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ABSTRACT 

Parkinson’s disease (PD) is a complex neurodegenerative disorder with a strong genetic 

component. We performed a “hypothesis-free” exome-wide burden-based analysis of different 

variant frequencies, predicted functional impact and age of onset classes, in order to expand the 

understanding of rare variants in PD. Analyzing whole-exome data from a total of 1,425 PD cases 

and 596 controls, we found a significantly increased burden of ultra-rare (URV= private variants 

absent from gnomAD) protein altering variants (PAV) in early-onset PD cases (EOPD, <40 years 

old; P=3.95x10-26, beta=0.16, SE=0.02), compared to LOPD cases (>60 years old, late-onset), 

where more common PAVs (allele frequencies <0.001) showed the highest significance and effect 

(P=0.026, beta=0.15, SE=0.07). Gene-set burden analysis of URVs in EOPD highlighted 

significant disease- and tissue-relevant genes, pathways and protein-protein interaction networks 

that were different to that observed in non-EOPD cases. Heritability estimates revealed that URVs 

account for 15.9% of the genetic component in EOPD individuals. Our results suggest that URVs 

play a significant role in EOPD and that distinct etiological bases may exist for EOPD and sporadic 

PD. By providing new insights into the genetic architecture of PD, our study may inform 

approaches aimed at novel gene discovery and provide new directions for genetic risk assessment 

based on disease age of onset. 
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INTRODUCTION 
 
Parkinson’s disease (PD) is a complex neurodegenerative disorder characterized by the loss of 

dopaminergic neurons in the substantia nigra (SN), leading to motor dysfunction and a progressive 

neurodegenerative syndrome. Several common and rare disease-associated genes and loci have 

been discovered in families and large case-control studies; however, they currently explain only 

about 26-36% of the disease heritability1, therefore additional novel variants and genes associated 

with PD are yet to be found.  

Despite the recent explosion of available genetic data for PD, the vast majority of cases still have 

an unknown genetic basis2. The use of next generation sequencing (NGS) in PD has enabled large-

scale whole-exome sequencing (WES) studies in both families and case-controls unrelated 

populations3. Several studies have leveraged the use of WES to analyze candidate genes or known 

biological pathways and their load of rare variants4-8. However, to date no study has systematically 

evaluated the burden of rare (minor allele frequency <0.01) damaging variants in a “hypothesis-

free” approach with functional insights, that could help to expand the genetic architecture of PD, 

early-onset PD (EOPD) and late-onset PD (LOPD), in order to potentially uncover novel 

susceptibility genes and pathways.  

In the present study, we used two case-control WES cohorts from the International Parkinson’s 

disease Genomics Consortium (IPDGC, www.pdgenetics.org)5 and the Parkinson’s Progression 

Markers Initiative (PPMI, www.ppmi-info.org)9, and conducted a systematic assessment of the 

burden of variants across different allele frequencies, functional impact predictions and different 

ages of onset (AOO) at the whole-exome, gene-set and gene-wise levels in idiopathic PD cases 

compared to healthy controls. Using a large compendium of functional gene-sets, molecular 

pathways, tissue and cell-type specific gene expression profiles, and protein-protein interaction 
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(PPI) networks, our results revealed a significant burden of damaging ultra-rare variants (URVs) 

in EOPD cases that are enriched in disease-relevant molecular pathways, and suggest major 

differences in the genetic and functional architecture compared to LOPD.  

RESULTS 

Exome-wide contribution of rare damaging coding variants to Parkinson’s disease  

We systematically assessed the contribution of coding variants to PD in two independent case-

control cohorts of European descent: (i) IPDGC5, comprising 1,042 PD cases and 452 controls, 

and (ii) PPMI9, with 383 PD cases and 144 controls (See complete pipeline in Supplementary 

Fig. 1). We also stratified cases according to AOO (Table 1). The IPDGC cases had a mean AOO 

of 43.02 years (SD=10.63), including 438 EOPD (AOO <40 years of age) and 604 PD cases above 

40 years of age (40+). Controls had average age of recruitment of 46.20 years (SD=26.07). The 

PPMI cases had a mean AOO of 61.62 years (SD=9.72), and comprised 9 EOPD and 374 40+ 

(including 232 LOPD individuals). Controls had an average age of recruitment of 61.11 years 

(SD=10.18). Average per sample transitions/transversions (Ts/Tv), homozygous/heterozygous 

(Hom/Het) and insertions/deletions (In/Del) ratios were among expected ranges for both cohorts, 

respectively (IPDGC=3.2, 1.69, 0.87; PPMI=3.19, 1.82, 0.69). 

We classified and counted alleles according to frequency, functional and deleteriousness 

predictions, in different AAOs in cases and controls (average counts on Supplementary Table 1). 

