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Abstract 37 

Background 38 

Tumor-specific genomic aberrations are routinely determined by high throughput genomic 39 

measurements. It remains unclear though, how complex genome alterations affect molecular networks 40 

through changing protein levels, and consequently biochemical states of tumor tissues.  41 

Results 42 

Here, we investigated the propagation of genomic effects along the axis of gene expression during 43 

prostate cancer progression. For that, we quantified genomic, transcriptomic and proteomic alterations 44 

based on 105 prostate samples, consisting of benign prostatic hyperplasia regions and malignant tumors, 45 

from 39 prostate cancer patients. Our analysis revealed convergent effects of distinct copy number 46 

alterations impacting on common downstream proteins, which are important for establishing the tumor 47 

phenotype. We devised a network-based approach that integrates perturbations across different 48 

molecular layers, which identified a sub-network consisting of nine genes whose joint activity positively 49 

correlated with increasingly aggressive tumor phenotypes and was predictive of recurrence-free survival. 50 

Further, our data revealed a wide spectrum of intra-patient network effects, ranging from similar to very 51 

distinct alterations on different molecular layers.  52 

Conclusions 53 

This study uncovered molecular networks with remarkably convergent alterations across tumor sites and 54 

patients, but it also exposed a diversity of network effects: we could not identify a single sub-network 55 

that was perturbed in all high-grade tumor regions. 56 

 57 

Keywords: molecular aberrations, network effects, prostate cancer, proteogenomic analysis, tumor 58 
heterogeneity  59 
  60 
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Background 61 

Prostate cancer (PCa) represents one of the most common neoplasm among men with almost 62 

1,300,000 new cases and 360,000 deaths in 2018 1 accounting for 15% of all cancers diagnosed. PCa is 63 

the fifth leading cause of cancer death in men and represents 6.6% of total cancer mortality in men [1]. 64 

Despite earlier detection and new treatments, the lifetime risk to die of PCa has remained stable at 65 

approximately 3% since 1980. (National Cancer Institute SEER data: 66 

https://seer.cancer.gov/statfacts/html/prost.html). In many patients, PCa is indolent and slow growing. 67 

The challenge is to identify those patients who are unlikely to experience significant progression while 68 

offering radical therapy to those who are at risk. Current risk stratification models are based on 69 

clinicopathological variables including histomorphologically defined grade groups, prostate-specific 70 

antigen (PSA) levels and clinical stage. Although those variables provide important information for 71 

clinical risk assessment and treatment planning [2, 3], they do not sufficiently predict the course of the 72 

disease.  73 

 Extensive genomic profiling efforts have provided important insights into the common genomic 74 

alterations in primary and metastatic PCa [4-9]. Interestingly, PCa genomes show a high frequency of 75 

recurrent large-scale chromosomal rearrangements such as TMPRSS2-ERG [10]. In addition, extensive 76 

copy number alterations (CNAs) are common in PCa, yet point mutations are relatively infrequent in 77 

primary PCa compared to other cancers [6, 11]. A major complicating factor is that around 80% of PCas 78 

are multifocal and harbor multiple spatially and often morphologically distinct tumor foci [12, 13]. 79 

Several recent studies have suggested that the majority of topographically distinct tumor foci appear to 80 

arise independently and show few or no overlap in driver gene alterations [14-16]. Therefore, a given 81 

prostate gland can harbor clonally independent PCas.  82 

 To allow for a more functional assessment of the biochemical state of PCa, it is necessary to go 83 

beyond genomic alterations and comprehensively catalogue cancer specific genomic, transcriptomic and 84 

proteomic alterations in an integrated manner [17-19]. Such an approach will provide critical 85 

information for basic and translational research and could result into clinically relevant markers. While 86 

hundreds of PCa genomes and transcriptomes have been profiled to date [20], little is known about the 87 

PCa proteome. Although recent work has emphasized the need for integrated multi-omics profiling of 88 

PCa, we still lack understanding about how genomic changes impact on mRNA and protein levels [17-19]. 89 

Especially the complex relationship between tumor grade, tumor progression and multi-layered 90 

molecular network changes remains largely elusive. 91 
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For example, previous work has shown that copy number changes may alter transcript levels of 92 

many genes, whereas the respective protein levels remain relatively stable [21]. Indeed, there is 93 

compelling evidence across multiple tumor types that many genomic alterations are ‘buffered’ at the 94 

protein level and are hence mostly clinically inconsequential [22]. To better understand the evolution of 95 

PCa and to identify core networks perturbed by genomic alterations and thus central for the tumor 96 

phenotype, it is therefore essential to investigate the transmission of CNAs to the transcriptomic and 97 

proteomic level.  98 

 To this end, it is important to decipher which genomic alterations impact PCa proteomes, which 99 

of those proteomic alterations are functionally relevant, and how molecular networks are perturbed at 100 

the protein level across tumors. 101 

To address these open questions, we performed a multi-omics profiling of radical prostatectomy 102 

(RP) specimens at the level of the genome, transcriptome and proteome from adjacent biopsy-level 103 

samples, using state-of-the-art technologies. Unique features of this study are (1) the utilization of PCT 104 

(pressure cycling technology)-SWATH (Sequential Window Acquisition of all THeoretical Mass Spectra) 105 

mass spectrometry [23, 24], allowing rapid and reproducible quantification of thousands of proteins 106 

from biopsy-level tissue samples collected in clinical cohorts; (2) the simultaneous profiling of all omics 107 

layers from the same tissue regions; (3) inclusion and full profiling of benign regions, which provides a 108 

matching control for each tumor; and (4) the full multi-omics characterization of multiple tumor regions 109 

from the same patients, thus enabling the detailed investigation of tumor heterogeneity. This design 110 

resulted in the multi-layered analyses of 105 samples from 39 PCa patients, as well as of the exome of 111 

corresponding peripheral blood cells yielding a comprehensive molecular profile for each patient and 112 

identified molecular networks that are commonly altered in multiple patients. Importantly, some of the 113 

affected genes/proteins exhibited very small individual effect sizes, suggesting that combined network 114 

effects of multiple genes may significantly contribute to determining PCa phenotypes. 115 

Results 116 

Proteogenomic analysis of the sample cohort identifies known PCa biomarkers. 117 

 In this study, we analyzed 39 PCa patients (Additional file 1: Fig. S1) belonging to three groups 118 

who underwent laparoscopic robotic-assisted RP. The patients were from the PCa Outcomes Cohort 119 

(ProCOC) study [25, 26]. Tumor areas were graded using the ISUP (International Society of Urological 120 

Pathology) grade groups [27], which range from ISUP grade group G1 (least aggressive) to G5 (most 121 
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aggressive). The more advanced grade groups G4 and G5 are considered jointly (G4/5). The cohort 122 

tested included 12 low-grade (G1), 17 intermediate- (G2 and G3), and 10 high-grade (G4/5) patients (Fig. 123 

1a, Additional file 1: Fig. S1, Additional file 2: Table S1). For low-grade PCa patients, we selected two 124 

representative regions, one of benign prostatic hyperplasia (BPH) and one of malignant tumor (TA). Since 125 

PCa often presents as a multifocal disease with heterogeneous grading within each prostate specimen 126 

[24] we analyzed two different tumor regions from the 27 intermediate- and high-grade patients. In 127 

those cases three representative regions, including BPH, the most aggressive tumor (TA1) and a 128 

secondary, lower-grade tumor (TA2) [2] were analyzed. Thus, TA1 always represented the higher-grade 129 

nodule compared to TA2. Note, whereas each patient was assigned a patient-specific overall grade (i.e. 130 

‘low’, ‘intermediate’ or ‘high’), each tumor area was additionally assigned an individual grade group 131 

based on its histological appearance. According to current ISUP guidelines, the grading of the entire 132 

prostate specimen depends on the size and grade of individual nodules [28]. Thus, it is possible that the 133 

patient grading is lower than the grading of the most aggressive nodule, if another lower-grade nodule is 134 

larger. Tumor regions contained at least 70% tumor cellularity and the distance between the analyzed 135 

areas (TA1 versus TA2) was at least 5 mm. Altogether, we obtained 105 prostate tissue specimens 136 

(Additional file 2: Table S1). Three adjacent tissue biopsies of the dimensions 0.6 x 0.6 x 3.0 mm were 137 

punched from each representative region for exome sequencing, CNA (derived from the exome 138 

sequencing data), RNA sequencing (RNA-seq), and quantitative proteomic analysis using the PCT-SWATH 139 

technology [23] respectively. Proteomic analysis was performed in duplicates for each tissue sample. 140 

