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Abstract 

Proper cell fate determination is largely orchestrated by complex gene regulatory networks centered around transcription factors. 

However, experimental elucidation of key transcription factors that drive cellular identity is often intractable. Here, we present 

ANANSE (ANalysis Algorithm for Networks Specified by Enhancers), a network-based method that exploits enhancer-encoded 

regulatory information to identify the key transcription factors in cell fate determination. As cell type-specific transcription factors 

predominantly bind to enhancers, we use regulatory networks based on enhancer properties to prioritize transcription factors. First, 

we predict genome-wide binding profiles of transcription factors in various cell types using enhancer activity and transcription 

factor binding motifs. Subsequently, applying these inferred binding profiles, we construct cell type-specific gene regulatory 

networks, and then predict key transcription factors controlling cell fate conversions using differential gene networks between cell 

types. Compared to other existing methods, ANANSE correctly predicts the highest number of transcription factors experimentally 

demonstrated to be sufficient for trans-differentiation. Finally, we apply ANANSE to define an atlas of key transcription factors in 

18 normal human tissues. In conclusion, we present a ready-to-implement computational tool for efficient prediction of transcription 

factors in cell fate determination and to study transcription factor-mediated regulatory mechanisms. ANANSE is freely available at 

https://github.com/vanheeringen-lab/ANANSE. 
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Introduction 

Every multicellular organism develops from a single cell. 

During this process, cells undergo division and differentiation, 

eventually forming a diversity of cell types that are organized 

into organs and tissues. How one cell develops into different 

cell types, a process known as cell fate determination, is critical 

during development. It has been shown that transcription 

factors (TFs) play key roles in cell fate determination (Davis et 

al., 1987; Jopling et al., 2011; Pang et al., 2011; Stadhouders et 

al., 2019; Takahashi et al., 2007; Vierbuchen et al., 2010). TFs 

bind to specific cis-regulatory sequences in the genome, 

including enhancers and promoters, and regulate expression of 

their target genes (Lambert et al., 2018; Vaquerizas et al., 

2009). The interactions between TFs and their downstream 

target genes form gene regulatory networks (GRNs), 

controlling a dynamic cascade of cellular information 

processing (Davidson, 2010; Tegner and Bjorkegren, 2007). 

Cell fate determination is orchestrated by a series of TF 

regulatory events, largely by complex GRNs (Wilkinson et al., 

2017). The key role of TFs and GRNs in cell fate determination 

is further corroborated by examples of cell fate conversions, 

often referred as cellular reprogramming (Iwafuchi-Doi and 

Zaret, 2016; Peñalosa-Ruiz et al., 2019). Cellular 

reprogramming includes generating induced pluripotent stem 

cells (iPSCs) from somatic cells, and trans-differentiation that 

converts one mature somatic cell type to another without 

undergoing an intermediate pluripotent state (Davis et al., 1987; 

Jopling et al., 2011; Pang et al., 2011; Stadhouders et al., 2019; 

Takahashi et al., 2007; Vierbuchen et al., 2010). These 

reprogramming processes are initiated by enforced expression 

of combinations of different key TFs, which is believed to alter 

the output of GRNs in the cell, namely gene expression and the 

epigenetic landscape (Buschbeck and Hake, 2017; Qu et al., 

2018; Reik et al., 2001).  

In the past, cellular reprogramming was often studied with 

experimental approaches by screening or testing individual 

genes or TFs based on the known function of these genes, which 

is labor-intensive and inefficient. Therefore, there is a need for 

better predictions of key TFs in cell fate determination that can 

instruct experimental cellular reprogramming approaches. 

Several computational methods for predicting key TFs in cell 

fate conversions have been reported. Many methods only 

consider GRNs based on gene expression levels and differences 

in gene expression between cell types, and identify candidate 

key TFs with high expression in the target cell types (Cahan et 
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al., 2014; D’Alessio et al., 2015; Hartmann et al., 2018; 

Heinaniemi et al., 2013; Lang et al., 2014; Morris et al., 2014; 

Roost et al., 2015). Mogrify uses not only gene expression but 

also GRNs constructed based on TF binding motifs in 

promoters to predict TFs that are capable of inducing 

conversions between cell types (Rackham et al., 2016). 

Although these methods can perform reasonably well and 

prioritize a short list of predicted key TFs for some cell fate 

conversions, e.g. SOX2 during fibroblasts to iPSCs, the current 

computational tools do not take enhancers into consideration. It 

has been well established that TFs that control tissue- and cell 

type-specific gene expression in cell fate determination and 

development often bind to enhancers (Andersson et al., 2014; 

Bulger and Groudine, 2011; Qu et al., 2018; Spitz and Furlong, 

2012). Binding of tissue- and cell type-specific TFs largely to 

enhancers is also confirmed by a large number of genome-wide 

chromatin immunoprecipitation followed by sequencing 

analyses (ChIP-seq) (Davis et al., 2018; Valouev et al., 2008), 

e.g. TP63 in keratinocytes and ZIC2 in embryonic stem cells 

(Luo et al., 2015; Qu et al., 2018). Therefore, a computational 

method that uses enhancer properties and enhancer-based 

GRNs may improve the prediction of key TFs for cell fate 

determination. Furthermore, most current computational tools 

require comprehensive training or background data, such as 

cell/tissue expression data or pre-constructed networks. These 

datasets and the computational algorithms are not always 

publicly accessible, which prevents the general usage of these 

methods in studying transcriptional regulation or designing new 

trans-differentiation strategies. 

In this study, we established an enhancer GRN-based method, 

ANalysis Algorithm for Networks Specified by Enhancers 

(ANANSE), that infers genome-wide regulatory programs and 

identifies key TFs for cell fate determination. First, we 

systematically analyzed the peaks of all available human TF 

ChIP-seq experiments (Chèneby et al., 2017), confirming that 

most cell type- and tissue-specific TFs predominantly bind to 

enhancers. We then predicted cell type-specific TF binding 

profiles with a model based on activities and sequence features 

of enhancers. Second, combining TF binding profiles and gene 

expression data, we built cell type-specific enhancer GRNs in 

each cell type or tissue. We used reference GRNs based on gene 

expression, Gene Ontology terms and TF-target gene 

interactions to evaluate the quality of our inferred networks. 

Third, we predicted the key TFs underlying cell fate 

conversions based on a differential network analysis. Compared 

with other reported prediction algorithms, ANANSE recovers 

the largest fraction of TFs that were validated by 

experimental trans-differentiation approaches. The results 

demonstrate that ANANSE accurately prioritizes TFs that drive 

cellular fate changes. Finally, to demonstrate the wide utility of 

ANANSE, we applied it to 18 human tissues and generated an 

atlas of key TFs underlying human tissue identity.  

Figure 1. Tissue-specific TFs predominantly bind to enhancers. (A) Genomic location analysis of binding sites of 296 human TFs. 
The human genome was split into several categories: Promoter (<=1kb), Promoter (1-2kb), 5' UTR, and 1st Exon, Other Exons, 1st 
Intron, Other Introns, and Intergenic; these categories were further grouped into a promoter-proximal class (Promoter (<=1kb), 
Promoter (1-2kb), 5' UTR, and 1st Exon) and an enhancer class (Other Exons, 1st Intron, Other Introns, and Intergenic). The 
percentage of binding sites of each TF in different categories was calculated, and indicated with different colors. TFs were ordered by 
the percentage of binding sites within the promoter-proximal class. Several example TFs are marked at the bottom of the figure. (B) 
The percentage of TF binding sites in the enhancer class. 77.5% of TFs have 50% of its binding sites in the enhancer class of the 
genome. (C) Gene Set Enrichment Analysis (GSEA) on tissue-specific TFs and their enhancer binding. The red bars mark the tissue-
specific TFs. The order of TFs is consistent with (A). Grey bars represent TFs that do not show tissue-specific gene expression. The 
GSEA enrichment score is represented by the green line (padj: 0.0002). 
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Results 