With regression analyses we observed a highly significant burden of all three classes of ultra-rare 

variants in the IPDGC EOPD cases compared to controls (URVs= singleton variants in our cohort, 

having an allele count of 1/2988 and without reported frequency in gnomAD10): Protein altering 

variants (PAV), P=3.95x10-26, beta=0.158, SE=0.015; Nonsynonymous (NSN), P=7.36x10-26, 
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beta=0.162, SE=0.015; and Loss-of-Function (LoF), P=6.1x10-4, beta=0.295, SE=0.086 (Fig. 1A, 

Supplementary Table 2). LoF variants appeared to have a larger contribution compared to NSN 

variants in EOPD cases. Similar but weaker results were observed for all classes of URVs in all 

PD cases, except for LoF variants that did not surpass Bonferroni correction (PAV, P=9.17x10-18, 

beta=0.102, SE=0.012; NSN, P=2.09x10-17, beta=0.105, SE= 0.012; LOF, P=0.004, beta=0.209, 

SE=0.073) as well as in 40+ PD cases (PAV, P=1.92x10-6, beta=0.065, SE=0.014; NSN, 

P=2.75x10-6, beta=0.066, SE=0.014; LOF, P=0.098, beta=0.133, SE=0.08). After removing lower 

frequency variants for each category, we observed that the top burden results were for more 

common allele frequencies (i.e. > singletons) in 40+ PD cases (P=0.003, beta=0.01, SE=0.003; 

Fig. 1B, Supplementary Table 3), although this did not survive multiple testing correction. We 

next analyzed synonymous and noncoding variants. While we did not observe increased 

enrichment across the majority of frequencies and effect classes (“Damaging”, CADD >12.37; 

“Benign”, CADD <12.37), we observed significant URV association signals surviving multiple 

testing correction in EOPD for damaging and benign synonymous variants (P=9.13x10-16, 

beta=0.38, SE=0.048; P=1.80x10-15, beta=0.22, SE=0.028, respectively), and benign noncoding 

variants (P=6.37x10-8, beta=0.21, SE=0.038; Supplementary Fig. 2, Supplementary Table 4). 

Similar associations were observed for all PD cases and only damaging synonymous variants for 

40+ PD. We next assessed if our URV burden results were biased by an artificial excess of rare 

variants due to sequencing errors or other hidden confounding factors. We therefore corrected the 

burden tests for URVs by the total number of singleton variants (regardless of their frequency in 

gnomAD), and observed that the associations remained significant, we even noted increases in the 

significance and effect size estimates after correction (URVs not corrected, P=2.27x10-19, 

beta=0.06, SE=0.006; corrected, P=1.43x10-26, beta=0.08, SE=0.008). Using a stricter read depth 
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threshold (DP>20), we reevaluated URVs burden across frequencies and functional annotations, 

and observed that association signals remained highly significant (Supplementary Table 5). 

To further explore increased burden of coding variants in PD, we next analyzed the PPMI cohort. 

Although no results survived Bonferroni correction, we observed the highest burden for PAVs 

with frequency <0.001 in all PD cases (P=0.01, beta=0.02, SE=0.009). Interestingly, the strongest 

effect size was seen for LoFs with frequency <0.001 in LOPD (P=0.026, beta=0.152, SE=0.07) 

(Supplementary Fig. 3A, Supplementary Table 6). To explore this further, we repeated the 

analysis after removing URVs and observed that both the effect size and significance increased 

(P=0.014, beta=0.20, SE=0.08; Supplementary Fig. 3B, Supplementary Table 7). For 

synonymous and noncoding variants, no frequency category survived multiple testing correction 

(Supplementary Fig. 4, Supplementary Table 8). 

 

Functional landscape of PD-associated damaging coding variants.  

Enrichment in gene-sets of highly constrained genes 

Using the Sequence Kernel Association Test–Optimal (SKAT-O)11, we observed the most 

significant enrichment for NSN URVs within genes with high probability of being intolerant to 

heterozygous loss-of-function mutations (pLI >0.9, P=1.25x10-20) followed by genes highly 

intolerant to 2 loss-of-function mutations (recessive) (pRec >0.9, P=1.74x10-18) and lastly in genes 

highly tolerant to loss-of-function variation (pNull >0.9, P=1.35 x10-9) (Fig. 2A). For PAVs, the 

most significant enrichment was observed in pRec >0.9 (P=2.22x10-17), followed by pLI >0.9 

(6.42x10-17) and then pNull >0.9 (P=1.65x10-11). LoF variants showed enrichment only in pRec 

>0.9 (P=0.01) and pNull >0.9 gene-sets (P=0.02). For IPDGC 40+ PD cases, we analyzed the 

variants with frequency above singletons and observed a significant enrichment of PAVs and 
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NSNs variants across all three categories, with the most significant signal in pRec >0.9 genes 

(PAV, P=1.55x10-5; NSN, P=3.0x10-4; Supplementary Fig. 5A). For the PPMI cohort, no 

significant associations were observed after multiple testing correction (Supplementary Table 9); 

however, the top signals P-values were observed in LoFs with frequency above rare singleton in 

pRec >0.9 genes analyzed in 40+ PD cases, and in LoFs with frequency <0.001 without URVs in 

pNull >0.9 genes analyzed in LOPD cases. 