Peripheral blood samples from each patient were also subjected to exome sequencing and served as the 141 

genomic wild-type reference (Fig. 1). All three types of grading (i.e. patient-specific overall grading, TA1 142 

grading and TA2 grading) were predictive of the recurrence-free survival (RFS) in our study. 143 

In agreement with prior reports, we observed relatively few recurrent point mutations across 144 

patients (Additional file 1: Fig. S2, Additional file 3: Table S2), but substantial CNAs (Additional file 1: 145 

Figs. S3 and S4, Additional file 4: Table S3). In total, 1,110 genes showed copy number gains in at least 146 

five samples or copy number losses in at least five samples (see Additional file 1: Supplementary Text 147 

for details). Likewise, our data confirmed the differential expression of several transcripts/proteins that 148 

had previously been suggested as PCa biomarkers or which are known oncogenes in other tumor types 149 

(Additional file 1: Fig. S5, Additional file 5: Table S4 and Additional file 6: Table S5) (see Additional file 150 

1: Supplementary Text for details). This consistency with previously published results confirmed the 151 

quality of our data and motivated us to go beyond previous work by performing a network-based multi-152 

omics multi-gene analysis. 153 
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Molecular perturbations correlate with tumor grade. 154 

 As a first step towards a cross-layer analysis, we asked if high-grade PCa would be generally 155 

affected by stronger alterations (compared to low-grade PCa) at the genome, transcriptome, and 156 

proteome layer [29]. Thus, we devised molecular perturbation scores that quantified the number of 157 

affected genes/proteins and the extent to which these genes/proteins were altered in the tumor 158 

specimens compared to their benign controls (see the ‘Methods’ section for details). Higher-grade 159 

tumors (G3 and G4/5) exhibited significantly higher molecular perturbation scores than lower-grade 160 

tumors (G1 and G2). Those differences were statistically significant in all but one case (P value < 0.05, 161 

one-sided Wilcoxon rank sum test, Fig. 2). The CNA perturbation magnitude exhibited the highest 162 

correlation with the PCa grading, confirming prior studies documenting the tight association between 163 

CNA, histopathological grade and risk of progression [4, 5, 30]. Previous work suggested that copy 164 

number changes are to some extent buffered at the protein level [31]. Interestingly, we observed that 165 

proteins known to be part of protein complexes were significantly less strongly correlated with the fold 166 

changes (FCs) of their coding mRNAs than proteins not known to be part of protein complexes (P value < 167 

2.6e-11, one-sided t-test, Additional file 1: Fig. S6). This result is consistent with the concept that protein 168 

complex stoichiometry contributes to the buffering of mRNA changes at the level of proteins [22, 32-34]. 169 

Thus, molecular patterns in high-grade PCa are more strongly perturbed at all layers and the effects of 170 

genomic variation are progressively but non-uniformly attenuated along the axis of gene expression.  171 

Inter-patient heterogeneity decreases along protein biosynthesis. 172 

 Our analysis of CNA profiles (above and Additional file 1: Supplementary Text) already revealed 173 

many shared CNAs across patients, suggesting that such common CNAs might represent genomic driver 174 

changes. We therefore investigated if such a convergence towards common molecular endpoints could 175 

also be observed at the transcript and protein level. To address this question, we first computed a 176 

reference molecular signature that is characteristic of the molecular perturbations of tumors in a given 177 

grade group. These ‘centroid vectors’ were obtained by computing the average tumor-to-benign FCs 178 

across all samples within a grade group. Consistent with the observation above, we found that the 179 

average effect sizes (averaged absolute centroid FCs) were increasing with the grade group for all three 180 

layers (CNA, mRNA, and protein; Additional file 7: Table S6). Next, we compared each individual sample 181 

within a group against the matching centroid of the same group. For the quantification of the similarity 182 

between a tumor sample and the corresponding centroid we used four similarity/distance measures: 183 

Pearson correlation, Mutual Information (MI)[35], Manhattan distance and Euclidean distance. While the 184 
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first two measures (i.e. Pearson correlation and MI) quantify the degree to which the tumor sample and 185 

centroid vector co-vary, the other two measures (i.e. Manhattan and Euclidean distance) also take into 186 

account the magnitude of the FCs in the two vectors. To illustrate this difference, imagine two patients 187 

having perturbations of the same genes/proteins, but one of them exhibiting overall two-fold greater 188 

FCs (i.e. all FCs are increased by a factor of two compared to the other patient). In such a scenario 189 

Pearson correlation and MI would yield identical results for the two patients when compared to the 190 

centroid, whereas Manhattan and Euclidean distance would identify them as different. Using the 191 

Pearson correlation and MI, we found that high-grade PCa (G4/5) were more similar to their respective 192 

centroid than low-grade PCa (G1) to their centroid (Fig. 3). This effect was particularly pronounced for 193 

protein-level changes. This is consistent with the notion that protein levels (and not mRNA levels) are 194 

subjected to stronger selection. Interestingly, when the Euclidean distance and the Manhattan distance 195 

were used to characterize tumor similarity, we found that the high-grade tumors were more dissimilar to 196 

each other than the low-grade tumors (Additional file 1: Fig. S7), in sharp contrast to the Pearson 197 

correlation and MI. Based on the nature of the different similarity measures tested, we hypothesized 198 

that there is a set of proteins commonly affected in their abundance by oncogenic alterations in high-199 

grade tumors. This would increase the similarity using the Pearson correlation or MI. However, although 200 

the same proteins are affected, they are affected to a different extent in different high-grade tumors, i.e. 201 

the FCs exhibited a high degree of variability (Additional file 1: Fig. S7), which would increase the 202 

dissimilarity based on the Euclidean distance or Manhattan distance (see the ‘Methods’ section and 203 

Additional file 1: Fig. S7 for a schematic explanation).   204 

 To further corroborate the notion of common endpoints, we focused on the 20 proteins with the 205 

largest average absolute FCs across all tumor specimens (Additional file 1: Fig. S7, Additional file 7: 206 

Table S6). Among them was PSA (KLK3), and several other well established PCa-associated proteins like 207 

AGR2 [36], MDH2 [37], MFAP4 [38] and FABP5 [39]. We observed that for some of these top 20 proteins, 208 

FCs were more extreme in the higher-grade tumors (G3 and G4/5) compared to lower-grade tumors (G1 209 

and G2), such as MDH2 and SEPHS1 (up-regulation; Fig. 3c). RABL3 was one of the most strongly down-210 

regulated proteins (Fig. 3c), which is a surprising finding as RABL3 is known to be up-regulated in other 211 

solid tumors [40, 41]. Interestingly, in most cases these proteins were from loci that were not subject to 212 

CNAs (Additional file 1: Fig. S7, Additional file 7: Table S6), hinting that independent genomic events 213 

would impact on these target proteins via network effects.  214 
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Effects of distinct CNAs converge on common proteins. 215 

 It has previously been suggested that mutations affecting different genes could impact common 216 

molecular networks if the respective gene products interact at the molecular level [42]. However, 217 

previous analyses were mostly restricted to individual molecular layers. For example, it was shown that 218 

genes mutated in different patients often cluster together in molecular interaction networks [42]. But, 219 

effects of these mutations on transcript and protein levels remained unexplored in this case. Here, we 220 

aimed at a multi-layer network analysis, involving the genome, transcriptome and proteome using two 221 

different network approaches.  222 

 First, we speculated that distinct genomic events in different patients would commonly impact 223 

on at least some of the top 20 target proteins identified above. Among those top targets we selected 224 

AGR2, ACPP, POSTN and LGALS3BP, because these proteins/genes had correlated protein- and mRNA 225 

FCs; thus, protein level changes were likely caused by cognate mRNA level changes. Importantly, those 226 

mRNA/protein level changes could not be explained by CNAs of the coding genes themselves (Additional 227 

File 1: Fig. S7). Thus, these transcriptional changes were likely caused by trans-effects. To identify 228 

potential regulators for each target gene, we used an independently inferred generic transcriptional 229 

regulatory network (Leote et al. in revision; preprint available on bioRxiv) and selected putative 230 

regulators at most two edges away from the target genes (see the ‘Methods’ for details). Using the 231 

ElasticNet algorithm we next fitted a linear model regressing the mRNA changes of the target genes 232 

against the network neighbors’ CNAs. Thereby we identified genes whose CNA changes were associated 233 

with mRNA changes of the four target genes AGR2, ACPP (a.k.a ACP3), POSTN and LGALS3BP (Additional 234 

file 7: Table S6). To validate our approach, we used two independent PCa cohorts (TCGA; [8] and MSKCC 235 

