare the two techniques directly, we reanalyzed previously published RAD sequencing data of the populations at the edges of the Ecuadorian hybrid zone of Heliconius erato (28). This RAD dataset consists of ten individuals each of H. e. lativitta and H. e. notabilis (130,332,160 mapping reads) and uses a frequent restriction enzyme (Pstl, cutting 5^{\prime}-CTGCAG-3'). To follow the same procedure as in the haplotagging data, we aligned the reads to the H. erato reference genome with bwa mem v0.7.12. We called variants and genotypes with bcftools mpileup v1.9. Using vcftools v. 0.1.15, we filtered out genotypes with less than 5 reads or genotype quality below 20. Additionally, we excluded sites with more than 25% missing data, with

SNP quality below 30 or with less than two alternative allele counts. We computed $F_{\text {ST }}$ in 10 kbp sliding windows (2.5 kbp step size) using vcftools. In order to get a comparable haplotagging dataset, we computed 10 kbp window $\mathrm{F}_{\text {St }}$ averages with angsd as explained above but with ten individuals per subspecies of the same populations as those used for RAD sequencing (127,204,006 mapping reads). To match the number of reads, we selected the 10 individuals with lowest number of reads for each subspecies, but excluding the H. e. lativitta sample with the lowest number of reads.

Haplotype length at major color loci

We are interested here in identifying the key switch events that switch a haplotype from highland to lowland type or vice versa around the major loci optix and WntA. To do so we first identified and polarized ancestry-informative SNPs within 0.5 Mbp of the focal position, generally defined as those showing a frequency difference ≥ 0.5, or 0.8 at optix in H. erato, which shows greater differentiation. Next, we used a set of heuristics to screen and remove potential switch errors from the raw STITCH/HAPCUT2 output, e.g., by filling in low-confidence calls or non-calls by minimizing crossovers and removing double-switch events where both alleles switch between high- and lowland haplotypes. These switch errors occur due to low local molecule support, genuine phasing errors, or trivially between adjacent SNPs that are assigned into different phase blocks. We then identified long switches over 4 SNPs that transitions between high- and lowland types. The span of the haplotype between the closest flanking breakpoints were defined as the "haplotype length" around the selected loci and visualized in fig. S8.

Interval mapping at the H. melpomene optix region

We compared the phenotypes of rare recombinants at the optix region to narrow down the regulatory elements controlling the absence and presence of red scales in the forewing bands and the "dennis patch" in the forewing and the "dennis bar" and "rays" in the hindwing (see Fig. 2 and fig. S3). We filtered out genotypes with quality below 10 and sites with an INFO_SCORE below 0.7 or more than 25% missing data. Next, we extracted all sites that showed a difference in homozygote genotype frequencies of above 0.9 between individuals grouped by plesseni-like ("highland") or malleti-like ("lowland") red patterns. For ease of visualization of haplotypes, we corrected genotyping errors and replaced missing genotypes the following way. For each individual, we replaced runs of up to 15 consecutive genotypes that differed from the flanking 20 genotypes by the genotypes of the flanking region given that the flanking region was clearly assignable to $\mathrm{H} / \mathrm{H}(=1$, homozygous for the highland allele) or H / L ($=0.5$, heterozygous) or $\mathrm{L} / \mathrm{L}(=0$, homozygous for the lowland allele). If the mean genotype value of the flanking region deviated more than 0.1 from $0,0.5$ or 1 , the region was defined as not clearly assignable. Each individual was "cleaned" three times to remove likely erroneous genotypes which are expected to be visible as single genotypes or short runs of genotypes that differ from the surrounding regions. The genotypes were visualized as yellow for the highland homozygotes, as orange for heterozygotes and as red for the lowland homozygotes. Rare recombinants between the different regulatory regions of optix previously found by $(55,85)$ were then compared to the photos to determine the genetic basis of each red pattern.

Structural rearrangements and analyses
Structural rearrangements were detected based on beadTag between adjacent windows following (7). Briefly, a bash pipeline was used to summarize beadTag found in any given 10 kbp window across the genome as well as between any pair of

10 kbp windows on the same chromosome. On average, we observed $25.8 \mathrm{~K} \pm 22.7 \mathrm{~K}$ molecules per window, of which 5314 ± 1658 molecules are shared across adjacent windows. By contrast, we observed an average of 9.2 ± 31.3 shared beadTags between windows that are more than 100 kbp apart. These patterns are summarized across the genome (Fig. 4). Signals of potential inversions and insertion/deletions (indels) were manually inspected and scored. The results are summarized in Data S2 \& S3.
To estimate the frequency of the H . erato Chr2 inversion, first we determined the non-adjacent windows with the strongest beadTag sharing. Then among these molecules we inferred the inversion junctions using the positions with the lowest base-wise molecular coverage, because the junction itself is likely to fall within gaps between linked reads from either direction, and to avoid inflating the count of collinear molecules. For the Chr2 inversion we determined the junctions to be at Herato0204:172500 and 1290057. Then each of the 484 individuals were scored for beadTags that span either junction, or ones that are shared between $L_{\text {out }}-R_{\text {in }}$ or $L_{\text {in }}-$ $\mathrm{R}_{\text {out }}$ windows. We next determined the average inversion frequency at each sampling site and fitted cline models to them (see below).

Cline analysis

One-dimensional analyses of cline position and shape were carried out using a subset of the sampled locations; these included all the best-sampled sites along the straight line where sampling was concentrated. The sequential location of sites along this transect was defined by projecting their position perpendicularly to a regression line fitted to their geographic coordinates and expressed in km (Fig. 2). For genotypic clines, the allele frequencies at SNPs that separate the highland-lowland divergent haplotypes at the peak $F_{\text {st }}$ windows were used to construct the clines. At the major color pattern loci, the best model (according to the Akaike Information Criterion, AIC) was found to be a 4-parameter model with free start and end frequencies. Maximum likelihood estimates of cline centre, width and start and end frequencies were then obtained for the allele frequency clines of the two co-dominant and homologous loci, optix and WntA, as well as the two dominant loci, Ro in H. erato and cortex in H. melpomene using the R software package HZAR (86). Cline coincidence and concordance was evaluated by comparing the overlap of likelihood limits between loci.
To assess the generality of the observed cline widths and centres, we additionally inferred clines for the site with the highest $\mathrm{F}_{\text {ST }}$ value for each 100 kb window using the same populations for $\mathrm{F}_{\text {ST }}$ calculation as used for previous $\mathrm{F}_{\text {ST }}$ calculations. We excluded windows in which none of the sites reached an $F_{\text {ST }}$ value of 0.5 in H . erato or 0.4 in H . melpomene. We then inferred clines for the remaining 137 sites in H . melpomene and 132 sites in H. erato with HZAR. For each site, we tested six models (no tails, symmetric tails or two different tails each combined with either free or fixed minimum and maximum allele frequencies). Following the example by (86), we ran 3 MCMC chains each with default parameters and randomized starting values. We identified the best model of the six and a null model of allele frequency independent of the transect position with AICc as implemented in HZAR.

Supplementary Figures

Fig. S1. Haplotagging bead assembly. (A) The design of a haplotagging bead. Haplotagging beads are microbeads coated with activated Tn5 transposomes that correspond to the Nextera specifications. The key feature is a set of segmental barcodes ("beadTag") that is integrated into the $i 7$ and $i 5$ indexing positions. In the current design, we use two segments each (designated $A-C$ and $B-D$), linked by a single basepair overhang (X and Y). These oligonucleotides are attached to the bead via the strong streptavidin-biotin binding. An advantage of this design over other similar designs (8) is that there is no intervening adaptor sequences (which requires custom sequencing primers), nor is there major presence of splint hybridizing sequences (which would greatly extend the length of the indexing sequence), either of which would prevent the standard TruSeq sequencing protocol to be used on an Illumina sequencer. (B) Assembly of the combinatorial beadTag barcode via a split-and-pool procedure. Pre-suspended 96 -well plates bearing oligonucleotides are ordered directly from suppliers. Commercial streptavidin-coated dynabeads are aliquoted into each well, pooled, and then re-aliquoted into each well into the next plate. At each step, an individual microbead would be mixed with a single type of barcodes, but as a pool of beads, the entire mixture would feature up to approximately 85 million combinations. If the X and Y overhangs are varied, this can feature up to 1.4 billion combinations.

A Single individual ($\mathrm{N}=1$)

B Large population ($\mathrm{N}=245$)

Fig. S2. Phasing and imputation performance in single individuals and a large population. (A) Barcode diversity, molecule size and phased block sizes from the same F 1 (BL6xCAST) sample. On average, each barcode is found on only 2 to 3 molecules scattered across the genome. Half of the genome is covered by molecules 42.1 kbp or longer. Phasing was successful across virtually the entire genome. Shown here are the largest phase blocks (dark grey boxes; up to 90% of the total length of all phase blocks, or N_{90}) on the 19 autosomes of the mouse. Scale bar: 50 megabase. (B) LR sequencing, phasing and imputation results from
haplotagging 245 mice from the Longshanks selection experiment (12, 13). LR sequencing allows molecular coverage (median: 2.23x) -as opposed to standard per-base read coverage (median: 0.24 x) -to be leveraged across samples to infer and extend haplotype segments. Phasing and imputation while incorporating LR information consistently shows higher correlation with allele frequencies estimated from higher-depth sequencing (13) than standard short-read only attempts, even after subsampling to as low as $0.05 x$ coverage per individual mouse. LR data also lead to a $100 \times$ increase in phased block lengths. Bottom: representative results from statistical phasing with down-sampled input, with or without LR information. Haplotypes can be visualized by runs of correlated allele frequencies. In this 2 Mbp region, phasing with or without LR information at $0.24 \times$ coverage show comparable results. By contrast, at 0.1 x coverage, phasing remain robust using LR information (left; the sharper appearances of correlated frequencies suggest possibly improved phasing results) compared to poor phasing results if the input was treated as standard, paired-end reads (right).