 

Enrichment in molecular gene-sets and pathways 

Using the Hallmark MsigDB12 gene-sets, we observed significant enrichment in NSN URVs 

within genes up-regulated in response to ultra-violet radiation (UV) (MsigDB name=M5941, 

P=3.58x10-6; Fig. 2B upper panel), followed by the Mitotic Spindle (M5893, P=2.68x10-4). For 

PAVs, we observed enrichment in genes found in the Apical Junction pathways (M5915, 

P=4.46x10-4). In the C2 gene-sets, the top enrichment was seen for PAV URVs within the Immune 

System pathway (M1045, P=1.84x10-7, Fig. 2B lower panel) and the Reactome Metabolism of 

Lipids and Lipoproteins (M27451, P=2.86x10-5). For NSN URVs, the NABA Matrisome pathway 

(M5889, P=2.28x10-7) was observed to be enriched. For less rarer variants in IPDGC 40+ PD cases 

(frequency > singletons), the top enriched Hallmark pathway was for NSNs within the Bile Acid 

Metabolism (M5948, P=1.63x10-8), and for the C2 gene-set, the NABA extra cellular membrane 

Affiliated Proteins pathway (M5880, P=6.03x10-8). Different pathways were highlighted between 

the Hallmark and C2 gene-sets, with the only overlap found in the C2 NABA Matrisome pathway 

(M5889, P=4.67x10-6, Supplementary Fig. 5B lower panel). No significant results were observed 

for variants in 40+ PD (frequency > singletons) and LOPD (frequency <0.001 without URVs) in 

the PPMI dataset (Supplementary Table 10). Previous reports that had performed pathway 
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burden analyses have found enrichment of rare damaging NSN variants in both lysosomal storage 

disorder7 (LSD) genes (frequency <0.03) and mitochondrial DNA maintenance pathway genes 

(frequency <0.01)13. To validate our hypothesis-free methodology, we performed burden analysis 

on these two specific pathways. We found that URVs were significantly enriched in the 

mitochondrial DNA maintenance on EOPD individuals (P=0.016). We also observed that the LSD 

genes enrichment was only significant when using more common variants (frequency <0.05) and 

that the association was driven by 40+ PD cases (P=1.67x10-4, Supplementary Table 11). 

 

Enrichment in highly expressed genes across specific tissues from GTEx 

We observed significant enrichment signals for genes harboring URVs in EOPD individuals in all 

GTEx brain tissues14, for all three types of variant categories (Fig. 2 C). Interestingly, significant 

enrichment of PAVs and NSN variants was also detected in several other tissues. For 40+ PD 

cases, we observed a different landscape for PAVs and NSNs, with no enrichment surpassing 

multiple testing correction in any brain tissue. For LoF variants the enrichment was significant in 

other tissues suggesting a distinct contribution compared to the observations in EOPD 

(Supplementary Fig. 5C). No significant results were observed in the PPMI dataset 

(Supplementary Table 12). 

 

Protein-protein interaction networks and single-cell enrichment analysis of gene-wise 

burden 

Gene-wise burden and PPI analysis 

Although no genes survived multiple-testing correction, we carried out a protein-protein 

interaction (PPI) network analysis to explore all nominally significant genes (unadjusted SKAT-
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O P<0.05, n=308; Supplementary Table 13) in EOPD and 40+ PD cases. Leveraging both 

WebgestaltR15 and STRING16, we observed a significant network (STRING P=0.01, 

Supplementary Fig. 6). No significant gene ontology (GO) enrichment was observed, however, 

the top GO term detected was the Regulation of Microtubule Cytoskeleton Organization 

(GO:0070507) which was driven by nine URV containing genes: AKAP9, APC, CAMSAP2, 

CDK5RAP2, CEP120, CKAP2, CYLD, KIF11 and TPR (Supplementary Table 14). After 

including 25 known and suggested PD genes17 (Supplementary Table 15), the network 

significance dramatically increased (STRING P<1x10-16, Fig. 3A). Within this network, we 

observed significant GO enrichment within the Negative Regulation of Neuron death pathway 

(GO:1901215, FDR=4.93x10-6; Supplementary Table 16), containing 7 genes harboring URVs: 

FGF8, HYOU1, ITSN1, PPP5C, MAP3K5, NAE1, and SIRT1. We next repeated this analysis, but 

now including 303 genes tagged by the 90 PD GWAS loci1, which also yielded a significant 

network (STRING P <1x10-16, Supplementary Fig. 7). Within this network, the most significant 

specific GO biological process was the Intrinsic apoptotic signaling pathway in response to 

endoplasmic reticulum (ER) stress (GO:0070059, FDR=4.2x10-3, Supplementary Table 17) 

containing five genes harboring URVs (CREB3, ERN1, HYOU1, MAP3K5, and SIRT1).   