[30]) and computed the association between the CNAs of each significant regulator and the 236 

corresponding mRNA log-FC of the respective target gene. In most cases we observed an agreement in 237 

terms of effect directions, i.e. the signs of association between CNA changes of the putative regulators 238 

and the mRNA log-FCs of the respective target had the same direction as in our cohort (Additional file 7: 239 

Table S6). Here we use ACPP/ACP3 as an illustrative example (Fig. 3d): ACP3 (a.k.a. PAcP) is a prostate-240 

specific acid phosphatase with a critical role PCa etiology and has been suggested as a PCa biomarker 241 

long before PSA [43]. ACP3 is known to inhibit cell proliferation and is therefore typically down-regulated 242 

in PCa [44], despite elevated ACP3 protein levels in patient blood [43]. In our cohort ACP3 levels were 243 

strongly down-regulated in all of the high-grade patients and in the vast majority of low- and 244 

intermediate-grade patients, suggesting that ACP3 down-regulation represents an early event during 245 

PCa evolution. Despite its established role in PCa, little is known about the oncogenic driver events 246 
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downregulating ACP3 [43]. Our network modeling identified six putative ACPP/ACP3 regulators 247 

(ANKRD22, MS4A3, RHOV, ARL11, DEFB1, and DPYSL2), several of which are already known to be 248 

associated with PCa [45-47]. Analyzing the CNA signatures of these six putative regulators reveals at 249 

least two larger groups of patients (Fig. 3d): the first one harboring joint deletions of ARL11 and 250 

ANKRD22, the second one harboring joint deletions of DEFB1 and DPYSL2. The latter two genes are both 251 

encoded on Chromosome 8 and thus, their deletion may be due to single CNA events. ARL11 and 252 

ANKRD22 however, are encoded on different chromosomes. Importantly, these events were clonal in 253 

most cases, i.e. they were mostly common to both tumor samples of a given patient. A remarkable 254 

exception was patient M7, who had a joint deletion of ARL11 and ANKRD22 in tumor area 1 (TA1) and a 255 

DEFB1/DPYSL2 deletion in tumor area 2 (TA2). Hence, our network analysis hints that distinct deletions 256 

in the network vicinity of ACP3 can lead to the repression of this anti-proliferative protein. More 257 

examples of distinct CNAs having similar effects on downstream targets were found for the other three 258 

focus proteins (Additional file 1: Fig. S7). Taken together, these findings suggest that tumor mechanisms 259 

in different patients converged on common protein endpoints and that the expression levels of these 260 

proteins were progressively more strongly affected during tumor evolution.  261 

Joint network effects of CNAs drive tumor progression. 262 

The analysis above identified molecular networks driving tumor alterations and thus indicated 263 

altered biochemical states that were common to most tumor specimens. To identify sub-networks that 264 

specifically distinguish high-grade from low-grade tumors, we mapped our data onto the STRING gene 265 

interaction network [48], and employed network propagation [49, 50] separately to the CNA, 266 

transcriptome and proteome data for each of the tumor samples. We excluded point mutations from 267 

this analysis as their frequency was too low in our cohort. By combining published molecular 268 

interactome data with a network propagation algorithm [42, 49], we aimed to ‘enrich’ network regions 269 

with many perturbed genes/proteins. We reasoned that the convergent consequences of genomic 270 

variants on common network regions would be indicative of specific biochemical functions that are 271 

important for the tumor biology. We therefore identified genes/proteins in network regions that showed 272 

a higher score (or a lower score) in high-grade (G4/5) relative to lower-grade (G1) tumor groups at all 273 

three levels (Fig. 4a, b; ‘Methods’ section). This analysis identified sub-networks consisting of over- and 274 

under-expressed genes (relative to the benign controls). We found 57 amplified genes (Additional file 7: 275 

Table S6) for which transcripts and proteins were often over-expressed in high-grade PCa (Fig. 4a) and 276 
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21 genes with copy number loss (Additional file 7: Table S6) for which transcripts and proteins were 277 

often down-regulated compared to lower-grade tumors (Fig. 4b).  278 

Among the up-regulated network nodes, we observed genes modulating the stability of 279 

chromatin, such as chromatin-binding protein Chromobox 1 (CBX1) [51], SET Domain Bifurcated 1 280 

(SETDB1) [52], a function linking to H3K27me3 and H3K9me3 in chromatin, and CBX3 (known as HP1-γ) 281 

[53]. SETDB1 is an oncogene in melanoma [54] and has also been found to be over-expressed in PCa and 282 

cell lines [55]. Further, we found genes involved in DNA damage repair, such as SMG7 [56] and ATR [57], 283 

and PRKCZ[58], which had already been suggested as a biomarker prognostic for survival in PCa [59]. 284 

Multiple actin related proteins including ARPC1B [60], ARPC5 [61], ACTL6A [62], and CFL1 [63], which are 285 

markers for aggressive cancers, were part of the up-regulated network nodes. Moreover, the up-286 

regulated genes contained proteins related to the cell cycle like BANF1 and proteins interacting with the 287 

centrosome including LAMTOR1 and RAB7A that had already been associated with PCa [64]. Finally, 288 

several signaling molecules with known roles in PCa were up-regulated, such as the transcription factor 289 

Yin Yang 1 (YY1) [65], the TGF-β receptor TGFBR1 [66], and KPNA4, which promotes metastasis through 290 

activation of NF-κB and Notch signaling [67]. Thus, up-regulated network nodes are involved in 291 

DNA/chromatin integrity and growth control. 292 

 Likewise, several of the down-regulated genes had functions associated with PCa. For example, 293 

the oxidative stress related gene MGST1, which is recurrently deleted in PCa [68]. ALDH1A3 is a direct 294 

androgen-responsive gene, which encodes NAD-dependent aldehyde dehydrogenase [69]. DHCR24 is 295 

involved in cholesterol biosynthesis and regulated by the androgen receptor [70]. Polymorphisms in 296 

CYP1A1 are associated with PCa risk in several meta-analyses among different ethnicities [71-73]. 297 

Further, our network analysis is suggesting tumor mechanisms converging on genes that are 298 

known contributors to PCa tumor biology. For example, the PCa-associated gene SF3B2 [74, 75] was only 299 

weakly amplified in some of the high-grade tumors (average log2FC = 0.016) and mRNA levels showed 300 

similarly small changes (average log2FC = 0.024). On the other hand, the SF3B2 protein levels were 301 

consistently and more strongly up-regulated across tumors (average log2FC = 0.31), especially within the 302 

high-grade tumors (Additional file 1: Fig. S8). Another example is UBE2T whose over-expression is 303 

known to be associated with PCa [76]. Unfortunately, we could not quantify the corresponding protein 304 

levels. However, we observed a strong and consistent mRNA over-expression across several tumors 305 

(average log2FC = 0.73), even though at the DNA level the gene was only weakly amplified (average 306 

log2FC = 0.023; Additional file 1: Fig. S8). Our findings of more heterogeneous CNAs, but more uniform 307 
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mRNA and protein alterations point on convergent evolutionary mechanisms, as we move along the axis 308 

of gene expression.  309 

 Next, we analyzed the largest connected component with genes up-regulated in advanced 310 

disease in more detail (see the ‘Methods’ section). It consists of the nine nodes EMD, BANF1, ACTL6A, 311 

YY1, RUVBL1, KANSL1, MRGBP, VPS72 and ZNHIT1 (Fig. 4a), and is referred to in the following as 312 

Network Component 1 (Additional file 7: Table S6). Seven of these proteins are involved in chromosome 313 

organization which may induce genomic alterations and influence the outcome of multiple cancers 314 

including PCa [77]. For example, the actin-related protein ACTL6A is a member of the SWI/SNF (BAF) 315 

chromatin remodeling complex[78], and a known oncogene and a prognostic biomarker for PCa [79]. 316 

Further, ACTL6A, RUVBL1 and MRGBP are together part of the NuA4/Tip60-HAT complex, which is 317 

another chromatin remodeling complex involved in DNA repair [80]. Likewise, KANSL1 is involved in 318 

histone post-translation modifications, while VPS72 is a member of histone- and chromatin remodeling 319 

complexes [81]. Thus, Network Component 1 consists of genes involved in chromatin remodeling and 320 