Cell type-specific transcription factors predominantly bind to 

enhancers 

To systematically examine TF binding patterns in the genome 

in relation to cell type specificity, we analyzed all available 

human TF binding sites in various cell types and tissues. We 

downloaded the binding sites of 296 TFs from the ReMap 

project that re-analyzed publicly available ChIP-seq data 

(Chèneby et al., 2017). To determine the genomic distribution 

of these binding sites, we divided the genome into different 

genomic categories according to human UCSC known gene 

annotation (Hsu et al., 2006), and assigned binding sites to these 

categories based on the locations of the binding sites (Figure 

1A). We grouped these categories into two main classes: 1) a 

promoter-proximal class, containing promoter (<=2kb), 5' UTR 

and 1st exon peaks, and 2) an enhancer class, containing all 

exons except the first, the 1st intron, other introns and 

intergenic categories. The percentage of TF binding sites in 

each genomic category was calculated, and TFs were ordered 

according to their percentages in the promoter-proximal class 

(Figure 1A) (Supplementary Table S4). We found that different 

TFs have a binding preference in either the promoter range or 

in the enhancer range (Figure 1A). However, the majority of 

TFs (77.5%) mainly bind in cis-regulatory regions that are 

distal from the promoter (Figure 1B). While these binding sites 

are not necessarily all functional, we will refer to them as 

enhancers.  

To further dissect the binding pattern of cell type- or tissue-

specific TFs, we performed Gene Set Enrichment Analysis 

(GSEA) (Sergushichev, 2016) on TF expression in different 

tissues. We defined tissue-specific TFs based upon their 

expression levels in human tissues from the Human Protein 

Atlas (Uhlén et al., 2015) (Figure 1C). GSEA showed that TFs 

mostly binding to enhancers are indeed enriched for tissue-

specific expression (adjusted p value = 2.0e-4) (Figure 1C) 

(Supplementary Table S4). For example, SOX10 is a critical TF 

during neural crest and peripheral nervous system development 

(Kim et al., 2014), while TP63 is a master regulator in epithelial 

development (Soares et al., 2019). Both of these tissue-specific 

TFs showed a very high percentage of enhancer-binding, 93% 

for SOX10 and 82% for TP63 (Figure 1A).  

Taken together, our analysis of transcription binding sites 

revealed that most TFs, and specifically tissue-specific TFs, 

predominantly bind to enhancers that are not proximal to gene 

promoters. This demonstrates that it is essential to include the 

enhancer information in computational methods for predicting 

key TFs in cell fate determination.  

ANANSE: an enhancer network-based method to identify 

transcription factors in cell fate changes 

Starting from the premise that the majority of TFs 

predominantly bind to enhancer regions, we developed 

ANANSE, a network-based method that uses properties of 

enhancers and their GRNs to predict key TFs in cell fate 

determination. As trans-differentiation is an ideal model for 

studying cell fate conversions controlled by key TFs, we set out 

to use this model to validate our computational approach. In the 

following paragraphs a conceptual overview of ANANSE is 

provided. Subsequently we will validate each of the steps 

involved. 

First, we inferred cell type-specific TF binding profiles for each 

cell type. The input data of ANANSE consists of genome-wide 

measurements of enhancer activity (defined below), 

transcription factor motifs and expression data. We inferred the 

TF binding probability based on a supervised model that 

integrates the enhancer activity combined with TF motif scores.  

Second, we constructed cell type-specific GRNs based on the 

inferred TF binding probability and expression levels of 

predicted target genes (Figure 2B, 2C). The nodes in the 

network represent the TF or gene. The TF-gene interaction 

scores, represented by edges of the network, are calculated 

based on the predicted TF binding probability, the distance 

between the enhancer and the target gene, and expression of 

both TF and the target gene. By integrating these data, 

ANANSE determines the interaction score of each TF-gene 

pair.  

Third, we used the GRN that is differential between two cell 

types to calculate the TF 'influence' score (Cahan et al., 2014; 

Rackham et al., 2016) (Figure 2D, 2E). This score represents a 

measure of importance of a TF in explaining transcriptional 

differences between the two cell types (Figure 2D, 2E). In this 

step, the difference in gene regulatory interactions represented 

by TF-gene interaction scores between the source and the target 

cell types is calculated. 

The details of the algorithms are described in the following 

sections.  

Transcription factor binding can be predicted by the motif 

score in combination with the enhancer activity 

Sequence-specific TFs bind to their cognate DNA motifs in the 

genome and activate or repress their target genes. To infer the 

target genes of a TF, the genomic binding sites of this TF are 

informative. ChIP-seq has been broadly used to identify TF 

binding sites at genome-wide scale. However, it is unfeasible to 

perform ChIP-seq for every TF in all cell types, e.g. due to the 

availability and quality of the TF antibodies. Therefore, it 

would be highly beneficial to be able to predict binding sites of 

individual TFs in a given cell type. 

Here, we used a conceptually simple general logistic regression 

model to predict TF binding sites based on the TF motif z-score 

and the enhancer activity. In this model, we used EP300 ChIP-

seq peak summits as the enhancer location. The enhancer 

activity is based on the number of reads in regions centered at 

the enhancer summit. For each enhancer, we scanned for motifs 

in a 200bp region centered at the peak summit using 

GimmeMotifs (Bruse and Heeringen, 2018; van Heeringen and 

Veenstra, 2010) with a non-redundant database of 1,796 motifs 

(see Methods). The motif z-score was calculated by 

GimmeMotifs with the GC%-normalization option. The log-

odds score based on the positional frequency matrix is 

normalized by using the mean and standard deviation of scores 

of random genomic regions. These random regions are selected 

to have a similar GC% as the input sequence.  

To train and evaluate our model, we used data from the 

ENCODE-DREAM in vivo Transcription Factor Binding Site 

Prediction Challenge (https://www.synapse.org/ENCODE). 

The ChIP-seq data from this challenge has been consistently 

processed using the ENCODE pipelines (Davis et al., 2018). 
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We chose EP300 ChIP-seq data from five cell types (GM12878, 

hESC, HeLa-S3, HepG2 and K562) to represent enhancer 

activities in our method. ChIP-seq peaks of 30 TFs in these five 

cell types were used as the training data (Supplementary Table 

S5). We created a reference of putative enhancers by combining 

the peaks from all five ENCODE cell types. We examined the 

locations of the TF peaks by overlapping with the union of the 

EP300-bound enhancers of the five cell types, and only the 

subset of peaks that overlapped with these enhancer regions was 

kept for further analysis (see Methods for details). 

To test the prediction performance of our model, we established 

a leave-one-out cross-validation procedure. We excluded each 

TF in turn for testing, and trained the model on the remaining 

29 TFs. Using the trained model, we evaluated whether binding 

of the test TF was correctly predicted in the five cell types. We 

evaluated the performance of the model using the AUC (Area 

Under Curve) of the ROC (Receiver Operating Characteristic) 

(Supplementary Table S5). The median ROC AUC of all 30 

TFs was 0.85, which is significantly higher than expected by 

random chance (AUC = 0.5) (Figure 3A, Supplementary Figure 

S1). In addition, the regression model outperforms the baseline 

of motif z-score (Figure 3B, Supplementary Figure S1). 

Generally, ROC curves are appropriate when the observations 

are balanced between groups, however, they can be misleading 

in the case of unbalanced data (Saito and Rehmsmeier, 2015). 

Therefore, we calculated the PR AUC score for the binding 

prediction of all 30 TFs (Figure 3C) (Supplementary Table S5), 

which shows a similar pattern as the ROC AUC. The median 

PR AUC of the model (0.81) is significantly better than both 

the random situation (median 0.52) and the motif z-score alone 

(median 0.69).  

An example of binding site predictions of several TFs at the 

HNF4A locus in HepG2 cell line is shown in Figure 3D, which 

demonstrates that our method is able to predict most TF binding 

sites where strong enhancer signals are present. These analyses 

illustrated that we established a precise TF binding site 

prediction method.  