 

Enrichment in specific brain cell types 

We next aimed to identify specific mouse brain cell-types expressing the 308 URV harboring 

genes using EWCE18,19. We observed significant enrichment on the following three cell types 

(FDR P <0.05): serotonergic neurons; endothelial mural cells, and vascular leptomeningeal cells 

(Fig. 3 B).  These results show that URVs could be playing an important role in specific cell-types 

within the brain. 
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Heritability of URVs in PD 

Heritability estimation in EOPD using SingHer20, showed that URVs account for 15.9% of the 

genetic component, 4.6% to All PD cases and 2.2% to 40+ PD. These results support our previous 

findings regarding the difference of URVs between different AOOs in PD. 

 

DISCUSSION 

Here we have comprehensively studied the burden of rare variants in PD using WES datasets from 

1,425 idiopathic PD cases and 596 healthy controls. We have found an increased burden of 

damaging URVs across affected cases, and observed the highest significance in EOPD individuals, 

suggesting that some of the missing heritability of EOPD may be accounted for by private variants.  

URVs have been increasingly gaining attention due to the explosion of NGS-based studies, and 

have been shown to have a major impact in gene-expression regulation, explaining near ~25% of 

the heritability20. Similar increased URVs burdens have been seen in schizophrenia21, epilepsy22 

and Alzheimer’s disease23, being identified as an important source of genetic risk. Here, we 

estimated that URVs contribute ~15% towards the heritability of PD which is more than half of 

the current heritability estimates derived from GWAS identified common variants (~26%)1. This 

indicates that URVs may play a major sizeable role in PD etiology thereby warranting further 

research. 

Unique patterns of constrained gene-set enrichment were observed for EOPD and 40+ PD/LOPD. 

URVs in EOPD predominantly mapped to highly constrained genes (pLI >0.9) suggesting that 

EOPD may be driven by hetero- and homozygous highly deleterious private variants/URVs. In 

contrast, 40+ PD and LOPD appear to be driven by more common/infrequent variants (frequency 

>rare singletons) in genes that are intolerant to homozygous LoF variants mostly (pRec >0.9). 
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Their presence within the general population suggests that these variants may be less damaging or 

have incomplete penetrance, further complicating variant discovery efforts. Our results therefore 

support previous assertions that different genes/variants and inheritance patterns contribute to 

EOPD and LOPD24. While EOPD-specific molecular signatures have recently been uncovered25, 

more studies are needed to investigate the different etiologies in EOPD and LOPD. 

While it is premature to comment on the functional pathways highlighted in the 40+ PD and LOPD, 

many of the pathways pulled out in the EOPD analysis are of interest. Much research has 

investigated the proposed genetic link between PD, pigmentation (peripheral melanin and 

neuromelanin) and melanoma26,27, therefore the identified high burden of EOPD URVs in the 

MsigDB hallmark UV response pathway further highlights the link between PD and melanoma, 

and additionally implicates a role for pigmentation in disease pathology. The mitotic spindle 

pathway is associated with microtubule stabilization, a process known to be dysregulated in PD28. 

Recent evidence has shown that dopamine deficiency (a hallmark of PD) perturbs circadian/mitotic 

gene networks resulting in increased expression of mitotic spindle pathway genes in the striatum 

of PD patients29. Our observations of increased enrichment of URVs in genes involved in this 

pathway adds support to its potential role in PD etiology. The apical junction pathway is composed 

of genes implicated in cell-cell contacts, which are structurally important for different biological 

functions, such as the intestinal epithelial barrier30. Structural alterations of the intestinal epithelial 

barrier have been found in PD patients31, and in Crohn’s disease – both of which have LRRK2 as  

common genetic factor32. Thus, our findings of high burden of URVs in the apical junction pathway 

may provide some evidence for the observed link between the etiology of PD and the 

gastrointestinal track. URVs enriched in pathways relating to the Immune System and the 

Metabolism of Lipids and Lipoprotein are interesting targets for functional validation, since they 
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are established biological processes affected in PD pathophysiology33,34. The enrichment observed 

in the Matrisome pathway is of note, since constituent genes are key components of the extra 

cellular matrix (ECM). Functional and structural damage to the ECM during aging has been 

observed35, impacting important brain structures such as the blood-brain barrier36, which is known 

to be affected in both PD and Alzheimer’s disease37. The distinct pattern of enrichment of URV 

harboring genes in brain tissues provide some evidence of their possible functional role, along with 

the pathways found. Intriguingly, there is again no overlap in the enrichment in EOPD compared 

to 40+ PD cases, showing different pathways which reinforce the notion of distinct genetic 

architectures between AOOs.  It is of note that for 40+ PD cases, the enrichment found in non-

brain regions suggests that the roles of the genes/variants involved in LOPD pathogenesis may not 

be restricted to the brain, which is in agreement with recent evidence indicating that PD risk loci 

genes do not lie only in specific brain cell types or regions, but are involved in global cellular 

processes detectable across other tissues/organs38.   