DNA repair, many of which are known to be involved in cancers. 321 

Several samples were characterized by a small, but consistent DNA amplification of multiple 322 

members of Network Component 1 (Fig. 4c). Out of the 66 tumor samples, there were 30 samples – 323 

belonging to all grade groups – with a weak but consistent DNA amplification of Network Component 1 324 

members, while the high-grade samples had stronger amplifications on average (i.e. larger effect sizes). 325 

Importantly, gene members of Network Component 1 were dispersed across eight chromosomes 326 

(Additional file 7: Table S6). The parallel DNA amplification of these genes is therefore the result of 327 

multiple independent CNA events, while the signal on any single gene alone was too weak to be 328 

significant in isolation. In some but not all cases, the amplifications led to a small, but consistent increase 329 

in mRNA expression of the amplified gene loci (Fig. 4d). Unfortunately, only three out of the nine 330 

proteins were detected in our proteomics experiments (Fig. 4e). Interestingly, patients where the DNA 331 

amplifications led to transcript over-expression were almost always high-grade patients, whereas 332 

patients where the amplification affected gene expression to a smaller extent were low- or 333 

intermediate-grade patients (Fig. 4c, d). Further, we noticed that TA2 samples graded as G3 from high-334 

grade patients carried amplifications of Network Component 1, whereas tumor areas graded as G3 from 335 

intermediate-grade patients did not have amplifications of this network component (Fig. 4c, d). Thus, 336 

although the tumor areas were histologically equally classified, tumor areas from high-grade patients 337 

carried a CNA signature and expression patterns reminiscent of the high-grade areas from the same 338 

patients. Therefore, within the cohort tested the joint DNA amplification of this network component 339 
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along with RNA up-regulation is a signature of high-grade tumors. Curiously, the higher-grade tumor 340 

areas of those high-grades patients (TA1) carried stronger DNA amplifications than the respective lower-341 

grade areas (TA2), which implies that the progressive amplification of Network Component 1 during 342 

tumor evolution may contribute to an increasingly aggressive phenotype. In order to further corroborate 343 

the clinical relevance of this network perturbation we analyzed published datasets of three additional 344 

PCa cohorts (TCGA[8], MSKCC [30], and Aarhus [82]), together comprising a total of 713 patients with 345 

known clinical outcome. We found that amplification of genes from Network Component 1 was a 346 

significant predictor of reduced RFS in the MSKCC cohort (P value = 8.8e-3, log-rank test). In the TCGA 347 

cohort, we observed the same trend although the difference in RFS was not statistically significant (P 348 

value = 0.17; Fig. 4f). Additionally, we found that over-expression of genes from Network Component 1 349 

was a significant predictor of reduced RFS in the TCGA cohort (P value = 2.1e-4, log-rank test), which was 350 

the cohort with the largest number of patients. In the other two cohorts we observed the same trend, 351 

although the difference in RFS was not statistically significant (P value = 0.30 and 0.093 for MSKCC, and 352 

Aarhus; Fig. 4f). Thus, both CNA and RNA changes of Network Component 1 are predictive of the time to 353 

relapse in independent cohorts. 354 

In conclusion, our findings suggest that relatively weak but broad CNAs of entire network 355 

components are associated with high-grade tumors and that the presence of some of these 356 

perturbations in lower-grade tumors may be predictive of the future development of a more aggressive 357 

phenotype. 358 

Analysis of distinct tumor nodules defines intra-patient heterogeneity (TA1 versus TA2 359 
comparison). 360 

 The CNA patterns (Additional file 1: Fig. S4) and the Network Component 1 analysis (Fig. 4c, d) 361 

suggest that different tumor areas from the same patient shared several mutations. Such common 362 

signatures are expected if different tumor nodules originate from a common clone. If this was true, we 363 

would expect mutational signatures to be more similar between different nodules from the same patient 364 

than between patients, even though mutated genes may be shared across patients. To compare the 365 

intra- and inter-patient molecular heterogeneity at the levels of CNAs, transcript, and protein FCs, we 366 

computed the Pearson correlation between tumor area 1 (TA1) and its paired tumor area 2 (TA2) for 367 

each layer and all of the 27 patients with two characterized tumor areas (25 for the mRNA, see the 368 

‘Methods’ section and Additional file 1: Supplementary Text). As a control, we also computed all 369 

pairwise Pearson correlations between the samples within each of the grade groups (i.e. inter-patient 370 
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correlation). As expected, paired TA1 and TA2 from the same patient were on average more strongly 371 

correlated to each other compared to samples from different patients within the same grade group. This 372 

finding was consistent for all omics layers (Fig. 5a), and was more pronounced at the CNA and mRNA 373 

layers compared to the protein layer. 374 

 Next, we tested whether a high correlation at the level of CNAs also implies a high correlation at 375 

the level of mRNA and proteins. We tested this idea by ‘correlating the correlations’, i.e. we correlated 376 

the TA1-TA2 correlation of CNA profiles with the correlation between the mRNA and protein profiles of 377 

the same tumor areas (Fig. 5b). Indeed, a higher correlation of two tumor areas at the level of CNA 378 

correlated significantly with a higher correlation at the level of mRNA (r=0.49, P value=0.014). In other 379 

words, knowing how similar two tumor areas of a patient are at the CNA level supports a prediction of 380 

their similarity at the mRNA level (and conversely). Although the correlation between protein and CNA 381 

was not statistically significant, it followed the same trend (r=0.35, P value=0.076).  382 

 Comparing molecular similarity across omics layers allowed us to identify specific types of 383 

patients. The patients H2, H4, M13 had highly correlated tumor areas at all three layers (upper right 384 

corner in all scatterplots of Fig. 5b). Likely, the tumor areas of these patients have a common clonal 385 

origin (Additional file 1: Fig. S3). In contrast, patients M12 and M14 had weakly correlated tumor areas 386 

at all levels (bottom left corner in all scatterplots of Fig. 5b). These tumor nodules either have 387 

independent clonal origins or they diverged at an earlier stage during tumor evolution (Additional file 1: 388 

Fig. S3) [16]. For example, in the case of patient M12 large parts of the genome were not affected by 389 

CNAs in the benign sample as well as in TA1 and TA2. However, as shown on Additional file 1: Fig. S3, a 390 

large region was amplified in TA1, whereas the same region was deleted in TA2. This is consistent with a 391 

scenario in which TA1 and TA2 show parallel evolution. A third class of patients is exemplified by the 392 

patients M9 and M17, who showed a high correlation between their tumor areas on the CNA and mRNA 393 

levels, but not on the protein level. Yet other patterns were apparent in patients M4, M7, and H10. They 394 

showed similar mRNA and protein patterns in the two tumor areas, but relatively uncorrelated CNAs. M7 395 

was the patient that we identified earlier with two different CNA signatures both reducing the levels of 396 

the same protein (ACP3). The results here apply to global proteome patterns and therefore hint that 397 

such convergent network effects of CNAs can be frequent. We confirmed that protein-level similarity 398 

correlated with similar histological characteristics of the tumor areas. Additional file 1: Fig. S9 shows 399 

formalin-fixed paraffin-embedded (FFPE) tissue microarray images (duplicates) from the analyzed tumor 400 

nodules (TA1 and TA2, diameter 0.6 mm), further underlining the hypothesis that ultimately protein-401 

level alterations are responsible for common cellular phenotypes. Although we cannot fully exclude the 402 
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possibility that some of these results were affected by technical noise in the data, our findings suggest 403 

that transcript alterations can frequently be buffered at the level of proteins (patients M9, M17, 404 

Additional file 1: Fig. S6) and that convergent evolutionary processes may lead to the alteration of 405 

common proteins (patients M4, M7, H10). We also note that our findings are specific to the two tumor 406 

areas available in this study and could be different if other nodules had been sampled for each of the 407 

patients. However, our findings on patients with weakly correlated tumor areas at all levels like M12 and 408 

M14 suggest that these patients might carry more than one disease [16].  409 

Discussion 410 

 Despite twenty years of oncological research involving genome-scale (omics) technologies, we 411 

know remarkably little about how the discovered genomic alterations affect the biochemical state of a 412 

cell and consequently the disease phenotype. In particular, little is known about how genomic 413 

alterations propagate along the axis of gene expression [17, 18]. Here, we have exploited recent 414 

technological advances in data acquisition that made it possible to characterize small samples of the 415 

same tumor specimens at the level of genomes, transcriptomes, and proteomes and advances in 416 

computational strategies towards the network-based integration of multi-omics data. 417 