Fig. S3. Sampling localities and representative morphs. (A) Sampling localities shown in Fig. 2A are shown at higher magnifications here. The color coding corresponds to the same scale as in Fig. 2A. The transect is located along a Southwest-Northeast diagonal. (B) Representative individuals of the pure races, F1 and the new hybrid morph in H. erato and H. melpomene. (C-F) Representative individuals visualising how different genotypes at WntA (C-D) in both species and at Ro in H. erato affect the forewing band shape (C-D), and how genotypes at optix in both species and cortex in H. melpomene affect the distribution of red scales (\mathbf{E} F).

Fig. S4. Phasing performance in the two butterfly species. Following statistical phasing, each individual was also phased using molecular information across its imputed heterozygous sites using HAPCUT2. The phased block N_{50} is shown for H . erato (top) and H. melpomene (bottom). Among H. erato, the maximum phased block N_{50} is 20.7 Mbp , which spans the entire Herato1202 scaffold, the third longest scaffold in that assembly.

H. erato

H. melpomene

Fig. S5. Extreme difference in nucleotide diversity at the four major divergent loci. In both Heliconius species, the difference in nucleotide diversity between highland and lowland races ($\Delta \pi$) was computed in 50 kb windows. The density distribution of $\Delta \pi$ value across the genome is shown in black, with the most extreme 50 kb window at each color pattern locus indicated as vertical colored lines. Color pattern loci show strongly negative $\Delta \pi$ values, indicating stronger reduction in nucleotide diversity in highland races than in lowland races. Empirical one-sided P values are given for each color pattern locus.

Fig. S6. Haplotagging data out-perform conventional short-read alternatives. Patterns of genomic differentiation ($\mathrm{F}_{\text {ST }}$) across the genome show much higher resolution in haplotagging data (A) than in RAD data (B) despite the same number of individuals (10 individuals from each population) and comparable number of mapped reads (haplotagging: 127 million vs. RAD: 130 million). Fst values were calculated in sliding windows of 10 kbp with a step size of 2.5 kbp . Windows with less than 10 SNPs were excluded. There are many more regions with marked differentiation using haplotagging data. Most of these regions are validated in the broader, main dataset presented in Fig. 3A. (B) The difference in resolution is particularly obvious at the four regions of highest differentiation. (C) Comparison the haplotpe-based ω-stastics (34), which detects LD signatures associated with genetic hitchhiking with or without LR information. The same data from 32 H. e. notabilis individuals were processed using either the STITCH/HAPCUT2 LR pipeline outlined in this paper, or a standard Beagle/SHAPEIT pipeline without using LR information. The ω test searches for increased LD within each flanking area adjacent to the inferred target of selection, but not across it. It is sensitive to accurately constructed haplotypes. The LR pipeline shows a peak $\omega_{\text {max }}$ of 4014.5 in the region, especially in the area immediately flanking the strongest association with the wing pattern phenotypes (red arrowhead and black vertical bar) that is more than 100 kbp 3 ' to the coding region of optix (red vertical bar). The major signals correspond to regulatory regions (blue shading: ray and dennis according to (54)) and even overlap particular regulatory elements in this region (grey ticks above plot, labelled according to (25)). By contrast, the maximum ω-statistics at this locus without using LR information is 29.3 (inset, magnified 20x) and seem to fluctuate.

Fig. S7. All 10kb windows with high genomic differentiation $\left(F_{\text {st }}\right)$ in both H. erato and H. melpomene belong to the four major color loci. $\mathrm{F}_{\text {ST }}$ computed in 10kb windows between highland and lowland races for each species separately, (H. melpomene data were converted to H. erato coordinates before averaging). All windows within 0.5 Mbp from the centre of the four major color loci in H. erato are shown in color. For windows with an F ST value above 0.4 that are not part of the major color loci the chromosome number is indicated. The four windows that are highly differentiated only in H. melpomene are all located on chromosome 18 and are part of a second divergence peak about 2 Mbp away from optix unique to this species. This region also shows a steep cline in allele frequency which is coincident with the optix cline. Windows that are highly differentiated only in H . erato include a region on Chr2 which also shows steep clines shifted towards lower altitudes even compared to the WntA cline (fig. S12). This region encompasses six genes of which four are putatively related to diet (fatty acid synthase, trypsin, gustatory receptor for sugar taste, odorant-binding protein).

Fig. S8. Haplotype length distributions at the major color loci optix and WntA. Haplotypes from inferred selection targets are plotted in sample groups (Top: H. erato; bottom: H. melpomene). In each sample group, haplotypes are assigned to into highland (yellow), lowland (red), or ambiguous types (not plotted here), and plotted from the longest to the shortest length, calculated from the closest recombination breakpoints flanking the centre, focal position (see Methods for details). Summarized below each plot is a box plot depicting the median and the interquartile range of the haplotypes in each group (with a minimum of 3 haplotypes). To help visualize the breakdown of the average haplotype in the middle of the hybrid zone, some bars may be truncated at the top. This representation clearly shows the displacement between the optix and WntA clines. It also shows that haplotype lengths tend to be long at both ends of the hybrid zone, and become broken down through hybridization at the centre of each cline. Within a sample group, comparing the size distribution of haplotypes of each type may also reveal the direction of introgression. Note that the H. melpomene WntA locus contains far shorter haplotypes than those at the other depicted loci, and is plotted with a different Y -axis.

Fig. S9. Refining the minimal intervals at the optix locus in H. melpomene. (A) Genotypes at optix across all individuals shown as yellow for homozygotes for the highland (H. m. plesseni) allele, orange for heterozygotes and red for the lowland (H. m. malleti) allele. For clarity, only sites with at least 0.9 homozygote frequency difference between highland and lowland individuals are shown. The previously identified regulatory regions are shown on top (55,85). Individuals are grouped by the presence and absence of different red elements in the wings (dennis, ray, and red in the forewing bands, see also fig. S3C-F). The first three groups show individuals that are almost entirely homozygous for the lowland allele (yellow), heterozygous (orange) or homozygous for the highland allele (red) across the region, including the ray and dennis regulatory elements. Accordingly, they show red only in the forewing bands typical for the highland race (highland homozygotes, optix ${ }^{\mathrm{HH}}$, yellow), red scales in the forewing bands and dennis-ray (heterozygotes, optix ${ }^{H / L}$, orange), or only dennis-ray typical for the lowland race (lowland homozygotes, optix ${ }^{L /}$, red). Recombinant individuals that decouple the red scales, dennis and ray phenotypes are shown in the last two groups. The second last group includes individuals that feature lowland malleti-like dennis-ray pattern and lack red scales in the forewing band typical for the highland race. These individuals are homozygous for the lowland allele at the dennis and ray elements, consistent with their dennisray phenotype. However, they are heterozygous at band, which should predict red scales in the forewing band, if band is the element controlling the trait, as reported elsewhere (55, 85). Instead, these individuals uniformly lack red scales. The only fully concordant region among these individuals is the dennis element. This shows that in
the Ecuador hybrid zone, dennis, rather than band, controls the presence of red scales in the forewing bands. The last group consists of individuals that show a dennis patch and bar but no rays. These individuals are homozygous for the highland allele at ray (yellow), but heterozygous at dennis. Note here how the breakpoints just 5 ' to the dennis elements produces a precise match to the dennisonly phenotype. (B) Refinement of the minimal interval through a recombinant, CAM016820. This individual belongs to the middle heterozygous group (blue arrow in \mathbf{A}, orange group): it has red scales in the forewing band and dennis-ray. It is heterozygous at dennis but contains a recombinant breakpoint within ray as inferred by (85). Since this individual has a normal ray pattern, we can rule out the 6 kbp segment homozygous for the highland allele. Thus, this recombinant individual refines the ray element from 14.1 kbp to 8.0 kbp (blue rectangle in A). Individual molecules are shown on the left (red lines indicate recombinant haplotypes transitioning from highland, yellow, to lowland, red alleles). Yellow and orange shading indicate the inferred genotypes. (C) Inferred regulatory elements controlling the major color pattern elements observed in this hybrid zone.

Fig. S10. Genome-wide clines along the hybrid zone in both species. Admixture proportions derived from NGSadmix (65) results with $\mathrm{K}=2$ for H . erato and $\mathrm{K}=3$ for H. melpomene averaged across all samples of the same collection site and plotted against transect position. Sampling sites outside of the transect are shown below 0 . Genomic sites have been randomly subsampled to 10% of the sites to reduce linkage and increase run efficiency. The whole genome shows clinal variation along the transect zone.