ANANSE predicts cell type-specific gene regulatory networks 

Using the inferred cell type-specific binding profiles, we sought 

to determine the interactions of TFs and their target gene (TF-

gene) to establish cell type-specific GRNs. To calculate the TF-

gene interaction score we first identified all enhancers for each 

gene. In our TF binding prediction model, we used EP300 

ChIP-seq as training data. Since EP300 ChIP-seq is not 

available for a wide variety of cell lines and tissues, we 

expanded the input data of our method. In this method, we used 

either EP300 ChIP-seq or ATAC-seq peak summits as the 

enhancer location. The enhancer activity is based on the number 

of reads in regions centered at the enhancer summit. For this, 

we used either 200 bp for narrow signals from ChIP-seq of 

Figure 2. An overview of the workflow of the ANANSE method. (A) Data types used by ANANSE. These data include motif score 
of all TFs, gene expression data (e.g. RNA-seq) and enhancer data that can be obtained by ATAC-seq, EP300 ChIP-seq or H3K27ac 
ChIP-seq from each cell type. The blue and orange peaks represent enhancers in two cell types. The four sequence logos represent 
the motifs of four TFs. The heatmap represents gene expression level in two different cell types. (B)The TF binding profiles predicted 
from the enhancer data and TF motif scores in each cell type. The two GRNs below show cell type-specific TF binding profiles in 
two cell types (source and target cell types). (C) The cell type-specific GRN predicted based on TF-Gene binding and TF/Gene 
expression. The two networks show cell type-specific GRNs in two cell types. The orange circle represents a TF or a gene, and the 
size of the circle indicates the target gene number of the corresponding TF. The blue arrow indicates regulation between two TFs, 
and the color intensity represents the relative strength of the predicted regulatory interaction. (D) The differential GRN between the 
two cell types. In this step, the interaction specific for the target cell type is kept constant, and if the interaction score of the target 
cell type is higher than that of the source cell type, the interaction score is further used. (E) The barplot shows the ranked influence 
score of all TFs calculated from the differential GRN. The influence score is calculated based on the gene expression score, the 
distance from the TF to the gene in the predicted network, and the interaction score between TF and gene. 
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EP300, or 2 kb for broader signals from ChIP-seq of H3K27ac. 

In the case of ATAC-seq data, the enhancer intensity is based 

on H3K27ac ChIP-seq, as we expect that H3K27ac signal better 

correlates with enhancer activity. However, in principle the 

method would also work with ATAC-seq signal.  

For each gene, we took all enhancers that are located at least 

1kb from the gene TSS and within a maximum distance of 100 

kb. Subsequently, the strength of a TF-gene interaction in the 

network was defined by the sum of the predicted TF binding 

strength in all identified enhancers of the target gene, weighted 

by the distance (Figure 4A). The distance weight was calculated 

from the linear genomic distance between the enhancer and the 

TSS of a gene, such that distal enhancers receive a low weight 

and nearby enhancers have a high weight (Wang et al., 2016) 

(Figure 4A). This model resulted in a TF-gene binding score, 

indicating the TF-target gene binding intensity for all 

combinations of TFs and target genes pairs. 

Based on the assumption that the interaction of every TF-gene 

pair in a specific cell type is proportional to their relative 

expression, we included the expression level of the TF and the 

target gene. We scaled the expression level of the TF and the 

target gene, initially expressed as transcripts per million (TPM), 

to a normalized expression of 0 to 1, with the lowest expression 

as 0 and highest as 1. Combining the TF-gene binding score and 

TF and target expression scores by taking the mean, we 

obtained a TF-gene interaction score that represents the 

predicted strength of the TF-gene regulation (Figure 4B). 

Together, all TF-gene interaction scores represent a cell type-

specific GRN. 

To evaluate the quality of the inferred GRNs, we used three 

different types of reference datasets: gene co-expression, Gene 

Ontology (GO) annotation (The Gene Ontology, 2019) and 

regulatory interaction databases containing known TF-target 

gene interactions.  

  

Figure 3. The performance of predicting TF binding sites using TF motif scores and enhancer activities. (A) Receiver-
operator characteristic (ROC) curves representing the performance evaluation of the regression model in predicting genome-wide 
binding for 29 TFs. The ROC AUC score was calculated using leave-one-out cross validation. Each gray line represents the 
prediction of one TF, based on the model trained on all other 28 TFs. The black line indicates the mean prediction performance of 
all 29 TFs. (B) The prediction performance of the regression model (blue) compared to the baseline of enhancer signal (orange), 
motif z-score (red), and random data (green). The boxplot shows the ROC AUC of 29 TFS. (C) The same data as in B), quantified 
using the PR AUC. (D). A UCSC Genome Browser screenshot of predicted TF binding sites (red bars) and ChIP-seq signals (black 
peaks) of 4 TFs (FOXA1, HNF4A, TEAD4, and YY1) in the HepG2 cell line at the HNF4A gene locus. The RNA-seq signals (black), 
ChIP-seq signals of EP300 (light blue) and H3K27ac (magenta) from ENCODE in the HepG2 cell line are shown for comparison. 
The barplot on the right shows the ROC (orange) and PR (blue) AUC of four TFs, with the same order of TFs shown in ChIP-seq 
signals on the left. 
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Figure 4. Establishment of cell type-specific enhancer gene regulatory networks. (A) A schematic overview of the calculation 
of TF-Gene binding score from the predicted binding intensity of TFs. The green rectangle represents one target gene and the 
orange line shows 100kb up- and downstream of the TSS of the corresponding gene, the range that is used to include enhancers 
for calculation. The dark blue triangles represent all predicted TF binding peaks within the 100kb range around the gene. The height 
of the shaded light blue area represents the weight calculated based on the linear genomic distance from TSS of the target gene to 
the enhancers. For example, the distance weight for the distance of 1kb from the TSS is 0, and for the distance of 100kb from the 
TSS is 5 (Wang et al., 2016). (B) A schematic overview of the calculation of the TF-Gene interaction score. The heatmaps on the 
left represent the TF-Gene binding score, TF expression level (TPM) and target gene expression level (TPM) of each TF-Gene 
regulatory pair. All three scores are scaled from 0 to 1, and the mean of three scores of each TF-Gene pair is defined as the 
interaction score (right heatmap) of the corresponding TF-Gene pair. (C) Evaluation of the predicted networks using different types 
of data: a gene ontology (GO) term co-regulatory network, a cell type-specific gene correlation network, and two TF-Gene regulatory 
networks based on interaction databases (regNetwork and TRRUST). The boxplots show the AUC of ROC for 8 different cell type. 
ROC AUC of the predicted networks is shown in blue; the random networks are indicated in green. (D) The same evaluation as in 
C), with the PR AUC shown as a boxplot. (E) Example network predicted for hepatocytes. The blue circles show the top 10 TFs in 
this cell type. The size of the circle indicates the target gene number of the corresponding TF. The black arrows indicate the 
interaction score between the two TFs. (F) Example network predicted for keratinocytes, visualized as in E). 
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We downloaded co-expression data for human genes from the 

COXPRESdb database (Obayashi et al., 2019). All TF-gene 

pairs with a correlation >= 0.6 were used as true positives. For 

the GO validation set, we used TF-gene pairs that were 

annotated with at least one common GO term as true positives. 

Finally, we used the TF-gene interactions from two databases 

of regulatory interactions, RegNetwork (Liu et al., 2015) and 

TRRUST (Han et al., 2017). RegNetwork is an integrated 

database of transcriptional and post-transcriptional regulatory 

networks in human and mouse, and TRRUST is an expanded 

reference database of human and mouse transcriptional 

regulatory interactions. 