In our study, samples were generated from small, less than 1 mm diameter punches in 418 

immediate spatial proximity in the tumor and subsequently profiled at all three ‘omics layers’ (DNA, RNA, 419 

proteome). Due to the large spatial heterogeneity of PCa [14, 24], this design - which is so far uncommon 420 

for studies profiling multiple layers from tumor specimens - was instrumental for increasing the 421 

comparability of the various omics layers and thus facilitated the analysis of molecular mechanisms. Our 422 

key findings are: (1) we confirmed the importance of CNAs for PCa biology and the alteration of many 423 

known PCa-associated genes at the transcript- and protein-level; (2) we revealed a generally elevated 424 

molecular alteration of high-grade tumors compared to lower-grade tumors; (3) although our study 425 

confirmed large within- and between-patient genomic heterogeneity, (4) we detected molecular 426 

networks that were commonly altered at the mRNA and protein-level. The fact that many of those target 427 

molecules are known drivers of PCa tumorigenesis, supports the notion that these proteins/transcripts 428 

are subject to convergent evolutionary mechanisms. 429 

We integrated the three omics layers using a network-based approach as opposed to directly 430 

comparing gene perturbations (mutations) to gene products (transcripts and proteins). Using genome 431 

data only, it had previously been hypothesized that whereas the identity of specific mutated genes may 432 

differ between tumors, those mutations might still affect common molecular networks [42]. In other 433 
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words, tumor phenotypes are determined by the perturbation of molecular networks and not by the 434 

perturbation of isolated genes. Our study provides experimental evidence that such network effects are 435 

indeed propagated to subsequent molecular layers and that this effect propagation may be clinically 436 

relevant. A very prominent example is our discovery that the long-known PCa gene ACPP (ACP3) is 437 

downregulated through diverse CNA events, while sometimes even within the same patient different 438 

CNA events might downregulate this critical tumor suppressor. 439 

 Our multi-omics network analysis revealed that high-grade PCa tumors distinguished themselves 440 

from low-grade tumors in two aspects. The first is a generally higher heterogeneity and loss of controlled 441 

gene regulation, which increased the molecular differences among high-grade tumors. It had previously 442 

been shown that gene expression in tumors is often less coordinated than in normal samples [29]. The 443 

increasing heterogeneity of protein concentrations suggests that this loss of coordinated expression also 444 

affects protein levels. The second aspect is the convergence of molecular alterations towards specific 445 

molecular sub-networks at the genomic, transcriptomic and proteomic layer along the progression from 446 

low-grade to high-grade tumors. Thus, although we observed globally a higher degree of variability in 447 

gene expression and proteome control among high-grade specimens, a specific subset of the observed 448 

alterations appeared crucial for determining the aggressive tumor phenotype. Tumors are under 449 

selective pressure acting on the biochemical function of the cells. It is generally believed that proteins 450 

are a closer reflection of the functional state of a cell than the mRNA. Here we could show that the fold 451 

changes of proteins like RABL3, MFAP4, and SF3B2 were more pronounced and/or uniform across high-452 

grade tumors than either their coding mRNAs or the underlying CNAs.  453 

Specifically, our analysis led to the identification of Network Component 1, a sub-network 454 

involved in chromatin remodeling and consisting of genes that were weakly amplified in intermediate-455 

grade (G3) tumor specimens. Signals of individual gene members of this component were virtually 456 

indistinguishable from noise in our cohort. However, their consistent alterations across the network 457 

region, across molecular layers and the fact that the same genes showed enhanced signals in high-grade 458 

specimens, rendered this component highly interesting. The fact that copy number and expression 459 

changes of Network Component 1 members were predictive for survival in independent cohorts further 460 

supports the potential clinical relevance of this sub-network. Our network-based cross-omics analysis 461 

identified nine other network components (Fig. 4) successfully capturing several known and potentially 462 

new PCa-associated genes. However, neither Network Component 1 nor any of the other network 463 

components was uniformly subject to CNAs across all high-grade patients. Instead, we found different 464 

network components modified in different patients and these sub-networks were involved in cellular 465 
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processes as diverse as actin remodeling, DNA damage response, and metabolic functions, all of which 466 

are known contributors to PCa biology. This further underlines the large inter-patient variability of PCa 467 

and it demonstrates the diversity of molecular mechanisms leading to histologically similar phenotypes. 468 

Future prediction models of PCa including the ISUP grade groups, PSA levels and clinical stage might be 469 

improved by exploiting multi-omics network analyses. Detecting aggressive networks alterations in 470 

prostate biopsies would help clinicians to advice either active surveillance or active therapy. However, 471 

the development of such multi-dimensional biomarkers would require much larger patient cohorts. 472 

 Another distinguishing feature of this study was the simultaneous profiling of two different 473 

tumor regions in 27 out of the 39 patients. The profiling of multiple tumor regions from the same 474 

prostate helped to further highlight the enormous heterogeneity of PCa within patients and provided 475 

important insights into PCa evolution. The fact that Network Component 1 was more strongly affected in 476 

the paired higher-grade nodules of high-grade patients suggests that at least certain sub-networks are 477 

subject to an evolutionary process, that progressively ‘moves’ protein levels towards a more aggressive 478 

state. Generally, and at all molecular layers tested, the two paired tumor areas were more similar to 479 

each other compared to two samples from the same grade group but different patients, suggesting 480 

common evolutionary origins. Although the two tumor areas seemed to mostly originate from the same 481 

clone, this was not always the case. In some patients, different nodules exhibited different molecular 482 

patterns at all omics layers, suggesting early evolutionary separation. Thus, for the first time, current 483 

diagnostic, expert-level consensus guidelines [28] are supported by detailed proteogenomic data. Our 484 

findings support earlier claims that clonality itself might be a prognostic marker with implications for 485 

future, more tumor-specific treatment when targeted therapies become available also for PCa [16, 83]. 486 

Our study shows that all three molecular layers (genome, transcriptome and proteome) 487 

contributed valuable information for understanding the biology of PCa. In particular the DNA layer 488 

informed about causal events, clonality, and genomic similarity between tumors. The transcriptome was 489 

relevant for understanding the transmission of CNA effects to proteins and served as a surrogate in cases 490 

where protein levels remained undetected. The proteome was crucial for revealing protein-level 491 

buffering of CNA effects as well as for indicating convergent evolution on functional endpoints. In a 492 

routine diagnostic context though, measuring all three layers may not be feasible for the near future due 493 

to resource and time limitations. Thus, the identification of improved, routine-usable molecular markers 494 

for PCa diagnostics and prognosis remains an open problem [17]. 495 
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Conclusions 496 

This study uncovered molecular networks with remarkably convergent alterations across tumor 497 

sites and patients. In particular, we identified a sub-network consisting of nine genes whose joint activity 498 

positively correlated with increasingly aggressive tumor phenotypes. The fact that this sub-network was 499 

predictive for survival in independent cohorts further supports its potential clinical relevance. At the 500 

same time though, our study also exposed a diversity of network effects: we could not identify a single 501 

sub-network that was perturbed in all high-grade tumor regions, let alone the observed distinct intra-502 

patient alterations at all omics layers for some patients. Overall, our study has significantly expanded our 503 

understanding of PCa biology and serves as a model for future work aiming to explore network effects of 504 

mutations with an integrated multi-omics approach. 505 

Methods 506 

Patients and samples 507 

 A total of 39 men with localized PCa who were scheduled for RP were selected from a cohort of 508 

1,200 patients within the ProCOC study and processed at the Department of Pathology and Molecular 509 

Pathology, University Hospital Zurich, Switzerland [25]. Each of the selected intermediate- and high-510 

grade patients had two different tumor nodules with different ISUP grade groups. H&E (Hematoxylin and 511 

Eosin)-stained fresh frozen tissue sections of 105 selected BPH and tumor regions were evaluated by two 512 

experienced pathologists (PJW, NJR) to assign malignancy, tumor stage, and Grade Group according to 513 

the International Union Against Cancer (UICC) and WHO/ISUP criteria. This study was approved by the 514 

Cantonal Ethics Committee of Zurich (KEK-ZH-No. 2008-0040), the associated methods were carried out 515 

in accordance with the approved guidelines, and each patient has signed an informed consent form. 516 

Patients were followed up on a regular basis (every three months in the first year and at least annually 517 

thereafter) or on an individual basis depending on the disease course in the following years. The RFS was 518 

calculated with a biochemical recurrence (BCR) defined as a PSA ≥0.1 ng/ml. Patients were censored if 519 

lost to follow-up or event-free at their most recent clinic visit. Patients with a postoperative PSA 520 

persistence or without distinct follow-up data for the endpoint BCR were excluded from the analysis of 521 