Fig. S11. Single-site clines along the hybrid zone in both species. Clines of the most highly differentiated position of each 100 kbp window in H. erato (A-C) and in H. melpomene (D-F), excluding sites with $\mathrm{F}_{\text {st }}$ below 0.5 in H . erato or below 0.4 in H . melpomene. Clines of the sites closest to the four color loci are highlighted in color and clines narrower than 30 km in darker grey. A list of the narrow clines is given in Tables S12-13. Histograms show the widths and centres of all clines, whereby the width and centre of the haplotype clines of optix and WntA are indicated with vertical lines in dark red and yellow, respectively. Note that the high number of narrow clines centred around 10 km represent SNPs where the population at El Topo in Baños (Tungurahua) is distinct from all other populations potentially due to isolation by distance.

Fig. S12. Haplotype frequency clines at the major color loci and the frequencies of morphs across the hybrid zones. Clines at the major color loci optix, WhtA, Ro (in H. erato, left column) and cortex (in H. melpomene, right column) across the hybrid zones are shown for haplotypes (genomic positions indicated above each panel; cline fits: solid lines with shading for confidence intervals; data points: circles) and phenotypes (cline fit: dashed lines; data points: diamonds). For the dominant loci Ro and cortex/ N, the trait-based allele frequencies are estimated by assuming Hardy-Weinberg equilibrium. The haplotype cline fits for optix and WntA are repeated here to show the remarkable coincidence of these modifier loci with the major loci in each species.

Fig. S13. Clines at two loci, each with complete dominance for the lowland allele. Each of the four morphs, labelled i, has fitness $1+s_{i}\left(P_{i}-Q_{l}\right)$, where P_{i} is the frequency of morph i. In the top row, selection is symmetric, so that $s_{i}=0.1$ for all i. (A) Initially, there are step clines at each locus (red and yellow), centred at 20, 30. Clines move to the left, due to dominance, but remain ~ 10 apart; they are shown at $0,500,1000,1500$ generations, the two loci indicated by line thickness. Right: separation between clines over time, for different initial separations. If the clines are close enough, swamping and LD pulls them together, but otherwise, they remain separated. A density gradient or extrinsic selection gradient would pin the clines, and force them together even if initially well-separated. (B) The same, but with stronger frequency-dependence $s_{A-; b}$ favoring one of the hybrid phenotypes. If the clines are initially displaced such that the less fit hybrid morph is common, the red cline moves faster, and crosses the yellow cline, reaching an equilibrium shift such that the fitter hybrid is commoner. However, if the clines are far enough apart, the fitter hybrid can be maintained indefinitely (bottom right, lowest line). Right: the black line shows a scenario, where even if the two clines start off coincident, they become displaced due to the fitness advantage of the fitter hybrid morph. The simulation uses nearest-neighbor migration, with $m=0.5$.

Platform (reference)	10X Genomics, Chromium (7)	Haplotagging; this study	TELL-seq (87)	Droplet barcode sequencing (88)	stLFR (9)	CPTv2-seq (8)
Main technique	Microdroplet compartments	Tn5 tranposase on barcoded beads	MuA transposase + barcoded bead capture	$\begin{aligned} & \text { Commercial Tn5- } \\ & \text { flex + basic } \\ & \text { emulsion PCR } \end{aligned}$	Tn5-transposase + barcoded bead capture	Tn5transposase hybridized onto beads
Status	Commercial, discontinued	Open protocol	Commercial, not yet available	Open protocol; components available	Commercial, trial basis	Published protocol; not widely adopted
Processing time	Two days	< 3 hours	< 3 hours	8 hours, 2 hours hands on	5-6 hours	1 tube method: <3.5 h 384-plate method: slow
Number of steps	Droplet encapsulation; blunting, Atailing, adaptor ligation; PCR	Tn5 transposition; PCR	MuA transposition; hybridization and ligation; Tn5 tranposition; PCR	Tn5-flex-on-beadtransposition; emulsion PCR; bead enrichment; i7 barcoding	Tn5 tagmentation; hybridization and ligation; optional additional ligation; PCR	1 tube method: Tn5 tagmentation; PCR
Sequencing platform	Illumina TruSeq	Illumina TruSeq/Nextera	Illumina TruSeq/Nextera	Illumina TruSeq/Nextera	BGI sequencer (Custom); Illumina TruSeq	Illumina (custom sequencing recipe and primers)

Platform	Illumina TruSeq (commercial provider)	Illumina Nextera/ Tn5 (in-house)	Chromium (in-house)	Haplotagging
Major cost items	DNA extraction DNA normalizati on and size selection	$2.6 €$	$0.53 €$	$0.53 €$
Library generation	$13.5 €$	$0.73 €$	$0.53 €$	
Total		$16.1 €$	$1.52 €$	$210.8 €$

Table S2. Example sequencing library preparation costs

Listed above are representative consumables-only operating costs from a genome core facility for making sequencing-ready libraries from tissue biopsies, excluding one-time costs, which vary greatly across the library types. A key comparison here is that the sequencing library preparation costs for haplotagging is only a fraction of that of 10X Genomics's Chromium, yet it yields comparable results. For haplotagging, the major one-time costs are purchasing the oligonucleotides Data S1 and bead assembly, which for the current experiment cost around $6000 €$ for 85 million beadTags. However, a single such order will deliver enough oligonucleotides for $>20,000$ libraries, bringing the per-sample costs down to $\sim 0.3 €$ per sample.

Sample	n	Total reads (M)	Mapped Sequence (Gbp)	Foldcoverage (x)	Mean cov./ Sample (x)	Mean molecular coverage (x)
$\begin{gathered} \text { Mouse, } \\ \text { F1(CASTxBL6) } \end{gathered}$	1	401.3	55.21	12.60	12.60	165.6
Mouse, N2(CASTxBL6)*	1	571.4	80.47	59.6	59.6	1232.3
Human, GM12878	1	283.1	37.28	12.30	12.30	106.4
Mouse, Longshanks	245	0.86	0.12	59.8	0.24	3.3
F11, F16, F17 \dagger H. erato	484	3,846	431.8	952.8	1.54	11.5
H. melpomene	187	1,267	153.4	1569.0	2.77	19.6
* Only considering heterozygous regions						

Sample	NA12878 ${ }^{\text {a }}$	GM12878	F1(BL6xCAST)	F1(BL6xCAST)	N2(BL6xCAST)*
Species	Human	Human	Mouse	Mouse	Mouse
Platform	CPTv2, one-tube	Haplotagging	10X Genomics	Haplotagging	Haplotagging
Barcodes (M)	0.147	1.701	1.432	1.130	2.232
Read length	2×76	2×150	2×150	2×150	2×150
Number of read-pairs (millions)	648	141.56	61.61	200.66	285.70
Mapped bases (Gbp)/Mapped	73/75\%	37.28/88\%	16.05/87\%	55.21/92\%	80.47/94\%
Uniqueness / Duplicates	79\%/21\%	41\%/59\%	89\%/11\%	62\%/38\%	75\%/25\%
Mean coverage (no duplicates)	19.2	12.30	5.14	12.60	59.64*
Mean DNA per barcode ${ }^{\text {a }}$	6	1.58	6.00	2.44	1.05
Mean reads per molecule b	5	10.11	6.23	6.51	6.71
Mean molecular coverage c (duplicates removed)	n.d.	106.36	168.44	165.55	1232.30
$\mathrm{N}_{50} \mathrm{~d} /$ max. molecule size	34.9/339	63.47/573	82.68/1010	42.05/415	40.87/281
Informative linked readse \mathbf{N}_{50} (kbp)	58.5	41.79	87.72	44.63	55.98
heterozygous SNPs phased	98\%	98.59\%	99.80\%	99.74\%	99.91\%
Phasing block ${ }^{\text {f }} \mathrm{N}_{50}$ (Mbp)	1.14	1.08	29.42	20.01	14.45
Longest phasing block (Mbp)	3.46	6.83	87.30	61.46	58.72*
Short switch error rate 9	0.13\%	0.95\%	0.0011\%	0.18\%	0.075\%
Long switch error rateh	0.0085\%	0.039\%	0.022\%	0.026\%	0.014\%

* Only considering heterozygous regions
a: the number of loci in the genome for a given beadTag
b: molecules are defined as sets of reads sharing the same beadTag within 50 kbp from each other
c: coverage calculated using overlap by molecules
d: $\quad N_{50}$: the shortest fragment among those that make up 50% of the combined length of all fragments LR that overlap heterozygous SNP positions
as generated by HAPCUT2 with PHRED-scaled threshold value of 30
Incorrectly phased SNPs in a phased block, according to reference-quality data
h : Molecules that show runs of alleles from both haplotypes. These are erroneous molecules arising from actual recombinant molecules or molecular artefacts, or barcode re-use

Table S4. Phasing performance in single individuals and comparisons with other platforms.