We evaluated cell type-specific GRNs predicted by ANANSE 

in eight cell type: astrocyte, cardiomyocyte, fibroblast, 

hepatocyte, iPSC, keratinocyte, macrophage and osteocyte. As 

the previously described reference datasets contain regulatory 

interactions for all genes, regardless of cell type, we created 

high confidence cell type-specific reference data by filtering for 

TFs and genes that are expressed, using a stringent cutoff of 

TPM > 10. We first evaluated the model by calculating the area 

under the curve of the Receiver Operator using the different 

reference sets for the nine cell types (Figure 4C). The mean 

AUC ranges from 0.86 using the co-expression reference to 

0.89 using the TRRUST database while the median AUC of 

randomized networks is close to 0.5 (Figure 4C). Some of the 

reference databases contain very few interactions (the positives 

in this evaluation) as compared to all possible interactions 

(which determine the negatives). For instance, the fraction of 

positive interactions is 0.03% in TRRUST and RegNetwork. 

Therefore, we also evaluated the predicted networks using the 

Precision-Recall area under the curve (PR AUC) (Figure 4D). 

In absolute terms, the PR AUC is considerably lower than the 

ROC AUC, especially for the TRRUST and RegNetwork 

reference sets (median PR AUC of 0.0017 and 0.0014, 

respectively), but for all cell types there is a relatively large and 

statistically significant difference between the predicted GRN 

and the random network (TRRUST p-value = 0.006 and 

RegNetwork p-value = 0.006). We also repeated the evaluation 

with a lower cutoff TPM >1 for both TFs and target genes, 

which does not change the interpretation of the results 

(Supplemental Figure S2).  

To qualitatively assess the cell type-specific GRNs predicted by 

ANANSE, we chose two well-studied cell types, hepatocytes 

and epidermal keratinocytes, and constructed their GRNs using 

the top ten predicted TFs of each cell type, as ranked by 

outdegree. The GRN of hepatocyte contains classical 

hepatocytes marker genes and reprogramming factors, such as 

HNF4A, HIF1A and ATF4 (Figure 4E) (Simeonov and Uppal, 

2014).. The GRN of keratinocytes includes TFs that are known 

to regulate keratinocyte proliferation and epidermal 

differentiation, such as KLF5, KLF6 and MYC (Figure 4F) 

(Nair et al., 2006; Oberbeck et al., 2019; Richardson et al., 

2006; Sen et al., 2012; Tsuji et al., 2018).  

Taken together, our benchmarks and examples demonstrate that 

GRNs generated by ANANSE allow for meaningful cell type-

specific prioritization of TFs.  

ANANSE accurately predicts transcription factors for trans-

differentiation 

Having established that ANANSE-inferred GRNs can enrich 

for biologically relevant regulatory interactions, we aimed to 

use these GRNs to identify key TFs that regulate cell fate 

determination. To this end, trans-differentiation is a good model 

for this purpose, as experimentally validated TFs have been 

determined for various trans-differentiation strategies. Here, we 

first inferred the GRNs for all cell types using our ANANSE 

approach. The ANANSE-inferred GRN differences between 

two cell states, a source cell type and a target cell type, was 

calculated to represent the differential GRN between two cell 

types, which contains the GRN interactions that are specific for 

or higher in the target cell type. Subsequently, using an 

approach inspired by Mogrify (Rackham et al., 2016), we 

calculated the influence score of TFs for these trans-

differentiations by determining the differential expression score 

of its targets weighted by the regulatory distance (see Methods 

for details). 

To evaluate the prediction by ANANSE, we used 

experimentally validated TFs for several trans-differentiation 

strategies. For this, we collected TFs for eight trans-

differentiation strategies with fibroblasts as the source cell type. 

The target cell types include astrocytes (Caiazzo et al., 2015), 

cardiomyocytes (Fu et al., 2013), hepatocytes (Simeonov and 

Uppal, 2014), iPSCs (Takahashi et al., 2007), keratinocytes 

(Kurita et al., 2018), macrophages (Xie et al., 2004), neural 

crest cells (Kim et al., 2014), and osteocytes (Li et al., 2017) 

(Table 1). The complete list of the relevant TFs with literature 

evidence is shown in Supplementary Table S6. We used EP300 

ChIP-seq data or the combination of ATAC-seq and H3K27ac 

ChIP-seq data of these cell types to create cell type-specific 

GRNs (Table 2), and then calculated TF influence scores and 

ranked the TFs in each cell type. 

 

Target cell type Experimentally validated TFs 
TFs predicted 
by ANANSE 

Reference 

Astrocyte NFIA, NFIB, SOX9  SOX9 (Caiazzo et al., 2015) 

Cardiomyocyte GATA4, MEF2C, TBX5, ESRRG, MESP1  GATA4 (Fu et al., 2013) 

Hepatocyte FOXA1, FOXA3, HNF4A  HNF4A (Simeonov and Uppal, 2014) 

iPSC SOX2, OCT4, KLF4, MYC  SOX2, OCT4 (Takahashi et al., 2007) 

Keratinocyte TP63, GRHL2, TFAP2A, MYC  TP63 (Kurita et al., 2018) 

Macrophage CEBPA, SPI1  CEBPA, SPI1 (Xie et al., 2004) 

Osteocyte RUNX2  RUNX2 (Li et al., 2017) 

 
Table 1: The summary of eight experimentally validated trans-differentiations from fibroblast to target cell types. 
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When we calculate TF influence scores from cell type-specific 

GRNs, it is important to decide what size of GRN should be 

chosen in terms of the top number of edges. We inferred the key 

TFs for the eight trans-differentiations using six different sizes 

of GRNs (10K, 50K, 100K, 200K, 500K, and 1M edges) 

(Supplementary Table S7). Supplementary Figure S3 and S4 

show the percentage of known (experimentally validated) cell-

fate determinants that are recovered as a function of the number 

of top predictions that are included. These results show that 

using a GRN size of 100K or 200K interactions results in the 

best recovery ability. Therefore, we chose a GRN size of 100K 

interactions for all following analyses. In four out of the eight 

cases, ANANSE includes the complete set of experimentally 

defined TFs in the top 10 predicted factors (Table 1). For 

example, ANANSE predicts CEBPA and SPI1 for 

reprograming fibroblasts to macrophages (Xie et al., 2004) and 

FOXA1, FOXA3 and HNF4A for reprogramming to 

hepatocytes, which are consistent with the experimental trans-

differentiation strategies (Simeonov and Uppal, 2014). For the 

other examples, ANANSE prioritizes up to half of the 

experimentally defined TFs (Table 1). 

As cell type-specific TFs predominantly bind to enhancers 

(Figure 1), and the inclusion of enhancer information is one of 

the unique features of ANANSE, we anticipated that ANANSE 

would have more accurate predictions of TFs for trans-

differentiation. To investigate this, we compared ANANSE 

with previously reported expression- and promoter- based 

GRNs (Cahan et al., 2014; D’Alessio et al., 2015; Rackham et 

al., 2016) (Figure 5A). We created both expression and 

promoter based GRNs of the eight source and target cell type 

combinations. For expression-based GRNs, we used only the 

mean of the scaled TPM of TFs and genes together as the 

interaction score of TFs and genes. For the promoter-based 

GRNs, we selected the highest binding score of TFs within 2kb 

of the TSS of the corresponding gene as the binding score of 

the TF-gene pair. Subsequently, the mean of the scaled TPM of 

the TF and the gene together with the binding score determines 

the interaction score of the TF and gene (Figure 4B). We then 

Figure 5. Evaluation of the performance of ANANSE using experimentally validated trans-differentiation strategies. (A) The 
line plots show the comparison of the predicted top TFs for trans-differentiation from cell type-specific networks. Based on the 
difference between two networks, TFs were prioritized using the influence score calculation implemented in ANANSE. Shown is the 
fraction of predicted TFs compared to all known TFs based on trans-differentiation protocols described in the literature (y-axis) as a 
function of the top number of TFs selected (x-axis). The shaded area represents the minimum and maximum percentage of 
corresponding recovered TFs when using seven out of eight trans-differentiations. Three different types of networks were used: 
gene expression (deep blue), promoter-based TF binding in combination with expression (green), and enhancer-based TF binding 
in combination with expression (blue). (B) The line plots show the comparison of the predicted top TFs for trans-differentiation based 
on different computational methods. The y-axis indicates the percentage of experimentally validated cell TFs that are recovered as 
a function of the number of top predictions, similar as in A). Five different methods are shown: ANANSE (blue), Mogrify (orange), 
Mogrify without using their selection algorithm, the method of d’Alessio et al. (red) and CellNet (purple). The shaded area represents 
the minimum and maximum percentage of corresponding recovered TFs when using seven out of eight trans-differentiations. CellNet 
only contains data from fibroblast to ESC, Hepatocyte, and Macrophage; and Mogrify and CellNet only contain the top 8 predicted 
factors. 
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inferred the key TFs for the eight trans-differentiations using 