BCR.  522 

Exome sequencing and somatic variant analysis 523 

 The exome sequencing (exome-seq) was performed using the Agilent Sure Select Exome 524 

platform for library construction and Illumina HiSeq 2500 for sequencing read generation. We mapped 525 
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and processed the reads using a pipeline based on bowtie2 [84] (1.1.1) and the Genome Analysis Tools 526 

Kit (GATK) [85] (3.2-2). We detected and reported nonsynonymous variants or variants causing splicing 527 

changes using Strelka (1.0.14) and Mutect (1.1.7) combined with post-processing by the CLC Genomics 528 

Workbench (8.0.3). In this process, all tissue samples of a patient were compared to the respective blood 529 

sample. 530 

Trimmomatic [86] (0.36) was used for adaptor clipping and low-quality subsequence trimming of 531 

the FASTQ files. Subsequently, single reads were aligned to the hg19 reference genome with bowtie2 532 

with options “--very-sensitive -k 20”. We applied samtools [87] (0.1.19) and picard-tools (1.119) to sort 533 

the resulting bam files in coordinate order, merge different lanes, filter out all non-primary alignments, 534 

and remove PCR duplicates. Quality of the runs was checked using a combination of BEDtools [88] (2.21), 535 

samtools, R (3.1) and FastQC (0.11.2). 536 

Bam files containing the mapped reads were preprocessed in the following way: indel 537 

information was used to realign individual reads using the RealignerTargetCreator and IndelRealigner 538 

option of the GATK. Mate-pair information between mates was verified and fixed using Picard tools and 539 

single bases were recalibrated using GATK’s BaseRecalibrator. After preprocessing, variant calling was 540 

carried out by comparing benign or tumor prostate tissue samples with matched blood samples using 541 

the programs MuTect [89] and Strelka [90] independently. Somatic variants that were only detected by 542 

one of the two programs were filtered out using CLC Genomics Workbench. So were those that had an 543 

entry in the dbSNP [91] common database and those that represented synonymous variants without 544 

predicted effects on splicing. 545 

CNA analysis of exome-seq data 546 

 The Bam files generated during the process of somatic variant calling were processed with the 547 

CopywriteR package (v.2.2.0) for the R software [92]. CopywriteR makes use of so-called “off-target” 548 

reads, i.e. reads that cover areas outside of the exon amplicons. “Off-target” reads are produced due to 549 

inefficient enrichment strategies. In our case on average 28.5% of the total reads were not on target. 550 

Briefly, CopywriteR removes low quality and anomalous read pairs, then peaks are called in the 551 

respective blood reference, and all reads in this region are discarded. After mapping the reads into bins, 552 

those peak regions, in which reads had been removed, were compensated for. Additionally, read counts 553 

are corrected based on mappability and GC-content. Finally, a circular binary segmentation is carried out 554 

and for each segment the log count ratios between tissue samples and the respective blood sample are 555 

reported as copy number gain or loss. The copy number of each gene in each sample was reported 556 
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based on the log count ratio of the respective segment in which the gene was located.  The overall 557 

performance of this CNA-calling approach was evaluated by comparing the results of the TA1 (and TA) 558 

samples with CNA results obtained by applying the OncoScan Microarray pipeline to FFPE samples from 559 

the same tumors (Additional file 1: Fig. S10). 560 

OncoScan Microarrays 561 

 OncoScan copy number assays were carried out and analyzed as described previously [93]. 562 

Briefly, DNA was extracted from punches of FFPE cancer tissue blocks. Locus-specific molecular inversion 563 

probes were hybridized to complementary DNA and gaps were filled in a nucleotide-specific manner. 564 

After amplification and cleavage of the probes, the probes were hybridized to the OncoScan assay 565 

arrays. Scanning the fluorescence intensity and subsequent data processing using the Affymetrix® 566 

GeneChip® Command Console and BioDiscovery Nexus express resulted in log intensity ratio data 567 

(sample versus Affymetrix reference) and virtual segmentation of the genome into areas with copy 568 

number gain, loss or stability. 569 

RNA Sequencing 570 

 RNA sequencing was performed at the Functional Genomics Center Zurich. RNA-seq libraries 571 

were generated using the TruSeq RNA stranded kit with PolyA enrichment (Illumina, San Diego, CA, USA). 572 

Libraries were sequenced with 2x126bp paired-end on an Illumina HiSeq 2500 with an average of 105.2 573 

mio reads per sample. 574 

 Paired-end reads were mapped to the human reference genome (GRCh37) using the STAR 575 

aligner (version 2.4.2a) [94]. Quality control of the resulting bam files using QoRTs [95] and mRIN [96] 576 

showed strong RNA degradation[97]  in a significant fraction of the samples: mRIN classified 31 samples 577 

as highly degraded (Additional file 1: Fig. S11, Additional file 5: Table S4). In order to correct for this 3’ 578 

bias, 3 tag counting was performed as described by Sigurgeirsson et al [98] using a tag length of 1,000. 579 

After 3’ bias correction, three samples still showed a clear 3’ bias: the two tumor regions (TA1 and TA2) 580 

of the patient M5 and TA2 from patient M8 (Additional file 1: Fig. S11). These samples were excluded 581 

from subsequent analyses. Additionally, the BPH region of the patient M5 was excluded due to the 582 

exclusion of both its tumor regions.  583 

 FeatureCounts [99] was used to determine read counts for all genes annotated in ENSEMBL v75. 584 

Genes for which no read was observed in any of the samples in the original data were excluded from the 585 

analysis. Further, after 3 tag counting, all genes with without at least 1 read per million in N of the 586 
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samples were removed. We chose N to be 10 which corresponds to the size of the smallest grade group 587 

(G2). In a last reduction step, all genes with more than one transcript were excluded, yielding a final set 588 

of 14,281 genes. 589 

 Read count normalization and differential gene expression analysis was performed using the R 590 

packages sva [100] and DESeq2 [101]. All benign tissues were considered biological replicates and 591 

differential gene expression for the individual tumor samples was determined against all benign tissues. 592 

Gene expression changes with an adjusted P value < 0.1 were considered significant.  593 

RNA-seq - 3’ bias correction 594 

 The 3 tag counting approach for 3’ bias correction was used on the RNA-seq dataset [98]. This 595 

approach requires changing of the annotation file in two steps: 1) isoform filtering and 2) transcript 596 

length restriction. As proposed in [98] for each gene we determined the highest expressed isoform 597 

within a set of high quality samples. As high quality samples we used all samples with an mRIN score 598 

greater than or equal to 0.02. This set contains 7 benign and 15 tumor samples. Isoform expression was 599 

determined using cufflinks [102]. As transcript length we chose 1,000bp. 600 

Gene fusions 601 

 FusionCatcher (version 0.99.5a beta) was used to determine gene fusions for all samples. 602 

Fusions classified as “probably false positive” are discarded unless they are also classified as “known 603 

fusion”. 604 

PCT assisted sample preparation for SWATH-MS 605 

 We first washed each tissue sample to remove O.C.T., followed by PCT-assisted tissue lysis and 606 

protein digestion, and SWATH-MS analysis, as described previously [23]. Briefly, a series of ethanol 607 

solutions were used to wash the tissues each tissue, including 70% ethanol / 30% water (30 s), water (30 608 

s), 70% ethanol / 30% water (5 min, twice), 85% ethanol / 15% water (5 min, twice), and 100% ethanol (5 609 

min, twice). Subsequently, the tissue punches were lysed in PCT-MicroTubes with PCT-MicroPestle [103] 610 

with 30 µl lysis buffer containing 8 M urea, 0.1 M ammonium bicarbonate, Complete protease inhibitor 611 

cocktail (Roche) and PhosSTOP phosphatase inhibitor cocktail (Roche) using a barocycler (model 612 

NEP2320-45k, PressureBioSciences, South Easton, MA). The lysis was performed with 60 cycles of high 613 

pressure (45,000 p.s.i., 50 s per cycle) and ambient pressure (14.7 p.s.i., 10 s per cycle). The extracted 614 

proteins were then reduced and alkylated prior to lys-C and trypsin-mediated proteolysis under pressure 615 
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cycling. Lys-C (Wako; enzyme-to-substrate ratio, 1:40) -mediated proteolysis was performed using 45 616 

cycles of pressure alternation (20,000 p.s.i. for 50 s per cycle and 14.7 p.s.i. for 10 s per cycle), followed 617 

by trypsin (Promega; enzyme-to-substrate ratio, 1:20)-mediated proteolysis using the same cycling 618 

scheme for 90 cycles. The resultant peptides were cleaned using SEP-PAC C18 (Waters Corp., Milford, 619 