Site No.	Site name	Lat (S)	Lon (W)	Elevation (m)	Distance along transect (km)
	Transect				
1	Cashaurco	$1^{\circ} 25.345^{\prime}$	$78^{\circ} 10.376$	1252	4.98
2	Parroquia Cumandá	$1^{\circ} 27.250^{\prime}$	$78^{\circ} 08.951{ }^{\prime}$	1251	5.17
3	El Topo	$1^{\circ} 23.881^{\prime}$	$78^{\circ} 10.688^{\prime}$	1307	6.02
4	Mangayacu	$1^{\circ} 26.227^{\prime}$	$78^{\circ} 07.373^{\prime}$	1239	8.65
5	Pindo-Mirador	$1^{\circ} 27.598^{\prime}$	$78^{\circ} 04.368{ }^{\prime}$	1227	11.82
6	Fátima 2	$1^{\circ} 25.552^{\prime}$	$78^{\circ} 01.092^{\prime}$	1058	18.97
7	Fátima-JatunPaccha km 1.6	$1^{\circ} 25.755^{\prime}$	$77^{\circ} 59.199^{\prime}$	991	21.65
8	Colonia SimónBolivar	$1^{\circ} 22.049{ }^{\prime}$	$78^{\circ} 00.961^{\prime}$	1000	22.81
9	Fátima-JatunPaccha km 7	$1^{\circ} 25.422^{\prime}$	$77^{\circ} 56.863^{\prime}$	1009	25.57
10	km 19 Col Llandia km 1.2	$1^{\circ} 21.737^{\prime}$	$77^{\circ} 57.566$	1041	28.34
11	Tnt Hugo Ortiz km 2	$1^{\circ} 22.981{ }^{\prime}$	$77^{\circ} 56.674$	1036	28.40
12	km 19 Col Llandia 2	$1^{\circ} 20.800^{\prime}$	$77^{\circ} 57.607^{\prime}$	995	29.25
13	Fátima-JatunPaccha km 11.7	$1^{\circ} 24.596{ }^{\prime}$	$77^{\circ} 54.921^{\prime}$	988	29.41
14	km 18 Com SanPablo	$1^{\circ} 23.367{ }^{\prime}$	$77^{\circ} 54.062^{\prime}$	955	32.00
15	km 25 Llandia	$1^{\circ} 19.999^{\prime}$	$77^{\circ} 56.043^{\prime}$	953	32.48
16	Colonia Mariscal I	$1^{\circ} 22.276{ }^{\prime}$	$77^{\circ} 52.471^{\prime}$	961	35.57
17	Colonia 4 de Agosto	$1^{\circ} 14.448^{\prime}$	$77^{\circ} 57.656$	939	35.79
18	km 37 San Fco. de Llandia km 3.3	$1^{\circ} 18.374{ }^{\prime}$	$77^{\circ} 54.590$	839	36.39
19	Vía Colonia 4 de Agosto km 8.2	$1^{\circ} 14.779^{\prime}$	$77^{\circ} 56.564^{\prime}$	750	37.11
20	Colonia Mariscal II	$1^{\circ} 22.270^{\prime}$	$77^{\circ} 51.446$	947	37.14
21	Vía Colonia 4 de Agosto 1	$1^{\circ} 14.736{ }^{\prime}$	$77^{\circ} 54.514^{\prime}$	638	40.30
22	km 35 Antena	$1^{\circ} 17.462^{\prime}$	$77^{\circ} 52.642^{\prime}$	1064	40.32
23	km 31 Comuna Cajabamba	$1^{\circ} 20.290^{\prime}$	$77^{\circ} 50.123^{\prime}$	954	41.23
24	km 35 Sendero Pta. San Cristobal	$1^{\circ} 17.446{ }^{\prime}$	$77^{\circ} 50.514^{\prime}$	947	43.59
25	km 31 bajada río Arajuno	$1^{\circ} 19.309{ }^{\prime}$	$77^{\circ} 48.589{ }^{\prime}$	908	44.60
26	km 43 Sendero Colonia SanVicente	$1^{\circ} 14.597{ }^{\prime}$	$77^{\circ} 51.605^{\prime}$	845	44.89
27	San Pedro de Puní	$1^{\circ} 15.111^{\prime}$	$77^{\circ} 49.176$	931	48.07
28	El Capricho km 5.7	$1^{\circ} 11.269^{\prime}$	$77^{\circ} 49.863^{\prime}$	824	51.02
29	LuzDeAmérica km 11.5	$1^{\circ} 10.101^{\prime}$	$77^{\circ} 46.867^{\prime}$	665	56.82
30	Vía Arajuno km 58.4	$1^{\circ} 15.058^{\prime}$	$77^{\circ} 41.931{ }^{\prime}$	606	59.22
31	Apuya km 2.7	$1^{\circ} 06.934^{\prime}$	$77^{\circ} 46.700^{\prime}$	579	60.38

32	Colonia 20 de Enero	$1^{\circ} 05.494^{\prime}$	$77^{\circ} 43.197^{\prime}$	459	67.24
33	Y de Misahuallí	$1^{\circ} 03.683^{\prime}$	$77^{\circ} 40.106^{\prime}$	440	73.85
34	San Pedro de Arajuno	$1^{\circ} 05.928^{\prime}$	$77^{\circ} 35.067^{\prime}$	376	79.23
35	Río Pusuno	$1^{\circ} 00.940^{\prime}$	$77^{\circ} 35.849^{\prime}$	378	83.22
	Not transect				
36	Río Yanamacas Chico	$1^{\circ} 47.584^{\prime}$	$78^{\circ} 01.114^{\prime}$	1054	
37	Sangay	$1^{\circ} 46.789^{\prime}$	$77^{\circ} 58.923^{\prime}$	992	
38	Vía Arapicos km 4.5	$1^{\circ} 49.057^{\prime}$	$77^{\circ} 57.608^{\prime}$	935	
39	Antenas del Calvario	$1^{\circ} 30.697^{\prime}$	$77^{\circ} 54.684^{\prime}$	1056	
40	Vía Colonia Juan de Velasco	$1^{\circ} 27.554^{\prime}$	$77^{\circ} 53.202^{\prime}$	994	
41	km 1	$1^{\circ} 28.519^{\prime}$	$77^{\circ} 52.220^{\prime}$	856	
42	Vendero Col Juan de	Y de Taculín $^{\circ} 30.191^{\prime}$	$77^{\circ} 50.255^{\prime}$	612	
43	Vía Canelos km 6.3	$1^{\circ} 35.812^{\prime}$	$77^{\circ} 49.330^{\prime}$	698	
44	Río Camagua?/Chontoa	$1^{\circ} 34.908^{\prime}$	$77^{\circ} 49.259^{\prime}$	638	
45	Río Llushcayacu	$1^{\circ} 24.128^{\prime}$	$77^{\circ} 47.843^{\prime}$	1034	
46	Vía Triunfo-Villano-Parahua	$1^{\circ} 24.963^{\prime}$	$77^{\circ} 43.741^{\prime}$	857	
47	Sendero vía Arajuno km 37	$1^{\circ} 22.667^{\prime}$	$77^{\circ} 42.635^{\prime}$	1114	

Table S5. Sampling locations

Table S6. H. erato individuals by site and genotype. Shaded in grey are the two parental forms and the double-banded-hybrid.

Site No.	Elevation (m)	optix ${ }^{H / H}$ WntA ${ }^{\text {H/H }}$ $\mathrm{Ro}^{\mathrm{H} /-}$	optix ${ }^{H / L}$ WntA ${ }^{\text {H/H }}$ $\mathrm{Ro}^{H /}$		WntAH/L $\mathrm{Ro}^{H /-}$	WntALL $\mathrm{Ro}^{\mathrm{H}} /-$	optix ${ }^{\text {L/L }}$ WntA ${ }^{\text {H/H }}$ $\mathrm{Ro}^{\mathrm{H} /}$	$R o^{L / L}$	WntA ${ }^{\text {H/L }}$ Ro^{H} -	RoL/L	?	WntA ${ }^{\text {LL }}$ Ro^{H} -	$R o^{\text {L/ }}$
1	1252	11											
2	1251	3											
3	1307	12											
4	1239	61											
5	1227	41	1										
6	1058	48											
7	991	19	2										
8	1000	32											
9	1009												
10	1041	29	1										
11	1036	7											
12	995	31	6				1						
13	988	9	5				1						
14	955	10	10										
15	953	15	8				13						
16	961												
17	939		3				5					1	
18	839	2	14		1		52	1	8				
19	750		2				4						
20	947		1				1		1				
21	638				1		2						
22	1064		3	1	3		58	2	17		1	2	
23	954				1		2		1				
24	947		2				20	1	8	1		2	1
25	908						5		5	1			
26	845						9	2	15	1		5	1
27	931						2	2	4	3		4	
28	824					1	6		12	6		9	8
29	665							1	7	4		11	7
30	606								3			3	1
31	579						1	1	10	9		17	28
32	459								1	5		9	18
33	440								1	3		9	24
34	376									2		10	37
35	378												4

TOTAL		330	58	1	6	1	182	10	93	35	1	82	129
Site No.	Elevation (m)	$\begin{aligned} & \text { optix }{ }^{H / H} \\ & \text { WntAH/H } \\ & \text { RoH/- } \\ & \hline \end{aligned}$	optix ${ }^{\text {H/L }}$ WntAH/H WntA Ro ${ }^{H}$	Roll	WntA ${ }^{\text {H/L }}$ $\mathrm{Ro}^{\mathrm{H} /-}$	$\begin{aligned} & \text { WntALL } \\ & \text { Ro }{ }^{\text {H/- }} \end{aligned}$	optix $1 /$ L WntA'H $\mathrm{Ro}^{\mathrm{H}} \mathrm{H}$	Rot/l	$\begin{aligned} & \text { WntA } A^{\mathrm{H} / \mathrm{L}} \\ & \text { Ro }^{\mathrm{H}--} \end{aligned}$	Ros/L	?	$\begin{aligned} & \text { WntAUL } \\ & \text { Ro' }^{\text {H/- }} \end{aligned}$	Ros/L
$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 45 \\ & 46 \\ & 47 \end{aligned}$		$\begin{aligned} & 1 \\ & 5 \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 7 \end{aligned}$	1	1 2 1 1	1		1	

Table S7. H. melpomene individuals by site and genotype. Shaded in grey are the two parental forms and the double-banded-hybrid.