Although not a single gene survived multiple testing correction, several genes with suggestive 

enrichment of URVs are interesting candidates. SLC39A1 mutations have been found to disrupt 

manganese homeostasis and cause childhood-onset parkinsonism-dystonia39. SRGAP3 is 

differentially expressed in dopaminergic SN neurons40, and it is part of the axon guidance pathway 

already implicated in PD41,42. FGF8 improves dopaminergic cell survival and functional 

restoration in a rat PD model43. HYOU1 plays an important role in hypoxia-induced apoptosis as 

it accumulates within the endoplasmic reticulum (ER) under hypoxic conditions44 with its 

suppression associated with accelerated cell death45. The significant PPI networks identified here 

(GO:1901215, 0070059), while adding strength to our approach, further highlight the important 

roles that neuronal death regulation and ER stress play in PD etiology. Much research has linked 
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ER stress response to PD pathogenesis (reviewed in Colla, 201946), and pathways related to ER 

stress such as the unfolded protein response are strongly differentially expressed in prefrontal 

cortex of PD patients47. Several highly interconnected genes within these networks are of interest: 

SIRT1 (11 interactions) has been shown to be protect against PD in cellular and animal models48; 

MAP3K5 (4 interactions) is inhibited by DJ-1 (PARK7)49; and ITSN1 (4 interactions) is involved 

in endosomal and lysosomal trafficking50, which contributes to PD risk through increased 

expression51.  

At the cell-type level, the significant enrichment observed in endothelial-mural cells (vascular 

smooth muscle cells and pericytes that constitute key structures of the blood-brain barrier52) is in 

line with our observations of high burden of URVs in the Matrisome pathway. The observed 

enrichment in serotoninergic neurons gives novel insights into previous genetic observations of 

serotonergic dysfunction in PD, where SNCA p.Ala53Thr carriers have reduced brain serotonin 

transporters53 and LRRK2 mutation carriers have increased serotonin transporters in the brain54. 

Enrichment in vascular leptomeningeal cells in conjunction with recent GWAS findings55, 

suggests that both common and URVs within genes important for brain repair mechanisms and 

neurogenesis56 play a role in PD pathology. Together, these data help us expand our understanding 

of the disease etiology and the role of URVs in PD pathogenesis.    

The main limitation of this work relates to insufficient statistical power to detect variant burden 

and the lack of appropriate age-matched replication cohorts, despite the fact that the IPDGC and 

PPMI PD cohorts are some of the largest WES datasets available. Not only do we expect that larger 

genetic cohorts will help replicate our findings, they would also edge this study closer to the 

prohibitively large sample sizes that are currently needed to achieve the sufficient power. Our 

observations that both synonymous and noncoding variants appear enriched in PD suggest that our 
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findings could be inflated by a global spurious excess of singleton variants within our datasets. 

However, our strict QC (Ts/Tv ratios within acceptable ranges) and the fact that after correcting 

the URV burden for the total number of singletons our effect sizes increased and gained 

significance argue against this. Synonymous and noncoding variants are known to contribute to 

disease pathology through a wide variety of mechanisms, mostly associated to the regulation of 

gene expression through disruption of transcription factor binding sites, enhancers and splicing 

sites57-59. It is therefore plausible that these variants are not completely neutral and may contribute 

to PD etiology, however, more studies are needed to accurately elucidate their role in PD. 

Overall, this study shows that URVs have a major contribution to PD, especially in early-onset 

individuals which have a distinct genetic background from sporadic cases. The identified URVs 

are significantly enriched in disease relevant gene-sets, pathways and genes that interact with each 

other as well as with known and suggested PD genes. Our results help to broad the understanding 

of PD genetic risk load in different age of onset and expand the landscape of biological pathways 

potentially involved in this devastating disease.  

 

METHODS 

Ethical Statement 

This study was approved by the corresponding local ethical scientific committees. More detailed 

data usage authorizations are provided elsewhere5,9. 

 

Samples used in the study 

International Parkinson’s Disease Genomics Consortium (IPDGC) WES cohort. The IPDGC 

WES data used consisted of a total number of 1,933 self-reported European individuals, composed 
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of 1,398 PD cases and 535 neurologically healthy controls (https://pdgenetics.org/resources). A 

more detailed description of the cohort is reported elsewhere5. 