MA) and analyzed, after spike-in 10% iRT peptides 51, using SWATH-MS following the 32-fixed-size-620 

window scheme as described previously 19, 21 using a 5600 TripleTOF mass spectrometer (Sciex) and a 621 

1D+ Nano LC system (Eksigent, Dublin, CA). The LC gradient was formulated with buffer A (2% 622 

acetonitrile and 0.1% formic acid in HPLC water) and buffer B (2% water and 0.1% formic acid in 623 

acetonitrile) through an analytical column (75 μm × 20 cm) and a fused silica PicoTip emitter (New 624 

Objective, Woburn, MA, USA) with 3-μm 200 Å Magic C18 AQ resin (Michrom BioResources, Auburn, CA, 625 

USA). Peptide samples were separated with a linear gradient of 2% to 35% buffer B over 120 min at a 626 

flow rate of 0.3 μl min−1. Ion accumulation time for MS1 and MS2 was set at 100 ms, leading to a total 627 

cycle time of 3.3 s. 628 

SWATH assay query library for prostate tissue proteome 629 

 To build a comprehensive library for SWATH data analysis, we analyzed unfractionated prostate 630 

tissue digests prepared by the PCT method using Data Dependent Acquisition (DDA) mode in a tripleTOF 631 

mass spectrometer over a gradient of 2 hours as described previously 19. We spiked iRT peptides 51 into 632 

each sample to enable retention time calibration among different samples. We then combined these 633 

data with the DDA files from the pan-human library project [104]. All together we analyzed 422 DDA files 634 

using X!Tandem 52 and OMSSA 53 against three protein sequence databases downloaded on Oct 21, 2016 635 

from UniProt, including the SwissProt database of curated protein sequences (n=20,160), the splicing 636 

variant database (n=21,970), and the trembl database (n=135,369). Using each database, we built target-637 

decoy protein sequence database by reversing the target protein sequences. We allowed maximal two 638 

missed cleavages for fully tryptic peptides, and 50 p.p.m. for peptide precursor mass error, and 0.1 Da 639 

for peptide fragment mass error. Static modification included carbamidomethyl at cysteine, while 640 

variable modification included oxidation at methionine. Search results from X!Tandem and OMSSA were 641 

further analyzed through Trans-Proteomic Pipeline (TPP, version 4.6.0) 54 using PeptideProphet and 642 

iProphet, followed by SWATH assay library building procedures as detailed previously 19, 55.  Altogether, 643 

we identified 167,402 peptide precursors, from which we selected the proteins detected in prostate 644 

tissue samples, and built a sample-specific library. SWATH wiff files were converted into mzXML files 645 

using ProteoWizard 56 msconvert v.3.0.3316, and then mzML files using OpenMS 57 tool FileConverter. 646 
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OpenSWATH[105] was performed using the tool OpenSWATHWorkflow with input files including the 647 

mzXML file, the TraML library file, and TraML file for iRT peptides.  648 

Peptide quantification using OpenSWATH 649 

 To obtain consistent quantification of the SWATH files, we obtained the all annotated b and y 650 

fragments from the sp, sv and tr libraries. About ten thousand redundant and low-quality assays were 651 

removed. Then we extracted the chromatography of these fragments and MS1 signals using 652 

OpenSWATHWorkflow, followed by curation using DIA-expert[106]. Briefly, the chromatography of all 653 

fragments and MS1 signals were subject to scrutiny by empirically developed expert rules. A reference 654 

sample with best q value by pyprophet was picked up to refined fragments. The peptide precursors are 655 

further filtered based on the following criteria: i) remove peptide precursors with a q value higher than 656 

1.7783e-06 to achieve a false discovery rate of 0.00977 at peptide level using SWATH2stats [107]; ii) 657 

peptides with a FC higher than 2 between the reference sample and its technical replicate were 658 

removed; iii) peptides matching to multiple SwissProt protein sequences were removed. The data matrix 659 

was first quantile normalized, log2 transformed, followed by batch correction using the ComBat R 660 

package [108]. Finally, for each protein and pair of technical replicates the average value was computed. 661 

Statistical analysis 662 

 All plots were produced with R. Kaplan-Meier estimators were used for RFS analysis. Differences 663 

between survival estimates were evaluated by the log-rank test.  664 

Computation of molecular perturbation scores 665 

 On the genomic level (mutation and CNA), we kept the tumor samples (66 in total) that contain 666 

FCs with respect to the blood. The mutation matrix was further discretized by setting all non-zero events 667 

to 1. At the transcriptomics level, the FCs for the 63 tumor samples were computed as described above 668 

(see ‘RNA Sequencing’). Finally, on the proteomics level, we computed the FCs for the tumor samples (66 669 

in total) as follows: for each protein, its mean intensity over the normal samples was subtracted from 670 

the intensities of the tumor samples. (We chose to compute the FCs for the tumor samples with respect 671 

to a global reference (average of all normal samples) and not with respect to their paired benign sample 672 

in order to achieve a higher consistency with the transcriptomics level.)  673 

 We assigned to each sample two molecular perturbation scores summarizing/quantifying the 674 

magnitude of its FCs: DE_count counts the number of mutated/differentially expressed (DE) genes, while 675 
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the DE_sum score is the sum of absolute FCs of all genes. Thus, while the first score counts the number 676 

of events (mutations/DE genes), the second one quantifies their magnitude. A gene is regarded as 677 

mutated/DE if its value is 1 in the mutation layer and if its absolute value is above a threshold that has 678 

been set to 1 for the mRNA and protein layer. For the CNA layer, the corresponding threshold was set to 679 

0.5 because the range of FCs in the CNA matrix is smaller than the mRNA and protein matrices. Both 680 

types of scores were computed for each molecular level, except for the point mutations where only 681 

DE_count was computed. Afterwards, the 66 DE_count scores (63 for the mRNA) and the DE_sum scores 682 

at each layer were divided into the four grade groups G1, G2, G3 and G4/5 respectively. 683 

Network propagation/smoothing 684 

 As a network, the STRING gene interaction network (version 10)[48] was used, after removing all 685 

edges with combined score smaller or equal to 900 and keeping subsequently the largest connected 686 

component. The resulting network consisted of 10,729 nodes and 118,647 (high-confidence) edges. For 687 

the network smoothing, the weight matrix was computed as described in Vanunu et al.[49], but for an 688 

unweighted graph and the propagation parameter was set to 0.5. The propagation was iteratively 689 

repeated 500 times to ensure convergence of the results. For the mapping from gene symbols to STRING 690 

identifiers (Additional file 7: Table S6) we used the R/Bioconductor package STRINGdb [109]. The gene 691 

symbols with no matching STRING identifier were removed, while for those that mapped to multiple 692 

STRING identifiers, the first mapping was kept (default choice in the package). From the multiple gene 693 

symbols that mapped to the same STRING identifier, the first mapping was kept. The genes that were 694 

not present in the network were removed from the datasets, while those that were present in the 695 

network but not in the corresponding dataset were initially filled in with 0’s.  696 

 Genes with very small, ‘smoothed’ (absolute) FCs were filtered out as follows: after the network 697 

propagation, only network nodes that had protein measurements themselves or at least one direct 698 

neighbor (on the filtered STRING network) with protein measurements were considered in the next 699 

steps of this analysis. I.e. network nodes without measured FCs at the protein layer that had no direct 700 

neighbor with measured protein values were removed from the subsequent analyses. 701 

 For significance testing, the one-sided Wilcoxon rank sum test comparing the smoothed FCs 702 

between the groups G4/5 and G1 was applied to each network node (after filtering) and layer, once for 703 

up-regulation and once for down-regulation. The resulting sub-networks (up-regulated and down-704 

regulated) consisted of those genes that were significant (P value below 0.05) at all three layers and all 705 

of the edges connecting them on the filtered STRING network. 706 
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Network Component 1 analysis 707 

 For each tumor sample at the CNA layer, a one-sided, one-sample t-test has been applied testing 708 

if its average FC over the genes of the Network Component 1 (and in particular those that have been 709 

measured at the CNA) is significantly greater than 0. Due to the presence of outliers in some samples, 710 

the non-parametric, one-sided Wilcoxon signed-rank test has been applied as well yielding very similar 711 

results (data not shown). A result is considered to be significant if the corresponding P value is below 712 