ANANSE and these two types of GRNs. The ANANSE 

influence score based on the enhancer GRNs includes 40% of 

the known TFs in the top 4 predictions (Supplementary Figure 

S5 and Supplementary Table S6 and S8). In contrast, using the 

influence score based on the promoter GRN or the expression 

GRN, we could recover only 18% and 9% of the known TFs in 

the top 4 predictions (Figure 5A and Supplementary Figure S5). 

These results demonstrate that using enhancers in the 

construction of GRNs significantly improves the prediction of 

relevant TFs in cell fate determination. 

Next, we further quantified the performance difference between 

ANANSE and previously reported methods, namely, Mogrify, 

CellNet and the method of D’Alessio et al (Cahan et al., 2014; 

D’Alessio et al., 2015; Rackham et al., 2016) (Figure 5B and 

Supplementary Figure S6). For Mogrify, we downloaded both 

the prioritized list of TFs based on TF expression in source cell 

types and GRN overlap, as well as the full unfiltered list of TFs. 

For these comparisons, we aimed to include all eight trans-

differentiation strategies. In some cases, as data for the exact 

cell type is unavailable, similar cell or tissue types were used as 

surrogates. For example, the osteoblast-Sciencell was used to 

substitute for osteoblast. For CellNet, we used the previously 

described results of three cell types: hepatocytes, iPSCs and 

macrophages (Rackham et al., 2016). Using the eight cell type 

conversions as a reference, ANANSE has the highest recovery 

when more than two TFs are used for trans-differentiation 

(Figure 5B and Supplementary Figure S6). ANANSE predicts 

a mean of 40% TFs using the top four TFs ranked by influence 

score, while other methods predict a maximum of 27% TFs with 

this rank cutoff (Figure 5B and Supplementary Figure S6). 

When the number of predicted TFs was increased to ten, 

ANANSE could increase its recovery rate to 50%, while the 

maximum mean recovery of other methods is 35% (Figure 5B 

and Supplementary Figure S6).  

In summary, these analyses show that including enhancers in 

the GRN construction significantly improves the prediction TFs 

in cell fate conversion and that ANANSE outperforms other 

established methods based on experimentally validated trans-

differentiation TFs. Our results demonstrate that ANANSE can 

accurately prioritize TFs in cell fate determination. 

ANANSE identified an atlas of key transcription factors in 

normal human tissues 

The gene expression programs that drive the cellular 

differentiation programs of different tissues are largely 

controlled by TFs. To find out which key TFs drive cell fate 

determination in different tissues, we applied ANANSE to 

human tissue data. We downloaded enhancer activity data of 18 

human tissues from the dbCoRC database (Huang et al., 2017) 

and the RNA-seq data of corresponding tissues from the Human 

Protein Atlas project (Uhlén et al., 2015). Using these enhancer 

and gene expression data, we constructed tissue-specific GRNs 

using ANANSE, and then calculated the TF influence scores 

for each of the tissues when taking the combination of all other 

tissues as the source tissue (Supplementary table S9). We 

clustered the 18 tissues based on the correlation between TF 

influence scores using hierarchical clustering, showing that the 

influence score captures regulatory similarities and differences 

between tissues (Figure 6A and Supplementary Figure S4). For 

example, the esophagus and the skin cluster together, as these 

tissues are composed mostly of stratified squamous epithelial 

cells, and skeletal muscle and heart tissue are clustered together 

as both tissues contain striated muscle tissues.  

For all studied tissues, we have provided a rich resource of key 

TFs of each tissue, with a list of top ten key TFs (Figure 6B). 

Many TFs in this list are known to play important functions for 

specific tissues, e.g. ELF3 and KLF5 for stomach, colon, and 

small intestine (Jedlicka et al., 2008; Katz et al., 2002); 

TFAP2A, TFAP2C, TP63, and GRHL2 for the skin and 

esophagus (Dollé, 2009; Qu et al., 2018; Wilanowski et al., 

2008); SOX2, SOX8 and OLIG1/2 for brain (Bani-Yaghoub et 

al., 2006; Meijer et al., 2012; Muto et al., 2009); and SPI1 and 

IRF1 for lung, spleen and bone marrow (Ohteki et al., 2001) 

(Figure 6A). 

The gastrointestinal tract tissues share a number of highly 

influence score TFs such as ELF3, KLF4, and HNF4A, which 

play roles in stomach, colon, and small intestine development, 

and are consistent with the current research on gastrointestinal 

tract tissues (Figure 6A) (Jedlicka et al., 2008; Katz et al., 2002; 

Thompson et al., 2018). ELF3 is important in intestinal 

morphogenesis, homeostasis, and disease (Jedlicka et al., 

2008). KLF4 is required for terminal differentiation of goblet 

cells in the colon (Katz et al., 2002). 

Our analysis showed that TP63, TFAP2A, TFAP2C, RARG, 

and GRHL1 are common important TFs in the skin and 

esophagus (Figure 6B). The function of these TFs has been well 

studied in the skin. TP63 is one of the TFs that is important in 

both skin and esophagus development (Daniely et al., 2004; 

Kurita et al., 2018; Qu et al., 2018). TP63 and TFAP2A have 

been used in in vivo reprogramming of wound-resident cells to 

generate skin epithelial tissue (Kurita et al., 2018). Both 

TFAP2A and TFAP2C are required for proper early 

morphogenesis and development as well as terminal 

differentiation of the skin epidermis (Budirahardja et al., 2016; 

Kousa et al., 2018; Wang et al., 2008). GRHL1 is important for 

the functioning of the epidermis. Grhl1 knockout mice exhibit 

palmoplantar keratoderma, impaired hair anchoring, and 

desmosomal abnormalities (Wilanowski et al., 2008). It would 

be interesting to investigate how they play roles in esophagus. 

RARG is expressed in the developing skin epithelium, as well 

as in all prospective squamous keratinizing epithelia, including 

the esophagus and left wall of the stomach (Dollé, 2009; 

Ruberte et al., 1990). PAX9 regulates squamous cell 

differentiation and carcinogenesis in the oro-oesophageal 

epithelium (Xiong et al., 2018).  

In summary, using ANANSE, we predicted key TFs for 18 

human normal tissues. Many of these predicted TFs correlate 

well with the known literature of these tissues. In addition, the 

predicted key TFs in each tissue also provide us a rich resource 

to unveil novel TFs in specific tissues.  

Discussion 

Lineage specification and cell fate determination are critical 

processes during development. They are necessary to form the 

diversity of cell types that are organized into organs and tissues. 

TFs form a central component in the regulatory networks that 

control lineage choice and differentiation. Indeed, cell fate can 

be switched in vitro through manipulation of TF expression 

(Caiazzo et al., 2015; Fu et al., 2013; Kurita et al., 2018; Li et 
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al., 2017; Simeonov and Uppal, 2014; Takahashi et al., 2007; 

Xie et al., 2004). However, the regulatory factors that determine 

cell identity remain unknown for many cell types. To address 

this issue, we developed ANANSE, a new computational 

method to predict the key TFs that regulate cellular fate 

changes.  