Parkinson’s Progression Markers Initiative (PPMI) WES study. The PPMI WES dataset includes 

645 individuals, composed of 462 PD cases and 183 healthy controls, all of self-reported European 

descent. Data were obtained from the PPMI database under the appropriate PI membership 

(www.ppmi-info.org/data)9. 

 

Data processing and quality controls 

WES data generation and processing details for both IPDGC and PPMI cohorts have been 

previously described5,9. All analyses were performed using VCF files acquired through authorized 

requests. 

For both cohorts, following multiallelic variant splitting and left normalization of 

insertion/deletions (indels) with BCFTools60, we removed variants with genotype quality (GQ) 

<20, read depth (DP) <8, call rate (CR) < 90%, Hardy-Weinberg equilibrium p<0.000001 and 

monomorphic sites. Then, we removed individuals with (i) >5% missing genotype call rates, (ii) 

cryptic relationships (pi hat >0.125) and (iii) high rates of genotype heterozygosity (>5 standard 

deviations). We also removed all non-European individuals as determined by principal component 

analysis (PCA) using SMARTPCA61,62 with the 1000 genome project phase 3 used as a reference 

population63. Subjects with established pathogenic variants in known Parkinson’s disease genes 

(LRRK2, SNCA, PINK1, VPS35, PARK2 and DJ-1) were detected and excluded from in both 

datasets. Following QC, we obtained 1,494 IPDGC samples (1,042 PD cases, 452 controls) and 

527 PPMI samples (383 PD cases, 144 controls) with a total of 366,746 and 412,223 variants 
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respectively. We performed Transition/Transversion (Ts/Tv), Heterozygous/Homozygous 

(Het/Hom) and Insertion/Deletion (In/Del) ratios calculations with SnpSift V.4064. 

 

Variant annotation and selection 

Variants were annotated using ANNOVAR65, and categorized in two ways. First, using variant 

frequency data within each cohort and from the gnomAD database10, variants were labelled 

according to their observed alternative allele frequency as being infrequent (<5%), rare (<1%), 

very rare (<0.1%), singletons (seen in a single carrier in the cohort, but also in gnomAD) and 

URVs (singletons absent from gnomAD). Second, using variant functional prediction categories, 

variants were stratified into (a) synonymous, (b) noncoding (c), nonsynonymous (NSN), (d) loss-

of-function (LoF) (frameshift/non-frameshift In/Dels, stop gains/losses and splicing) and (e) 

protein altering (PAVs, encompassing NSN and LOF variants). We kept PAVs, NSN and LoF 

variants that were predicted to be damaging by the CADD algorithm66 (score ≥12.37) . For 

synonymous and noncoding variants, we used variants with CADD < 12.37 as “benign” and > 

12.37 as “damaging”.  

 

Whole-exome, gene-set and gene-wise burden analysis 

All burden analyses were performed on all PD cases and controls, and then stratified for EOPD 

(AOO <40 years old), older than 40 years (40+ PD) and LOPD (AOO >60 years old), in order to 

assess the genetic profiles across different AOO groups. All burden tests were performed for each 

variant frequency/functional category using logistic regression with the glm R package67. Here, we 

modeled the variant allele counts across the entire exome for each individual with disease status, 
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adjusting for sex, population structure (PC1-PC5) and capture metrics (10x percentage of exome 

coverage).  

For the gene-set analysis, we used SKAT-O R package11, on the most significant whole-exome 

burden categories detected, and we grouped variants according to different gene-set categories. 

First, we used gene constraint metrics from the gnomAD database. We selected all variants within 

genes with high pLI, pRec and pNull scores (pLI >0.9, n=3,230; pRec >0.9, n=4,510; pNull >0.9, 

n=2,096).  Second, we used the following gene-set definitions from the Molecular Signatures 

database v.6.2 (MsigDB)12: (a) The Hallmark gene-sets composed of 50 gene groups that 

summarize and represent specific well-defined biological states or processes and display coherent 

expression. These gene sets were generated by a computational methodology based on identifying 

overlaps between gene sets in other MSigDB collections and retaining genes that display 

coordinate expression; (b) The C2 gene-set, composed of 4,762 sets curated from various sources 

such as online pathway databases, the biomedical literature, and knowledge of domain experts. 

Third, we used gene expression data from 54 tissues from the GTEx v.8 database14 (gene median 

transcripts per million per tissue). We selected genes where expression in a given tissue was five 

times higher than the median expression across all tissues, as previously used68. We obtained 

SKAT-O association P-values for each gene-set after correction for multiple testing using a family-

wise error rate (FWER <0.05), calculated based on 10,000 permutations. 