Site No.	Elevation (m)	optix ${ }^{H / H}$ WntAнн		WntA ${ }^{\text {H/L }}$		optix ${ }^{H / L}$ WntAнн		WntA ${ }^{\text {H/L }}$		$\begin{aligned} & \text { Wnt } A^{L L} \\ & N^{-/ L} \end{aligned}$	$\begin{aligned} & \text { optix-/L } \\ & \text { WntA }^{H / H} \\ & N^{-/ L} \end{aligned}$	optix ${ }^{\text {L/L }}$ WntAH			WntA ${ }^{\text {H/L }}$		$\begin{aligned} & W n t A^{L L L} \\ & N^{-/ L} \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	$\begin{array}{ll} \text { optix uncertain } \\ \text { WntA } A^{H / H} & \text { WntA } A^{H / L} \\ N^{-/ L} & N^{H / H} \end{array}$	
1	1252	39																		
2	1251	1																		
3	1307	19																		
4	1239	16																		
5	1227	32	1	1																
6	1058	8	4	1																
7	991	1	1			1														
8	1000	3							1											
9	1009	1																		
10	1041	1	2				1						1							
11	1036																			
12	995	2				1	1		2							1	1		1	
13	988	1	1			2	3						1							1
14	955		2				4	1					1							
15	953		2				1					1	3		1	1	2			
16	961				2								1						1	
17	939												1			1	2			
18	839		2			1	6					1	7	2		3				
19	750		1				2													
20	947						3									3	1			
21	638												1							
22	1064						1													
23	954												1				1			
24	947						1						10			4	8			
25	908												1			1				
26	845												1			4	2			
27	931												3			2	2			
28	824															2	29			
29	665								1							9	15			
30	606												1			1	10			
31	579												1			1	47			
32	459														1	2	5			
33	440															8	24			
34	376												1			1	19	5		
35	378																1			

TOTAL		124	16	2	2	6	23	1	4	0	0	2	35	2	2	44	169	5	2	1
Site No.	Elevation (m)	optix ${ }^{H / H}$ WntAнн		WntAH/L		optix ${ }^{\text {H/L }}$ WntA ${ }^{\text {н/н }}$		WntA ${ }^{\text {H/L }}$		WntALL$N^{-/ L}$	optix-/L WntA ${ }^{\text {нн }}$ $N^{-1 / L}$	optix ${ }^{\text {L/L }}$ WntAнн		WntAHL			WntALL$N^{-1 / L}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	optix uncertain WntAHH WntAHL N^{-L} $N^{H / H}$	
		$\mathrm{NHH}^{\text {H }}$	N^{-L}	$\mathrm{NH}^{\text {H/H}}$	$N^{-1 /}$	$N^{H / H}$	N^{-L}	$\mathrm{NH}^{\text {H/H}}$	N^{-L}			$\mathrm{NH}^{\text {H/H}}$	N^{-L}	?	$\mathrm{NH}^{\text {H }}$	$N^{-/ L}$				
36		1	1			1														
37			3																	
38							2		1								1			
39			2				1						1							
40		1	1				1						2			1				
41		1					3					1	8			1				
42										1						1				
43																1				
44			1							1	1				2		1			
45							2						4			2	3			
46																	1			
47																				

The N locus corresponds to the gene cortex.

H. erato

	optix - dennis \& ray			
Herato1801: 1399223:	HH	HL	LL	
Genotype	010	0	9	370
	$\mathbf{1 1 0}$	0	13	1
	$\mathbf{0 1 1}$	0	18	0

Sensitivity (high-confidence): 94.0\% Accuracy (high-confidence): 98.4\% Accuracy (all): 96.7\%

| | WntA - band | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | HH | HL | LL |
| Genotype | 010 | 210 | 8 | 2 |
| | 011 | 3 | 19 | 1 |
| | 110 | 1 | 21 | 3 |

Sensitivity (high-confidence): 88.2\%
Accuracy (high-confidence): 95.5\% Accuracy (all): 96.4\%
H. melpomene
optix - dennis \& ray

Hmel2180030: 800708: HH HL LL

| Genotype | 010 | 96 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 011 | 5 | 10 | 0 | |
| | 110 | 3 | 10 | 0 |
| $\mathbf{0 / 1}$ | 1 | 3 | 0 | |

Sensitivity (high-confidence): 94.0\%
Accuracy (high-confidence): 95.4\%
Accuracy (all): 93.5\%

Hmel2100010: 3333301:	WntA - band		
	HH	HL	LL
010	39	6	0
011	0	18	0
Genotype 110	1	16	1
0/1	0	1	0
111	0	3	102
Sensitivity (high-confidence): 98.9\%			
Accuracy (high-confidence): 94.1\%			
Accuracy (all): 94.1\%			

Table S8. Validation results for STITCH at known color loci

H. e. notabilis, ω					
Rank	Chrom	Start	End	$\omega_{\text {max }}$	Remarks
1	Herato1202	6484876	6485047	8129.4	
2	Herato1801	1373655	1374171	4014.6	Optix
3	Herato1301	14347538	14348248	4001.7	Ro
4	Herato0209	138991	139670	3452.2	
5	Herato1411	5829303	5829391	2829.4	
6	Herato1505	2503334	2503860	2699.0	cortex
7	Herato1001	4674256	4674542	2362.7	WntA
8	Herato1904	325896	326010	1973.0	
9	Herato1708	339041	339341	1817.5	
10	Herato1005	908198	908330	1785.6	
11	Herato1805	1019516	1019641	1744.5	
12	Herato0310	8188969	8188997	1587.2	
13	Herato0206	537017	537495	1580.7	Taste receptor
14	Herato1108	5033276	5033409	1528.4	
15	Herato0204	454067	454293	1397.8	Chr2 inversion
16	Herato0701	5854241	5854327	1343.2	
17	Herato2101	870019	870184	1336.0	
18	Herato1807	1708149	1708271	1281.1	
19	Herato1007	50780	50844	1244.5	
20	Herato0606	8021793	8021826	1204.3	
H. e. lativitta, ω					
1	Herato1003	1040018	1040285	3022.6	
2	Herato2101	15799095	15799327	3022.1	
3	Herato1701	9389072	9389597	2633.3	
4	Herato0601	161075	161287	2117.1	
5	Herato1108	2531390	2531499	2116.6	
6	Herato0215	2311254	2311353	2066.5	
7	Herato1202	12880941	12881215	1929.5	
8	Herato0606	4570928	4571083	1864.1	
9	Herato1301	9903737	9903883	1513.8	
10	Herato0701	15271229	15271267	1451.6	
11	Herato1908	1150364	1150752	1436.2	
12	Herato0609	1403482	1403636	1416.1	
13	Herato0101	5372303	5372329	1388.7	
14	Herato2001	1896087	1896128	1252.7	
15	Herato1007	5579873	5580179	1121.9	
16	Herato1904	1936141	1936204	1117.4	
17	Herato1910	116041	1116286	1111.0	
18	Herato0501	365815	366044	1102.5	
19	Herato0901	11459293	11459394	1054.6	
20	Herato1805	3911307	3911329	976.1	

H. e. notabilis, SweeD

Rank	Chrom	Window	CLR	Alpha	Remarks
1	Herato1301	14340000	406.9	5.50E-05	Ro
2	Herato1801	1410000	380.9	$2.99 \mathrm{E}-05$	optix
3	Herato1505	2100000	330.1	7.69E-05	cortex
4	Herato0601	1900000	218.3	1.93E-04	
5	Herato0209	210000	196.0	1.12E-04	
6	Herato1005	4020000	153.7	$1.84 \mathrm{E}-04$	
7	Herato2101	6570000	144.9	1.59E-04	
8	Herato0701	4370000	133.0	2.20E-04	
9	Herato1001	4630000	129.1	1.63E-04	WntA
10	Herato1904	6270000	91.1	$3.70 \mathrm{E}-04$	
11	Herato1801	3980000	88.4	6.82E-04	
12	Herato0503	260000	69.6	5.19E-04	
13	Herato0503	7440000	69.4	$1.24 \mathrm{E}-03$	
14	Herato1202	12050000	67.4	$3.94 \mathrm{E}-04$	
15	Herato0310	8970000	64.7	9.03E-04	
16	Herato0801	4100000	64.4	2.57E-04	
17	Herato0411	1830000	62.7	4.97E-04	
18	Herato1003	1120000	58.3	$1.07 \mathrm{E}-03$	
19	Herato1411	1730000	52.2	$4.74 \mathrm{E}-04$	
20	Herato1202	5640000	51.7	8.08E-04	
H. e. lativitta, SweeD					
1	Herato1505	2470000	208.6	4.41E-05	Cortex
2	Herato2101	6570000	199.5	$1.61 \mathrm{E}-04$	
3	Herato1701	9370000	166.8	2.22E-04	
4	Herato1007	2910000	165.9	$1.79 \mathrm{E}-04$	
5	Herato1001	5460000	161.9	1.57E-04	WntA
6	Herato2101	800000	123.0	2.80E-04	
7	Herato0701	4370000	114.0	2.53E-04	
8	Herato1202	12050000	95.0	3.88E-04	
9	Herato0801	6590000	87.3	8.30E-04	
10	Herato1301	10160000	79.7	3.91E-04	
11	Herato0206	480000	76.8	4.53E-04	
12	Herato0503	2090000	70.3	2.65E-04	
13	Herato1411	6410000	64.0	4.32E-04	
14	Herato0310	8970000	60.3	$1.08 \mathrm{E}-03$	
15	Herato2101	13530000	58.7	4.71E-04	
16	Herato1108	4550000	53.6	5.39E-04	
17	Herato0411	1830000	53.1	5.27E-04	
18	Herato1708	2250000	52.4	$6.44 \mathrm{E}-04$	
19	Herato2001	10610000	51.6	8.00E-04	
20	Herato1801	1370000	51.5	$2.38 \mathrm{E}-04$	optix