Using an ensemble approach, we established a general model 

that leverages genome-wide, cell type-specific enhancer signals 

from ATAC-seq or Ep300 or H3K27ac ChIP-seq data, and TF 

motif data to reconstruct TF binding networks for each cell 

type. ANANSE takes a two-step approach. First, TF binding is 

imputed for all enhancers using a TF-agnostic model. In 

contrast to existing methods that aim to predict binding by 

training TF-specific models (Batsis et al., 2019; Keilwagen et 

al., 2019; Li et al., 2019; Quang and Xie, 2019), we used a more 

general model. Our model will be less accurate in predicting TF 

Figure 6. Applying ANANSE to expression data of human tissues to identify key transcription factors. (A) Heatmap of the 
predicted influence scores of all TFs using ANANASE on data from 18 human tissues. The color in the heatmap indicates the relative 
influence score, from low to high. The four small heatmaps highlighted below show important TFs in related tissues. (B) The top 10 
key TFs of 18 tissues inferred by ANANSE. The color of the tissue is consistent with the tissue name in the box. The order of TF of 
each tissue is based on the influence score of the TF ranked from high to low. 
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binding compared to these models specifically trained for 

individual TFs. However, the advantage is that our model can 

predict binding for every TF as long as it is known to which 

motif the TF can bind. In addition, it can be used for factors for 

which there is no training data available, and for instance, it can 

also be applied to non-model organisms that lack 

comprehensive ChIP-seq assays. We found that the enhancer 

signal intensity is the most important predictive feature for 

binding (Figure 3A-C and Supplementary Figure S1). The TF-

specific motif z-score modestly increases the performance.  

Second, we summarized the imputed TF signals per gene, using 

a distance-weighted decay function (Wang et al., 2016), and 

combine this measure with TF and target gene expression to 

infer cell type-specific GRNs. There is a lack of gold standards, 

especially to evaluate cell type-specific regulatory networks. To 

evaluate the GRNs, we used two orthogonal types of 

benchmarks: a database of known, experimentally identified 

TF-gene interactions and functional enrichment using Gene 

Ontology annotation. The databases with known interactions 

that we used (TRRUST (Han et al., 2017) and regNetwork (Liu 

et al., 2015)) contain only a fraction of true regulatory 

interactions, and therefore this benchmark is affected by a large 

fraction of false negatives. All our benchmark evaluations 

demonstrate that ANANSE significantly enriches for true 

regulatory interactions. However, it also highlights that GRN 

inference is far from a solved problem. The PR-AUC values are 

low, as is generally the case in eukaryotic GRN inference (Chen 

and Mar, 2018).  
In contrast to previous approaches, our method takes advantage 

of TF binding in enhancers, instead of only gene expression 

differences or TF binding to proximal promoters. This resulted 

in significantly improved performance, as benchmarked on 

experimentally validated trans-differentiation protocols. It has 

been previously shown that cell type-specific regulation is 

much better captured by enhancers as compared to promoter-

proximal regulatory elements. For instance, TF binding and 

chromatin accessibility in distal elements better reflect the cell 

type identity of hematopoietic lineages than in promoters 

(Corces et al., 2016; Heinz et al., 2010). Many important 

transcriptional regulators mainly bind at regulatory regions that 

are not proximal to the promoter. Indeed, our analysis of the 

genomic binding distribution of ~300 human TFs showed that 

the large majority of cell type-specific TFs mainly binds in 

enhancer regions (Figure 1C). Therefore, we reasoned that TF 

binding at enhancers would be essential to model cell fate and 

lineage decisions. We tested the application of the networks 

inferred by ANANSE to human in vitro trans-differentiation 

approaches. Seminal work showed that computational 

algorithms can help to characterize cellular fate transitions, and 

to provide rational prioritization of TF candidates for trans-

differentiation (Cahan et al., 2014; Morris et al., 2014; 

Rackham et al., 2016). We implemented a network-based 

approach to prioritize TFs that determine cell fate changes. 

Using a collection of known, experimentally validated trans-

differentiation protocols, we demonstrated that ANANSE 

consistently outperforms other published approaches. This 

means that cellular trajectories can be characterized using 

ANANSE to identify the TFs that are involved in cell fate 

changes. In comparison with a promoter-based approach, we 

show that using enhancer-based regulatory information 

contributes significantly to this increased performance (Figure 

5). One noticeable example is the trans-differentiation from 

fibroblasts or mesenchymal cells to keratinocytes. In current 

experimentally validated trans-differentiation methods, the 

epithelial master regulator TP63 is essential for establishing the 

keratinocyte cell fate (Chen et al., 2014; Kurita et al., 2018). 

However, TP63 was not predicted in the previously published 

computational methods (Cahan et al., 2014; Morris et al., 2014; 

Rackham et al., 2016). One plausible explanation is that TP63 

is a TF for specific epithelial cells and tissues and it binds 

predominantly (87%) to enhancers (Andersson et al., 2014; 

Bulger and Groudine, 2011; Qu et al., 2018; Spitz and Furlong, 

2012), whereas previous computational tools do not take 

enhancer properties into consideration. 

We used ANANSE to identify tissue-specific TFs for different 

human tissues. We predicted the top 10 key TFs for all studied 

tissues. Many TFs in this list are known for important functions 

in these specific tissues. For example, some NK homeodomain, 

GATA, and T-box TFs are found in normal cardiac 

development, which have important functions during heart 

specification, patterning, and differentiation (Bruneau, 2013; 

Kathiriya et al., 2015; Stefanovic and Christoffels, 2015). Many 

SOX family of TFs are known critical for neural system 

development in brain tissue (Bani-Yaghoub et al., 2006; Muto 

et al., 2009). Although not all predicted TFs are known to have 

important role in specific tissues, further research is warranted. 

The TFs in the TF atlas predicted by ANANSE are may also be 

good candidates for studying tissue development and 

engineering in regenerative medicine 

Another large benefit of the model that we implemented in 

ANANSE is the wide applicability. The source code of 

ANANSE is publicly available under a liberal license. It is 

straightforward to run ANANSE on new data, such as different 

cell types or even species. Types of data required for this 

analysis are the following: gene expression data (RNA-seq) and 

genome-wide measure of enhancer activity. Enhancer data can 

be either EP300 or H3K27ac ChIP-seq. Both types of data can 

be relatively easily obtained, not only in human cell types or in 

common model species, but also often in non-model species 

(Villar et al., 2015). This means that this method can be easily 

applied in a wide variety of biological studies in gene regulation 

during development and cellular fate changes.  

We also acknowledge limitations in our approach. In 

ANANSE, we link enhancer regions to genes on basis of 

distance. For each TF and gene interaction pair, ANANSE only 

considers TF binding information located at most 100kb up and 

downstream of the corresponding gene. Although data from a 

recent CRISPR enhancer interference screen showed that 

genomic distance is largely informative in predicting enhancer-

target interactions (Fulco et al., 2019), this approach may be 

limited when applying to genes regulated through long-range 

regulation, especially those via inter-chromosomal regulation 

(Olivares-Chauvet et al., 2016). This limitation of our method 

can potentially be addressed using chromosome conformation 

capture techniques (3C) or other adaptations as circular 3C 

(4C), chromosome conformation capture carbon copy (5C), 

chromatin immunoprecipitation using PET (ChIA-PET) and 

Hi-C (Kempfer and Pombo, 2019). However, these types of 

data are currently only available for a limited number of cell 
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types, therefore incorporation of topology data would limit the 

broad utility and application of our approach. 

Conclusion 

Here we presented ANANSE, a computational tool for efficient 

predictions of TFs in cell fate determination. It outperforms 

other published methods in predicting TFs that can induce 

trans-differentiation. In addition, it is open source, freely 

available and can be easily used on custom data. In summary, 

ANANSE exploits the powerful impact enhancers have on gene 

regulatory networks, and it provides insights into TF mediated 

regulatory mechanisms underlying cell fate determination and 

development. 