For the gene-wise analysis, we used SKAT-O with the same covariates as the gene-set approach 

and correcting for multiple testing using FWER < 0.05. Genes with at least two carriers and an 

uncorrected P-value of <0.05 were kept for further PPI network and single-cell RNASeq 

enrichment analyses. 
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Protein-protein interaction network analysis and single-cell enrichment of gene-wise burden 

candidates 

To study the interplay between proteins coded by genes prioritized by the gene-wise burden 

analysis, we utilized the R package WebgestaltR15 to build PPI networks via network topology 

analysis and random walk algorithm. Using the Network Retrieval and Prioritization mode, we 

submitted the list of genes in different combinations: first, the gene-wise burden candidates list 

alone (Supplementary Table 13), then adding 26 known and suggested EOPD genes 

(Supplementary Table 15) and finally including 303 genes of interest tagged by the 90 risk loci 

coming from the recent PD GWAS meta-analysis1. GO analysis enrichment were obtained from 

the Biogrid PPI Networks database69. FDR adjustment was used to correct for multiple testing. In 

order to obtain PPI enrichment statistics, we submitted the same combination of genes to 

STRING16, and retrieved high confidence networks. For visualization and feature annotation 

purposes we loaded the resulting networks to Cytoscape v.3.7.270.   

To observe if genes coming from the gene-wise burden analyses play a role in specific brain cell 

types, we used the Expression Weighted Cell Type Enrichment analysis (EWCE)18 with single-

cell and single-nuclei RNASeq expression datasets from 24 brain cell types from mice55. Briefly, 

the EWCE pipeline identifies mouse orthologs (if available), and then tests whether genes have 

higher expression levels in a given cell type than can reasonably be expected by chance. The 

enrichment tests are corrected using the Benjamini-Hochberg FDR method. 

 

Heritability estimation of ultra-rare variants 

We used the Singleton Heritability inference with REML (SingHer) R package20 to calculate the 

heritability of URVs in EOPD, all PD cases and 40+ in the IPDGC cohort. 
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Figure Legends 

 

Figure 1. Whole-exome burden of rare coding damaging variants in the IPDGC cohort. 

Burden analysis of different variant frequencies and functional categories for all PD cases, cases 

over under 40 years old (EOPD) and over 40 years old (40+). Logistic regression -log10(P-values) 

and beta coefficients are represented for: A) Burden from variants with 5% or less frequency to 

ultra-rare variants (URVs). B) Burden towards more common variants removing lower frequency 

variants from each variant category. AAF: Alternative allele frequency; PAV: Protein-altering 

variants; NSN: Nonsynonymous variants; LoF: Loss-of-function variants. 

 

Figure 2. Gene-set burden analysis in the IPDGC cohort for EOPD cases. Gene-set analysis 

performed with SKAT-O using PAV, NSN and LoF URVs using gene lists from: A) gnomAD 

gene constraint metrics pLI, pRec and pNull (>0.9); B) MsigDB Hallmark pathways (upper panel) 

and C2 curated pathways (lower panel); C) High expression genes from 54 tissues in the GTEx 

database V8. A family-wise error rate P <0.05 was used as a threshold for statistically significant 

results. 

 

Figure 3. Protein-protein Interaction Network and Single-Cell enrichment analysis of gene-

wise burden results in EOPD. A) Network built using 308 genes with SKAT-O P <0.05 from 

EOPD URVs and 26 known and suggested PD causal genes with WebGestalt Network Topology-

based Analysis (NTA). Statistics from STRING using the same list of genes are included. Shades 

of blue indicate SKATO P-values from less (light-blue) to more significant (dark-blue) burden 

association. Node size indicate the number of variants observed in each gene and the green 
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perimeter around the nodes show genes members of significant gene-ontology enrichment results. 

B) Single-cell and single-nuclei RNASeq enrichment analysis of EOPD gene-wise burden list 

leveraged using expression datasets from 24 mice brain tissues. Red bars represent significant 

results surpassing a FDR cutoff of <0.05. 
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Table 1. Whole-exome cohorts analyzed in the present study 
 
 

Whole-exome 
cohort 

Median age of 
PD onset 

Median age of 
recruitment in 

controls 
Burden groups Sample size Cases Controls 

IPDGC 43.02 (± 10.63) 46.20 (± 26.07) 

All 1,494 1,042 452 

Cases <40 y/o (EOPD) 890 438 452 

Cases >40 y/o 1,056 604 452 

PPMI 61.62 (± 9.72) 61.11 (± 10.18) 

All 527 383 144 

Cases >40 y/o 518 374 144 

Cases >60 y/o (LOPD) 376 232 144 
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Figure 1. 
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Figure 2. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