H. e. notabilis, liHSI				
Rank	Chrom	Window	norm. iHS	Remarks
1	Herato1505	2480000	0.973684	Cortex
2	Herato1801	580000	0.969136	optix
3	Herato1910	5240000	0.968354	
4	Herato1411	1690000	0.909871	
5	Herato0101	15690000	0.880478	
6	Herato0206	510000	0.878412	
7	Herato0701	11640000	0.873118	
8	Herato2101	10210000	0.862319	
9	Herato1003	1080000	0.847291	
10	Herato1605	2980000	0.847222	
11	Herato1301	14820000	0.814126	Ro
12	Herato1904	6790000	0.803957	
13	Herato1701	9400000	0.790614	
14	Herato0701	18890000	0.788095	
15	Herato1708	1970000	0.785714	
16	Herato1905	140000	0.75	
17	Herato0209	150000	0.72549	
18	Herato2101	11560000	0.70297	
19	Herato1904	2830000	0.689482	
20	Herato1002	110000	0.687386	
H. e. lativitta, liHSI				
1	Herato1505	2480000	0.969697	Cortex
2	Herato0206	510000	0.930591	
3	Herato1805	3220000	0.819767	
4	Herato0701	3790000	0.792982	
5	Herato1701	9400000	0.786477	
6	Herato1605	2980000	0.77381	
7	Herato1003	1030000	0.762443	
8	Herato1005	4020000	0.680488	
9	Herato2101	6610000	0.675	
10	Herato1007	2920000	0.668142	
11	Herato1708	1950000	0.666667	
12	Herato1901	2640000	0.631579	
13	Herato2101	9560000	0.616541	
14	Herato2101	800000	0.60217	
15	Herato1701	11420000	0.588816	
16	Herato2101	2610000	0.571429	
17	Herato1301	13020000	0.56314	
18	Herato0701	1240000	0.561497	
19	Herato1001	4650000	0.547672	optix
20	Herato0503	7570000	0.546816	

Table S9. Top loci based on ω, SweeD and iHS in H. erato.
The top 20 loci found across the genome for the various selection statistics. Windows that are within 10 kbp of scaffold boundaries are excluded to avoid edge artifact.

H. m. plesseni, ω					
Rank	Chrom	Start	End	$\omega_{\text {Max }}$	Remarks
1	Hmel2100010	3342425	3342590	3723.7	WntA
2	Hmel218003o	783780	784041	3723.2	optix
3	Hmel2090010	1025345	1025407	3719.6	
4	Hmel2120010	12834990	12835662	3719.6	
5	Hmel220003o	8951615	8951717	3719.2	
6	Hmel2170010	4641742	4641788	3718.7	
7	Hmel215003o	1551143	1551242	3717.0	cortex
8	Hmel2080010	5625952	5626052	3715.9	
9	Hmel2010010	12103949	12104458	3451.7	
10	Hmel2110010	4378073	4378573	3124.6	
11	Hmel2070010	3725393	3725456	3121.5	
12	Hmel2130010	2053637	2053722	2975.1	
13	Hmel2020010	4028410	4028800	2701.1	
14	Hmel203003o	3301855	3301931	2613.3	
15	Hmel2060010	11682020	11682247	2515.4	
16	Hmel2190010	16075252	16075617	2094.3	
17	Hmel2050010	9861849	9862146	1937.9	
18	Hmel216002o	4791484	4791708	1692.4	
19	Hmel214004o	8389306	8389455	1390.7	
20	Hmel2210010	5515125	5515215	1378.2	
H. m. malleti, ω					
1	Hmel2100010	11548093	11548334	3481.9	
2	Hmel2070010	8238419	8238700	3035.0	
3	Hmel2190010	12155812	12156047	3032.1	
4	Hmel2130010	302788	303293	3031.5	
5	Hmel2060010	5104806	5104982	2783.8	
6	Hmel215003o	7885379	7885404	2783.4	
7	Hmel2080010	4463888	4464081	2556.7	
8	Hmel2110010	4509794	4510695	2483.8	
9	Hmel2010010	12939641	12939872	2470.7	
10	Hmel220003o	9616953	9617222	2375.1	
11	Hmel218003o	811264	811463	2262.0	optix
12	Hmel2120010	6192598	6193015	2262.0	
13	Hmel2050010	6491516	6491749	2261.4	
14	Hmel214004o	439046	439088	2261.1	
15	Hmel2200010	43827	44282	2076.9	
16	Hmel2170010	11779651	11779804	1914.4	
17	Hmel2040010	2900029	2900271	1845.6	
18	Hmel216002o	3928738	3928823	1779.0	
19	Hmel203003o	7591363	7591454	1730.0	
20	Hmel2090010	2459661	2459696	1567.1	

H. m. plesseni, SweeD

Rank	Chrom	Window	CLR	Alpha	Remarks
1	Hmel2040010	2890000	433.36	5.75E-05	
2	Hmel2120010	12880000	418.13	2.97E-05	
3	Hmel215003o	1470000	411.35	$4.08 \mathrm{E}-05$	Cortex
4	Hmel2010010	17130000	381.6	$5.14 \mathrm{E}-05$	
5	Hmel2020010	3850000	374.52	$9.77 \mathrm{E}-05$	
6	Hmel2130010	20000	345.23	7.07E-05	
7	Hmel2100010	11750000	267.09	6.04E-05	
8	Hmel2070010	7670000	210	$1.14 \mathrm{E}-04$	
9	Hmel2110010	3830000	207.28	6.67E-05	
10	Hmel218003o	15250000	206.87	1.51E-04	
11	Hmel2080010	6190000	205.36	7.02E-05	
12	Hmel2190010	8760000	134.17	$1.71 \mathrm{E}-04$	
13	Hmel2170010	12170000	126.76	1.29E-04	
14	Hmel216002o	3300000	126.15	2.53E-04	
15	Hmel220003o	9800000	124.2	$1.40 \mathrm{E}-04$	
16	Hmel2120010	2870000	119.11	3.83E-04	
17	Hmel2060010	3700000	114.59	$4.76 \mathrm{E}-04$	
18	Hmel2090010	4030000	87.13	2.53E-04	
19	Hmel214004o	5960000	85.81	4.16E-04	
20	Hmel2030030	9460001	68.14	3.59E-04	
H. m. malleti, SweeD					
1	Hmel2100010	11750000	348.43	5.60E-05	
2	Hmel2040010	2890000	332.46	6.73E-05	
3	Hmel2170010	5790000	281.7	7.48E-05	
4	Hmel2020010	3850000	271.03	1.11E-04	
5	Hmel218003o	15830000	262.91	8.09E-05	
6	Hmel2080010	6180000	241.13	$9.66 \mathrm{E}-05$	
7	Hmel2130010	7140000	234.26	$4.54 \mathrm{E}-05$	
8	Hmel2010010	8780000	219.35	$6.14 \mathrm{E}-05$	
9	Hmel2120010	13270000	215.57	1.61E-04	
10	Hmel220003o	2650000	204.56	6.10E-05	
11	Hmel2070010	8210000	195.55	$1.47 \mathrm{E}-04$	
12	Hmel2060010	8010000	193.65	4.22E-05	
13	Hmel215003o	2070000	173.58	1.50E-04	
14	Hmel2030030	1660000	162.25	$2.91 \mathrm{E}-04$	
15	Hmel214004o	1850000	161.15	1.40E-04	
16	Hmel216002o	830000	158.72	$9.71 \mathrm{E}-05$	
17	Hmel2110010	5830000	148.92	1.52E-04	
18	Hmel2190010	3950000	111.69	$1.75 \mathrm{E}-04$	
19	Hmel2090010	4070000	103.25	2.35E-04	
20	Hmel216002o	3300001	100.97	$2.86 \mathrm{E}-04$	

H. m. plesseni, liHSI

Rank	Chrom	Window	norm. iHS	Remarks
1	Hmel218003o	1230000	1	optix
2	Hmel218003o	15130000	0.942761	
3	Hmel215003o	1250000	0.889474	Cortex
4	Hmel2130010	10320000	0.835897	vvl
5	Hmel218003o	5380000	0.798742	
6	Hmel2010010	11860000	0.786517	
7	Hmel2100010	260000	0.762712	
8	Hmel220003o	11850000	0.752604	
9	Hmel2060010	8020000	0.725664	
10	Hmel2010010	10450000	0.713235	
11	Hmel218003o	2650000	0.6875	
12	Hmel2110010	5520000	0.629108	
13	Hmel2100010	3370000	0.627273	WntA
14	Hmel2120010	12790000	0.597315	
15	Hmel2060010	11040000	0.593023	
16	Hmel2100010	16130000	0.584	
17	Hmel220003o	5430000	0.56962	
18	Hmel203003o	6080000	0.564103	
19	Hmel2100010	10400000	0.53125	
20	Hmel2190010	11560000	0.503311	
H. m. malleti, liHSI				
1	Hmel218003o	15110000	0.997135	
2	Hmel2020010	1820000	0.918728	
3	Hmel220003o	4860000	0.813253	
4	Hmel2060010	8030000	0.79798	
5	Hmel2130010	15760000	0.785408	
6	Hmel2010010	12540000	0.77193	
7	Hmel2070010	9050000	0.712329	
8	Hmel2120010	16140000	0.688259	
9	Hmel2120010	10600000	0.657778	
10	Hmel2010010	10450000	0.61324	
11	Hmel2010010	8590000	0.595745	
12	Hmel2080010	6190000	0.578947	
13	Hmel2060010	13110000	0.564453	
14	Hmel2170010	5790000	0.551913	
15	Hmel2050010	4460000	0.550926	
16	Hmel220003o	12100000	0.545455	
17	Hmel2060010	11050000	0.526042	
18	Hmel2120010	6280000	0.507653	
19	Hmel218002o	140000	0.507463	

Table S10. Top loci based on ω, sweeD and iHS in H. melpomene.