 

Methods 

Datasets 

The 296 ChIP-seq datasets for the peak location analysis were 
download from the ReMap project (Chèneby et al., 2017). For training 
and evaluation of the regression model to predict TF binding EP300 
ChIP-seq data and TF ChIP-seq data from 5 different cell lines 
(GM12878, hESC, HeLa-S3, HepG2 and K562) downloaded from the 
ENCODE-DREAM project (https://www.synapse.org/ENCODE) 
(ENCODE-DREAM, 2017) were used. The non-redundant database of 
1,690 motifs for 1,164 TFs was created by clustering all vertebrate motifs 
from the CIS-BP database using GimmeMotifs (van Heeringen and 
Veenstra, 2010; Weirauch et al., 2014). The data used to predict key 
TFs for trans-differentiation is shown in Table 2, including RNA-seq, 
EP300 and H3K27ac ChIP-seq, and assay for transposase-accessible 
chromatin sequencing (ATAC-seq) (Buenrostro et al., 2013) data in 8 
cell types. 

ChIP-seq, ATAC-seq and RNA-seq analyses 

The reads of the ChIP-seq and ATAC-seq experiments were mapped to 
the human genome (hg38) using STAR (version 2.5.3a) with default 
settings (Dobin et al., 2013). Duplicate reads were marked and removed 
using Picard. Peaks were called on the ChIP-seq and ATAC-seq data 
with only the uniquely mapped reads using MACS2 (version 2.7) relative 
to the Input track using the standard settings and a q-value of 0.01 

(Zhang et al., 2008). The measurement of consistent peaks between 
replicates was identified by IDR (version 2.0.3) (Li et al., 2011). 
Quantification of expression levels was performed on RNA-seq data, 
using salmon (version 0.43.0) (Patro et al., 2017) with default settings 
and Ensembl transcript sequences (version GRCh37) (Cunningham et 
al., 2018). Salmon’s transcript-level quantifications results were 
imported and aggregated to gene level counts by the tximport R 
package (version 1.12.3) (Soneson et al., 2015). The expression level 
(transcript-per-million, TPM) of each cell type and the differential 
expression fold change between two cell types were calculated using 
the DESeq2 R package (version 1.24.0) (Love et al., 2014). The 
expression TPM data used to predict key TFs for trans-differentiation is 
shown in Supplementary Table S1, deferential expression genes data is 
shown in Supplementary Table S2, and the enhancer data is shown in 
Supplementary Table S3. 

Analysis of the genomic distribution of TF binding sites  

For every TF, we combined all the peaks in the ReMap database 
(Chèneby et al., 2017) by taking of the peaks in all cell types and tissues 
for this specific TF. TFs that had less than 600 peaks were removed. 
The percentage of peaks in each genomic location was calculated using 
the ChIPseeker R package (version 1.20.0) (Yu et al., 2015). The fgsea 
R package (version 1.10.1) was used to do the gene set enrichment 
analysis (GSEA) (Sergushichev, 2016). 

Defining putative enhancer regions  

The EP300 ChIP-seq or ATAC-seq peaks were used to define putative 
enhancer regions for specific cell types. The summits of the MACS2 
peaks were chosen first, then extended (+/- 100bp) to a total size of 
200bp. The EP300 or H3K27ac ChIP-seq peak intensity generated by 
MACS2 (bedGraph file) was used to represent enhancer intensity. The 
bedGraphToBigWig tool (Kent, 2014) was used to convert bedGraph 
files to bigWig files. The intensity of enhancer peak was calculated using 
thebigWigSummary tool (Kent, 2014), which selects the highest signal 
of EP300 (200 bp around the peak summit) or H3K27ac (2,000 bp 
around the peak summit) ChIP-seq. 

Binding network inference 

The GimmeMotifs package (version 0.13.1+216.g7f81a8a) (Bruse and 
Heeringen, 2018; van Heeringen and Veenstra, 2010) was used to scan 
for motifs in enhancer regions. The GC normalization setting in 
GimmeMotifs package was used to normalize the GC% bias in different 

Cell type RNA-seq EP300 ATAC-seq H3K27ac 

Astrocyte GSE104232 (Tchieu et al., 
2019) 

/ GSE104232 (Tchieu et 
al., 2019) 

ENCODE (ENCODE 
Project Consortium, 
2012) 

Cardiomyocyte GSE116862 (Zhang et al., 
2019) 

/ GSE85330 (Liu et al., 
2017) 

GSE116862 (Zhang et 
al., 2019) 

Fibroblast GSE120081 (van der Raadt et 
al., 2019) 

GSE97033 (Zhao et 
al., 2017) 

/ / 

Hepatocyte ENCODE (ENCODE Project 
Consortium, 2012) 

PRJNA239635 / / 

iPSC GSE120107 (Soares et al., 
2019) 

ENCODE (ENCODE 
Project Consortium, 
2012) 

/ / 

Keratinocyte GSE97033 (Zhao et al., 2017) GSE67382 (Bao et al., 
2015) 

/ / 

     

Macrophage GSE85243 (Novakovic et al., 
2016) 

/ GSE85243 (Novakovic 
et al., 2016) 

GSE85243 (Novakovic 
et al., 2016) 

Osteocyte GSE29611 (ENCODE Project 
Consortium, 2012)  

GSE29611 (ENCODE 
Project Consortium, 
2012) 

/ / 

 
Table 2: The data used to predict key TFs for trans-differentiation 
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enhancers. To correct for the bias of motif length, z-score normalization 
was performed on the motif scores. Normalization was done per motif, 
based on motif matches in random genomic regions using the same 
motif scan settings. The highest z-score was chosen if a TF had more 
than one motif. The enhancer intensity levels were scaled from 0 to 1, 
with 1 being the highest and 0 the lowest. The binding intensity of each 
TF in each enhancer was predicted by logistic regression using motif z-
score and scaled enhancer intensity as input.  

Gene regulatory network inference 

The weighted sum of TF predicted enhancer intensity within 100kb 
around TSS is defined as the TF-gene binding score (Eq. 1). The 
distance weight is based on a linear genomic distance between the 
enhancer and the TSS of a gene according to equation 2. 

𝐵𝑥,𝑟
 =∑𝑤𝑘𝑠𝑘

 

𝑘

(1 ) 

where 𝐵𝑥,𝑟
  is the binding score between TF 𝑥 and target gene 𝑟, 𝑤𝑘

  is 

the weighted distance between an enhancer and the target gene and 
where 𝑠𝑘  is predicted binding intensity at genomic position 𝑘 of TF 𝑥. 
The distance weight calculation was similar to the method previously 
described in (Wang et al., 2016), except that only signal in enhancers is 
used, enhancers within 2kb around TSS are removed and the weight of 
enhancers within 2kb to 5kb is set to 1. 

𝑤𝑘
 =

{
 

 
0,                                               𝑘 ∈ (0𝑘𝑏, 2𝑘𝑏]

1,                                               𝑘 ∈ (2𝑘𝑏, 5𝑘𝑏]

2𝑒−µ|𝑘−𝑡𝑟|

1 + 𝑒−µ|𝑘−𝑡𝑟|
,                    𝑘 ∈ (5𝑘𝑏, 100𝑘𝑏]

 

(2 ) 

where 𝑡𝑟 is the genomic position of the TSS of gene 𝑟 and the parameter 
µ, which determines the decay rate as a function of distance from the 
TSS, is set such that an enhancer 10 kb from the TSS contributes one-
half of that at the TSS. 

We scaled the expression level of the TF and the target gene, expressed 
as transcripts per million (TPM), and the TF-gene binding score 𝐵𝑥,𝑟

  we 

calculated in the first step from 0 to 1, with 1 being the highest and 0 the 
lowest. Combining the TF-gene binding score and TF and target 
expression scores by taking the mean, we obtained a TF-gene 
interaction score. 