●

● ●

●

● ●
●

●

●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

● ●

● ●
● ● ●

●

●

● ●
● ●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

0
5

10
15

20
25

Ad
ipo

se
 - 

Su
bc

uta
ne

ou
s

Ad
ipo

se
 - 

Vi
sc

er
al_

(O
men

tum
)

Ad
re

na
l - 

Glan
d

Ar
ter

y -
 A

or
ta

Ar
ter

y -
 C

or
on

ar
y

Ar
ter

y -
 T

ibi
al

Bl
ad

de
r

Br
ain

 - 
Am

yg
da

la

Br
DLQ
�ï�
$Q
WHr

ior
_c

ing
ula

te_
co

rte
x_

(B
A2

4)

Br
ain

 - 
Ca

ud
ate

_(
ba

sa
l_g

an
gli

a)

Br
ain

 - 
Ce

re
be

lla
r_

He
misp

he
re

Br
ain

 - 
Ce

re
be

llu
m

Br
ain

 - 
Co

rte
x

Br
ain

 - 
Fr

on
tal

_C
or

tex
_(

BA
9)

Br
ain

 - 
Hi

pp
oc

am
pu

s

Br
ain

 - 
Hy

po
tha

lam
us

Br
ain

 - 
Nu

cle
us

_a
cc

um
be

ns
_(

ba
sa

l_g
an

gli
a)

Br
ain

 - 
Pu

tam
en

_(
ba

sa
l_g

an
gli

a)

Br
ain

 - 
Sp

ina
l_c

or
d_

(ce
rYL
FD
OBF
ï�
�

Br
ain

 - 
Su

bs
tan

tia
_n

igr
a

Br
ea

st 
- M

am
mar

y_
Tis

su
e

Ce
lls

 - 
Cu

ltu
re

d_
fib

ro
bla

sts

&H
OOV
���
(%
9ï
Wra

ns
for

med
_ly

mph
oc

yte
s

Ce
rvi

x -
 E

cto
ce

rvi
x

Ce
rvi

x -
 E

nd
oc

er
vix

Co
lon

 - 
Si

gm
oid

Co
lon

 - 
Tra

ns
ve

rse

Es
op

ha
gu

s -
 G

as
tro

es
op

ha
ge

al_
Ju

nc
tio

n

Es
op

ha
gu

s -
 M

uc
os

a

Es
op

ha
gu

s -
 M

us
cu

lar
is

Fa
llo

pia
n_

Tu
be

He
ar

t -
 A

tria
l_A

pp
en

da
ge

He
ar

t -
 Le

ft_
Ve

ntr
icl

e
Ki

dn
ey

 - 
Co

rte
x

Ki
dn

ey
 - 

Med
ull

a
Liv

er
Lu

ng

Mino
r_

Sa
liv

ar
y_

Glan
d

Mus
cle

 - 
Sk

ele
tal

Ne
rve

 - 
Tib

ial
Ova

ry
Pa

nc
re

as
Pi

tui
tar

y
Pr

os
tat

e

Sk
in 

- N
ot_

Su
n_

Ex
po

se
d_

(S
up

ra
pu

bic
)

Sk
in 

- S
un

_E
xp

os
ed

_(
Lo

we
r_

leg
)

Sm
all

_In
tes

tin
e -

 Te
rm

ina
l_I

leu
m

Sp
lee

n
St

om
ac

h
Te

sti
s

Th
yro

id
Ut

er
us

Va
gin

a
W

ho
le_

Bl
oo

d

●

● ●

●

● ● ●

●

●
●

● ●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

● ●
● ● ●

● ●

● ●
● ● ●

●
●

●

●
● ● ● ●

●
●

● ● ●
● ● ●

●

●

● ● ● ● ● ● ● ● ●

●

●
● ●

●
● ●

●
●

● ●
●

●
● ●

PAV
NSN
LOF

-lo
g(

P 
va

lu
e)

 S
KA

T-
O

 te
st

H_MITOTIC_SPINDLE

H_APICAL_JUNCTION

H_UV_RESPONSE_UP

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

PAV NSN LOF

FWER P < 0.05

R_IMMUNE_SYSTEM

N_MATRISOME

R_HEMOSTASIS

R_SIGNALING_BY_GPCR

R_GPCR_DOWNSTREAM_SIGNALING

R_ION_TRANSPORT_BY_P_TYPE_ATPASES

R_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS

N_CORE_MATRISOME

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

FWER P < 0.05

PAV NSN LOF

A B

C

ïORJ�3�value) SKA7ï2�Test

●

●

●

FWER P < 0.05

ïORJ�3�value) SKA7ï2�Test

PAV

NSN

LOF

PAV

NSN

LOF

PAV

NSN

LOF

pLI  >  0.9

pRec  >  0.9

pNull  >  0.9

ïORJ�3�value) SKA7ï2�Test

0 5 10 15 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.06.137299doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.137299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3.  
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