The top 20 loci found across the genome for the various selection statistics (only 19 loci rise above the threshold value of 0.5 in the case of iHS in H . m. malleti).
Windows that are within 10 kbp of scaffold boundaries are excluded to avoid edge artifact.

Species	Locus	Centre (SL)		Width (SL) in km	
		Phenotype	Genotype	Phenotype	Genotype
H. erato	optix	$\begin{gathered} 30.80 \text { (28.3- } \\ 33.1) \end{gathered}$	$\begin{gathered} 31.87 \\ (29.3-34.3) \end{gathered}$	$\begin{gathered} 15.59 \text { (9.7- } \\ 23.3) \end{gathered}$	$\begin{gathered} 15.70 \\ (8.7-25.0) \end{gathered}$
	WntA	$\begin{gathered} 46.29(41.8- \\ 51.5) \end{gathered}$	$\begin{gathered} 47.15(43.0- \\ 51.7) \end{gathered}$	$\begin{gathered} 20.93 \text { (6.8- } \\ 37.8) \end{gathered}$	$\begin{gathered} 18.95 \text { (6.5- } \\ 34.5) \end{gathered}$
	Ro	$\begin{gathered} 52.43(44.9- \\ 59.2) \end{gathered}$	$\begin{gathered} 52.71(46.2- \\ 58.8) \end{gathered}$	$\begin{gathered} 39.43 \\ (23.0-55.9) \end{gathered}$	$\begin{gathered} 39.72 \text { (24.7- } \\ 55.5) \end{gathered}$
	$\begin{gathered} \text { LG2 } \\ \operatorname{Inv} \end{gathered}$	n.a.	$\begin{gathered} 46.63(41.24 \\ -53.43) \end{gathered}$	n.a.	$\begin{gathered} 53.44(24.67 \\ -102.63) \end{gathered}$
H. melpomene	optix	$\begin{gathered} 28.55(25.1- \\ 31.2) \end{gathered}$	$\begin{gathered} 28.91 \text { (25.6- } \\ 31.4) \end{gathered}$	$\begin{gathered} 15.85 \\ (10.6-22.4) \end{gathered}$	$\begin{gathered} 15.12 \text { (9.7- } \\ 22.1) \end{gathered}$
	WntA	$\begin{gathered} 49.38(46.0- \\ 52.8) \end{gathered}$	$\begin{gathered} 49.78 \text { (45.7- } \\ 54.4) \end{gathered}$	$\begin{gathered} 23.59 \\ (15.4-32.5) \end{gathered}$	$\begin{gathered} 24.82 \text { (15.0 } \\ 35.9) \end{gathered}$
	N	$\begin{gathered} 31.37 \text { (28.2- } \\ 34.2) \end{gathered}$	$\begin{gathered} 31.15(27.0- \\ 35.1) \end{gathered}$	$\begin{gathered} 15.76(8.4- \\ 25.7) \end{gathered}$	$\begin{gathered} 22.79(12.0- \\ 35.8) \end{gathered}$

Table S11. Cline analysis at five different loci.
Maximum likelihood estimates of cline centre and width, with two log-likelihood support limits (SL), for the allele frequency and phenotypic clines of the major color pattern loci and the polymorphic inversion.

Chr	Scaffold	Position	Best model	$\begin{aligned} & \text { Cen } \\ & \text { (km) } \end{aligned}$	Width (km)	F_{ST} (site)	$F_{\text {st }}$ (win)	HMM state	Description
1	Herato0101	7538046	IV	29.3	0.5	0.55	0.08	1	no peak
1	Herato0101	12588853	IV	10.5	5.4	0.51	0.07	1	no peak
10	Herato1001	4673183	I	51.4	29.3	1	0.65	2	WntA
12	Herato1202	10753259	III	27.2	12.2	0.51	0.06	1	no peak
15	Herato1505	2096799	I	32.7	29.7	0.78	0.45	2	cortex
15	Herato1507	3016730	IV	10.2	0.9	0.5	0.05	1	no peak
17	Herato1701	1663642	IV	27.7	19	0.52	0.12	1	no peak
18	Herato1801	387738	IV	10.3	2.7	0.54	0.08	1	no peak
18	Herato1801	632087	III	24.5	30	0.81	0.23	2	optix
18	Herato1801	892383	IV	24.8	24.5	0.77	0.18	2	optix
18	Herato1801	958379	I	26.5	28	0.92	0.36	2	optix
18	Herato1801	1055518	IV	18.2	29.6	0.82	0.25	2	optix
18	Herato1801	1182167	IV	28	18.1	0.99	0.56	2	optix
18	Herato1801	1261271	III	29.1	17.1	1	0.75	2	optix
18	Herato1801	1389883	1	29.5	15.4	1	0.94	2	optix
18	Herato1801	1419325	1	28.5	16	1	0.9	2	optix
18	Herato1801	1586723	IV	23.2	26.8	0.85	0.32	2	optix
18	Herato1805	4375044	III	9.6	7	0.54	0.08	1	no peak
19	Herato1901	2003842	III	26.6	11.1	0.59	0.08	1	no peak
19	Herato1904	2840926	III	30.4	21.9	0.84	0.32	2	small peak
20	Herato2001	3935391	IV	12.4	5.3	0.51	0.04	1	no peak
20	Herato2001	10912020	III	29.5	4.5	0.55	0.06	1	no peak

20	Herato2001	15219605	III	26.8	5.8	0.71	0.3	2	small peak
21	Herato2101	1007837	IV	6.9	29.7	0.5	0.04	1	no peak
21	Herato2101	8501906	IV	10.3	7.1	0.52	0.06	1	no peak

Table S12. Loci with narrow clines in H. erato.

Chr
Best model
Chromosome
Best model I: fixed maximum and minimum allele frequencies, no exponential tails
III: fixed maximum and minimum allele frequencies; two exponential tails mirrored about the cline centre
IV: estimated maximum and minimum allele frequencies, no exponential tails
Cen
Centre
HMM state: 1: background; 2: high differentiation

Chr	Scaffold	Position	Best model	Cen (km)	Width (km)		F_{st} (site)	Fst (win)	HMM state	Description
1	Hmel2010010	11097620	IV	14.9	9.2	0.51		0.07	1	no peak
2	Hmel2020010	2274430	IV	8.7	7.7	0.44		0.1	1	tiny peak
4	Hmel2040010	4135399	IV	11.1	27.6	0.51		0.06	1	no peak
7	Hmel2070010	1573526	IV	10.5	14.1	0.4		0.05	1	no peak
9	Hmel2090010	8354789	IV	13.7	2.8	0.45		0.02	1	no peak
10	Hmel2100010	1872141	IV	16.9	13.1	0.44		0.04	1	no peak
10	Hmel2100010	1922772	IV	56.5	7.3	0.41		0.03	1	no peak
10	Hmel2100010	3321549	1	46.3	24.7	1		0.88	2	WntA
11	Hmel2110010	8781462	IV	17.1	7.6	0.44		0.02	1	no peak
11	Hmel2110010	9047961	IV	11.5	4.4	0.4		0.03	1	no peak
11	Hmel2110010	9912550	IV	11.8	13.2	0.45		0.04	1	no peak
11	Hmel2110010	10070575	IV	12.4	2.9	0.43		0.03	1	no peak
13	Hmel2130010	10126057	IV	34.4	14.9	0.65		0.17	2	vvl
13	Hmel2130010	10562270	IV	16.4	7.2	0.41		0.04	1	vvl
14	Hmel214004o	1337697	IV	32.8	17.1	0.58		0.12	1	no peak
14	Hmel214004o	1537776	IV	8.2	15.1	0.4		0.03	1	no peak
16	Hmel216002o	1173257	IV	20.7	23.1	0.54		0.03	1	no peak
16	Hmel216002o	5376532	IV	8.9	12.8	0.46		0.03	1	no peak
17	Hmel2170010	10244627	IV	13.6	10.4	0.42		0.04	1	no peak
18	Hmel218003o	781492	IV	31.7	14.2	1		0.08	1	optix
18	Hmel218003o	812325	1	31.5	17.7	1		0.52	2	optix
18	Hmel218003o	923741	IV	31.3	14.5	0.94		0.8	2	optix
18	Hmel218003o	1028407	III	29.6	12.7	0.77		0.93	2	optix
18	Hmel218003o	2661551	IV	30.9	16.9	1		0.3	2	second big peak

18	Hmel218003o	9311544	IV	16.0	0.5	0.41	0.03	1	no peak
18	Hmel218003o	13038669	IV	13.4	3.7	0.47	0.03	1	no peak
19	Hmel2190010	5975768	IV	8.4	7.4	0.41	0.08	1	no peak
21	Hmel2210010	1140770	IV	18.8	0.5	0.44	0.04	1	no peak
21	Hmel2210010	1271592	IV	29.3	0.1	0.46	0.03	1	no peak
21	Hmel221001o	4674519	IV	12.3	13.2	0.41	0.06	1	no peak
21	Hmel2210010	7581777	IV	10.4	6.8	0.42	0.3	2	tiny peak

Table S13. Loci with narrow clines in H. melpomene.