Gene regulatory network evaluation 

To evaluate the quality of the predicted GRNs, three different types of 
reference datasets were used: gene co-expression, Gene Ontology 
(GO) annotation (The Gene Ontology, 2019) and two regulatory 
interaction databases (RegNetwork(Liu et al., 2015) and TRRUST (Han 
et al., 2017)). The expression correlation database was downloaded 
from COXPRESdb (Obayashi et al., 2019), and the original mutual rank 
correlation score was scaled to 0 to 1 for each TF, with 1 being the 
highest and 0 the lowest, and all scaled correlation score higher than 
0.6 were considered as true interaction pairs. The human GO validation 
Gene Association File (GAF) (version 2.1) was download from 
http://geneontology.org. We used all TF-gene pairs that were annotated 
with at least one common GO term as true positives. In each cell type, 
four types of cell type-specific reference datasets were selected from 
previously described reference datasets by only selecting only 
interaction for which both the TF and its target gene are expressed (TPM 
> 10 or TPM > 1) in the corresponding cell type. For the random network 
we used the same network interaction structure, but has randomized the 
interaction score (the edge weight). The AUC of ROC and PR for each 
cell type GRN and corresponding random GRN were calculated. 

Influence score inference 

To calculate the influence score for the transition from a source cell type 
to a target cell type, we used the GRNs for both cell types. In each 
network, we selected the top 100k interactions based on the rank of its 
interaction score. We obtained a differential GRN by taking the 
interactions only located in the target cell type and those with an 
interaction score that was at least 0.3 higher in the target cell type than 
in the source cell type. The difference of the interaction score was used 
as the edge weight for the differential GRN. 

Based upon the differential GRN a local network was built for each TF, 
up to a maximal number of three edges. Using equation (3), a target 
score was calculated for each node in the network, based on 1) its edge 
distance from the TF of interest, 2) the interaction score and 3) the 
change in expression between the source cell type and the target cell 
type. 

𝑁𝑥
𝑠 =∑|𝐺𝑟

𝑠|
𝑃𝑥,𝑟
𝑠

𝐿𝑥,𝑟
𝑠

𝑠

𝑟∈𝑉𝑡

(3 ) 

Where 𝑟 ∈ 𝑉𝑡 is each gene (𝑟) in the set of nodes (𝑉𝑡) that make up the 
local sub-network of TF 𝑥 and 𝐿𝑥,𝑟

𝑠  is the level (or the number of steps) 

that gene 𝑟 is away from TF 𝑥 in the network 𝑠. Nodes located further 
from the TF have less effect on the target score. 𝑃𝑥,𝑟

𝑠  is the interaction 

score between TF 𝑥 and target gene 𝑟 and 𝐺𝑟
𝑠, the expression score, is 

the log-transformed fold change of the expression of gene 𝑟. 

The target score (𝑁𝑥
𝑠) for each TF is the sum of the scores from all the 

nodes in its local network. Nodes present in multiple edges are 
calculated only for the edge closet to the TF of interest. Self-regulating 
nodes are not considered. The target score and the 𝐺𝑟

𝑠 of each TF are 
scaled to 0 to 1, and the mean of them was defined as the influence 
score of this TF. Subsequently, all TFs are ranked by their influence 
score.  

Regulatory profile analysis of human tissues  

The RNA-seq data of 18 human tissues were downloaded from Human 
Protein Atlas project (Uhlen et al., 2010). Enhancer intensity (H3K27ac 
signal) was downloaded from dbCoRC database, and enhancer peaks 
were from ReMap project (Chèneby et al., 2017; Huang et al., 2017). 
The gene expression score of each tissue was calculated by log2 TPM 
fold change between a tissue and the average of all other tissues. The 
GRN of each tissue was inferred using ANANSE. For prediction for TFs 
of one tissue, GRN interaction scores of all other tissues were averaged 
as the source GRN. All correlation analyses were clustered by 
hierarchical clustering method. The modular visualization of anatograms 
and tissues was done using the gganatogram package (version 1.1.1) 
(Maag, 2018). 
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Supplementary figures 

 
 
Supplementary Figure S1. ROC curve analysis of TF binding prediction performance. 
(A) ROC curve of TF binding prediction based on enhancer activities. Each line represents one TF prediction result 
based on the model trained on data from all the other 28 TFs. (B) ROC curve of TF binding prediction based on 
motif z-scores. (C) ROC curve of TF binding prediction based on enhancer intensities together with motif z-scores.  
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Supplementary Figure S2. Evaluation of cell type-specific enhancer gene regulatory networks. 
(A) Evaluation of the predicted networks using different types of data: a gene ontology (GO) term co-regulatory 
network, a cell type-specific gene correlation network, and two TF-Gene regulatory networks based on interaction 
databases (regNetwork and TRRUST). This is the same evaluation as presented in Figure 4C-D, but using a TPM 
cutoff of 1 instead of 10. The boxplots show the AUC of ROC for 8 different cell type. ROC AUC of the predicted 
networks is shown in blue; the random networks are indicated in green. (B) The same evaluation as in A), with the 
PR AUC shown as a boxplot. 

 

 

 

 

 

 
Supplementary Figure S3. Comparison of different GRN sizes used in the ANANSE prediction in seven 
experimentally validated trans-differentiation strategies.  
(A) The line plots show the comparison of the predicted key TFs for six different sizes of GRNs Shown is the 
fraction of predicted TFs compared to all known TFs based on trans-differentiation protocols described in the 
literature (y-axis) as a function of the top number of TFs selected (x-axis). The shaded area represents the minimum 
and maximum percentage of corresponding recovered TFs when using seven out of eight trans-differentiations. 
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Supplementary Figure S4. Comparison of top 10 key TFs predicted by different GRN sizes in seven 
experimentally validated trans-differentiation strategies.  
The x-axis shows seven experimentally validated trans-differentiations, and the y-axis shows the top 10 predicted 
key TFs ranked by their influence score. Black boxes highlight the TFs that were used in trans-differentiation 
experiments. (A) 10k network. (B) 50k network. (C) 100k network. (D) 200k network. (E) 500k network. (F) 1000k 
network. 
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Supplementary Figure S5. Comparison of top 10 key TFs predicted by different GRNs (enhancer, promoter 
and expression) in seven experimentally validated trans-differentiation strategies.  
The x-axis shows seven experimentally validated trans-differentiations, and the y-axis shows the top 10 predicted 
key TFs ranked by their influence score. Black boxes highlight the TFs that were used in trans-differentiation 
experiments. (A) The results for ANANSE, based on a GRN that was inferred using peaks, regardless of their 
genomic location (includes both promoters and enhancers). (B) The results for ANANSE, based on a GRN that 
was inferred using the highest peak in the gene promoter, defined as < 2kb from the gene transcription start site.  
(C) The results for ANANSE, based on a GRN that was inferred using only the expression levels of the TFs and 
target genes.   
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Supplementary Figure S6. Comparison of top 10 key TFs predicted by different methods in seven 
experimentally validated trans-differentiation strategies.  
The x-axis shows seven experimentally validated trans-differentiations, and the y-axis shows the top 10 predicted 
key TFs ranked by their influence score. Black boxes highlight the TFs that were used in trans-differentiation 
experiments. (A) All experimentally validated TFs. (B) ANANSE. (C) D’Alessio. (D) Mogrify. (E) Mogrify full list. (F) 
CellNet. 
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Supplementary Figure S7. Classification of the human gene expression and TF influence score. 
(A) Heatmap showing the pairwise correlation between all 18 tissues based on gene expression. The colors in the 
heatmap indicate high (red) or low (blue) correlation across the tissue set. (B) Heatmap showing the pairwise 
correlation between all 18 tissues based on the expression of all TFs. (C) Heatmap showing the pairwise correlation 
between all 18 tissues based on TF influence scores. 
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