Chr
Best model

Chromosome

I: fixed maximum and minimum allele frequencies, no exponential tails
III: fixed maximum and minimum allele frequencies; two exponential tails mirrored about the cline centre IV: estimated maximum and minimum allele frequencies, no exponential tails
Cen Centre
HMM state: 1: background; 2: high differentiation

H. erato	H. melpomene						
Locus	\mathbf{n}	$\widehat{\boldsymbol{F}}_{\text {IS }}$	$\boldsymbol{\Delta L o g (L)}$	Locus	\mathbf{n}	$\widehat{\boldsymbol{F}}_{\text {IS }}$	$\Delta \log (L)$
WntA	11	0.058	0.15	WntA	16	0.045	0.1
Ro	14	0.006	0	Homologue of Ro	14	0.006	0
cortex	17	0.281	3.54	cortex	14	0.314	4.65
optix	9	0	0	optix	14	0	0

Table S14. Maximum likelihood estimates for heterozygote deficit, $\widehat{F}_{I S}$.
Fitting the same value for all polymorphic samples. There is no significant deviation, except at cortex, in both species. Assuming an asymptotic χ_{1}^{2} distribution for $2 \Delta \log (\mathrm{~L})$, this corresponds to $P=0.78 \%, 0.23 \%$ in erato and in melpomene.

Species	Type	Cline pairs	$\widehat{\boldsymbol{R}}$	$\boldsymbol{\Delta L o g}(L)$	limits
H. erato	coincident	2	-0.025	0.21	$-0.099-0.054$
	displaced	4	-0.016	0.16	$-0.075-0.049$
H. melpomene	coincident	3	0.042	0.28	$-0.068-0.154$
	displaced	3	0.007	0.01	$-0.083-0.098$

Table S15. Maximum likelihood estimates for the correlation between loci ($R=$ $D / \sqrt{p_{1} q_{1} p_{2} q_{2}}$), together with the difference in log(likelihood) relative to $R=0$.

The support limits correspond to a drop in log(likelihood) by 2 units, asymptotically equivalent to 95% confidence limits. Including all polymorphic populations. Including only the highly polymorphic samples $\left(\sqrt{p_{1} q_{1} p_{2} q_{2}}>0.1\right)$ makes little difference.

H. erato
 H. melpomene

	WntA	Ro	cortex	optix	WntA	vvl	cortex	optix
width	29.9	47.8	38.0	17.0	32.4	36.8	31.3	14.9
position	47.3	55.7	26.2	28.2	43.5	34.8	30.3	29.8
dominance	+4.38	+0.40	+6.13	-9.28	+2.28	-3.09	-4.56	+4.13

Table S16. Testing for asymmetry of single-locus clines.
Linear frequency dependence, with no dominance, maintains a symmetric cline, whereas linear positive frequency dependence, with full dominance of the lowland alleles, maintains asymmetric clines, with introgression into the lowland population. The table shows the estimated position and width for each locus, in each species, for the best-fitting model. The last row shows the difference in log likelihood between the best-fitting asymmetric vs. symmetric models; a positive value favors asymmetry, and a value greater than 2 conventionally indicates significance. None of the bestfitting models gave evidence for residual variation (i.e., we estimate $F_{S T}=0$). Likelihoods are calculated using a beta-binomial model. Note that $R o$ in H. melpomene refers to the homologous locus vvl .

Supplementary References

56. J. M. Zook, D. Catoe, J. McDaniel, L. Vang, et al., Extensive sequencing of seven human genomes to characterize benchmark reference materials, Sci Data 3, 160025 (2016).
57. S. Picelli, A. K. Björklund, B. Reinius, S. Sagasser, et al., Tn5 transposase and tagmentation procedures for massively scaled sequencing projects, Genome Res 24, 2033-40 (2014).
58. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics 26, 589-95 (2010).
59. H. Li, B. Handsaker, A. Wysoker, T. Fennell, et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics 25, 2078-9 (2009).
60. T. M. Keane, L. Goodstadt, P. Danecek, M. A. White, et al., Mouse genomic variation and its effect on phenotypes and gene regulation, Nature 477, 289-94 (2011).
61. G. Seutin, B. N. White, P. T. Boag, Preservation of avian blood and tissue samples for DNA analyses, Can J Zool 69, 82-90 (1991).
62. K. K. Dasmahapatra, A. Silva-Vásquez, J. -W. Chung, J. Mallet, Genetic analysis of a wild-caught hybrid between non-sister Heliconius butterfly species, Biol Lett 3, 660-3 (2007).
63. J. Meisner, A. Albrechtsen, Inferring population structure and admixture proportions in low-depth NGS Data, Genetics 210, 719-31 (2018).
64. http://samtools.github.io/bcftools/call-m.pdf Accessed: August 5, 2016.
65. L. Skotte, T. S. Korneliussen, A. Albrechtsen, Estimating individual admixture proportions from next generation sequencing data, Genetics 195, 693-702 (2013).
66. T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: analysis of next generation sequencing data, BMC Bioinformatics 15, 356 (2014).
67. G. Evanno, S. Regnaut, J. Goudet, Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol Ecol 14, 261120 (2005).
68. N. M. Kopelman, J. Mayzel, M. Jakobsson, N. A. Rosenberg, I. Mayrose, Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol Ecol Resour 15, 1179-91 (2015).
69. J. Reynolds, B. S. Weir, C. C. Cockerham, Estimation of the coancestry coefficient: basis for a short-term genetic distance, Genetics 105, 767-79 (1983).
70. T. Hofer, M. Foll, L. Excoffier, Evolutionary forces shaping genomic islands of population differentiation in humans, BMC Genomics 13, 107 (2012).
71. D. A. Marques, K. Lucek, J. I. Meier, S. Mwaiko, et al., Genomics of rapid incipient speciation in sympatric threespine stickleback, PLoS Genet 12, e1005887 (2016).
72. J. I. Meier, D. A. Marques, C. E. Wagner, L. Excoffier, O. Seehausen, Genomics of parallel ecological speciation in Lake Victoria cichlids, Mol Biol Evol 35, 1489-506 (2018).
73. L. E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann Math Stat 41, 164-71 (1970).
74. A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE T Inform Theory 13, 260-9 (1967).
75. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, et al., The variant call format and VCFtools, Bioinformatics 27, 2156-8 (2011).
76. Z. A. Szpiech, R. D. Hernandez, selscan: an efficient multithreaded program to perform EHH-based scans for positive selection, Mol Biol Evol 31, 2824-7 (2014).
77. N. Alachiotis, A. Stamatakis, P. Pavlidis, OmegaPlus: a scalable tool for rapid detection of selective sweeps in whole-genome datasets, Bioinformatics 28, 2274-5 (2012).
78. R. Nielsen, S. Williamson, Y. Kim, M. J. Hubisz, et al., Genomic scans for selective sweeps using SNP data, Genome Res 15, 1566-75 (2005).
79. A. S. Hinrichs, D. Karolchik, R. Baertsch, G. P. Barber, et al., The UCSC genome browser database: update 2006, Nucleic Acids Res 34, D590-8 (2006).
80. G. Bhatia, N. Patterson, S. Sankararaman, A. L. Price, Estimating and interpreting FST: the impact of rare variants, Genome Res 23, 1514-21 (2013). 81. L. Skotte, T. S. Korneliussen, A. Albrechtsen, Association testing for nextgeneration sequencing data using score statistics, Genet Epidemiol 36, 430-7 (2012).
81. G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res 27, 573-80 (1999).
82. R. S. Harris, Improved Pairwise Alignment of Genomic DNA, Thesis (2007).
83. N. A. Baird, P. D. Etter, T. S. Atwood, M. C. Currey, et al., Rapid SNP discovery and genetic mapping using sequenced RAD markers, PLoS One 3, e3376 (2008). 85. J. Hanly, Developmental basis of wing pattern diversity in Heliconius butterflies, Thesis (2017).
84. E. P. Derryberry, G. E. Derryberry, J. M. Maley, R. T. Brumfield, HZAR: hybrid zone analysis using an R software package, Mol Ecol Resour 14, 652-63 (2014). 87. Z. Chen, L. Pham, T. -C. Wu, G. Mo, et al., Ultra-low input single tube linkedread library method enables short-read NGS systems to generate highly accurate and economical long-range sequencing information for de novo genome assembly and haplotype phasing, bioRxiv, 852947 (2019).
85. D. Redin, E. Borgström, M. He, H. Aghelpasand, et al., Droplet barcode sequencing for targeted linked-read haplotyping of single DNA molecules, Nucleic Acids Res 45, e125 (2017).