0.05. The analysis has been repeated for the mRNA and protein layer.  713 

Independent cohorts validation 714 

 For the validation of Network Component 1, we used published datasets of three PCa cohorts: 715 

TCGA, MSKCC, and Aarhus. For TCGA and MSKCC, we downloaded the CNA, mRNA with precomputed z-716 

scores per gene, and corresponding clinical data from cBioPortal[110] (https://www.cbioportal.org/). 717 

There were 489 samples with log2CNA data and 493 samples with mRNA profiles in TCGA. In MSKCC, 718 

there were 157 primary tumors with CNA data and 131 primary tumors with mRNA data. The clinical 719 

endpoint used in TCGA was the progression-free survival time and the disease-free survival in MSKCC. All 720 

previous samples had known survival time. 721 

 For the Aarhus study (NCBI GEO dataset GSE46602), we downloaded the mRNA matrix and 722 

corresponding clinical information as described in Ycart et al [111]. The resulting mRNA matrix consisted 723 

of 20,186 genes and 50 samples- 40 PCa samples with known RFS time and 10 benign samples. Once 724 

excluding the benign samples, we computed z-scores per gene in order to have comparable values with 725 

the other two studies. These 40 PCa samples were also considered in the subsequent survival analysis. 726 

CNA data was not available for the Aarhus study. 727 

 We reduced all datasets to the nine genes of Network Component 1. In each of the datasets, we 728 

computed for each sample an average copy number change (CNA) or an average z-score (mRNA) across 729 

the nine genes of Network Component 1 (combined risk score). Subsequently, we used these combined 730 

risk scores to split the samples of each dataset into two groups: samples with a combined risk score 731 

larger or equal to the median combined risk score of the study were considered as ‘altered’ and the rest 732 

as ‘unaltered’. Kaplan-Meier curves were generated for the two groups. Due to the high level of 733 

discretized values in MSKCC at the CNA layer, a sample is considered to be ‘altered’ in that dataset if its 734 

combined risk score is above zero. 735 
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Analysis of regulators and target genes 736 

 For this analysis, we used an independently inferred (partially directed) generic transcriptional 737 

regulatory network (Leote et al. in revision; preprint available on bioRxiv). For each target gene the 738 

following procedure was applied: firstly we identified its neighborhood of order two in the 739 

transcriptional network by considering incoming edges only, i.e. all nodes from which the target gene 740 

was reachable in at most two steps (equivalently the node itself, its parents and the parents of parents). 741 

These are potential regulators of the target under consideration. Of these nodes, genes with no copy 742 

number measurements and genes altered (i.e. with log2 copy number ratio greater than 0.5 in absolute) 743 

in fewer than two tumor samples across the 66 tumor samples were filtered out. Subsequently, we fitted 744 

an elastic net model with alpha=0.5. We used as output variable the mRNA FC of the target gene and as 745 

input variables the CNAs of the regulators after the filtering. The value for the regularization parameter 746 

lambda was chosen through 10-fold cross validation (default in the R package glmnet (https://cran.r-747 

project.org/web/packages/glmnet/)). Predictors/regulators with a non-zero beta coefficient were 748 

deemed significant. We have used the elastic net model with alpha=0.5 because it is a method giving 749 

sparse solutions and can deal with correlated predictors at the same time. 750 

 For the validation of our approach, we used the two independent PCa cohorts described above 751 

(TCGA and MSKCC) and reduced the samples to those having both CNA and mRNA profile. This resulted 752 

in 488 samples for TCGA and 109 samples for MSKCC. Next, for each of the significant 753 

regulators/predictors we computed the Spearman correlation between its CNAs and the corresponding 754 

mRNA z-scores of the target gene in each of the two independent studies. Finally, for each target gene 755 

and each study we counted how many times the sign of the Spearman correlation matched the sign of 756 

the Spearman correlation computed for our cohort, i.e. there was an agreement regarding the direction 757 

of the association (Additional file 7: Table S6). 758 

Differences between similarity/distance measures 759 

 A mathematical explanation for the observed differences between the similarity/distance 760 

measures is provided. Let 𝒚𝒚𝒊𝒊𝑮𝑮 denote the vector of log2 fold changes (log2FCs) corresponding to the i-th 761 

tumor sample in the grade group G (𝐺𝐺 ∈ {𝐺𝐺1,𝐺𝐺2,𝐺𝐺3,𝐺𝐺4/5}), i.e. the fold changes of protein/mRNA 762 

concentration in the respective tumor sample versus the global benign control. Then we can write: 763 
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 765 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝐺𝐺  corresponds to the log2FC of protein/mRNA j in the respective tumor sample (i.e. i-th tumor 766 

sample in the grade group G), μ𝑖𝑖𝐺𝐺 to its (population) mean log2FC in the grade group G and ε𝑖𝑖𝑖𝑖𝐺𝐺  to the 767 

deviation of the respective individual log2FC from the population mean (j=1,…N), N being the total 768 

number of proteins/genes. The population mean μ𝑖𝑖𝐺𝐺 is estimated by computing the average log2FC 769 

across all tumor samples in that grade group for the protein/mRNA j. Equivalently, (1) can be re-written: 770 
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 . 771 

On the one hand, the Euclidean and Manhattan distance between one tumor sample and the 772 

corresponding mean/centroid vector are functions of these error terms ε𝑖𝑖𝑖𝑖𝐺𝐺 ’s alone and thus only 773 

dependent on the variances of the proteins/genes in the corresponding grade group – these are shown 774 

to be higher in the high-grade tumors. For the Pearson correlation r on the other hand, one can use the 775 

equivalent simple linear regression modeling in (1) with the beta coefficient being equal to 1. By 776 

standardizing the vector 𝒚𝒚𝒊𝒊𝑮𝑮  and the centroid vector, we have that 𝑟𝑟 =777 

1�𝑣𝑣𝑣𝑣𝑟𝑟(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟) 𝑣𝑣𝑣𝑣𝑟𝑟(𝒚𝒚𝒊𝒊𝑮𝑮)⁄ =778 

�𝑣𝑣𝑣𝑣𝑟𝑟(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟) (𝑣𝑣𝑣𝑣𝑟𝑟(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟) + 𝑣𝑣𝑣𝑣𝑟𝑟(𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑣𝑣𝑟𝑟𝑟𝑟))⁄ =779 

�1 (1 + 𝑣𝑣𝑣𝑣𝑟𝑟(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟)/𝑣𝑣𝑣𝑣𝑟𝑟(𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑣𝑣𝑟𝑟𝑟𝑟))⁄  where var denotes the variance. The Pearson 780 

correlation will thus depend both on the variance of the residuals and the variance of the predictor, i.e. 781 

mean/centroid vector in the corresponding grade group. Both quantities are expected to be higher in the 782 

high-grade samples, while our data implies that the variance of the centroids (predictors) dominates 783 

over the variance of the residuals. 784 

Mutual information 785 

 In order to compute the MI between each individual sample within a group against the matching 786 

centroid of the same group, the R package infotheo (http://cran.r-787 

project.org/web/packages/infotheo/index.html) has been used. For the MI, the data needs to be 788 
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discrete. For that, we discretize the tumor-to-benign FCs and centroids by setting 1, if the value is above 789 

a threshold thr, -1, if the value is below -thr and 0 else. (thr is equal to 1 for the mRNA and proteins and 790 

0.5 for the CNAs.)  791 

Availability of data and materials 792 

Exome and RNA sequencing data were submitted to the Sequence Read Archive (SRA) at NCBI under 793 

accession numbers PRJNA577801 (exome-seq) and PRJNA579899 (RNA-seq), respectively. The SWATH 794 

proteomics data were deposited in PRIDE. Project accession code is PXD004589. The published datasets 795 

of the two PCa cohorts (TCGA and MSKCC) analyzed during the current study can be downloaded from 796 

cBioPortal[110] while the third (Aarhus) is available at the NCBI GEO repository under the accession 797 

number GSE46602 . 798 
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called by our bioinformatics pipeline. Genes with called SNV are indicated by an AF > 0. A value of 0 840 
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Additional file 4: Table S3. Copy number analysis of 105 PCa samples. (a) Log2 ratios indicating the CNA 844 

status are shown for all genes in all samples. Values were determined by overlapping gene locations with 845 

CNA segments as calculated by CopywriteR. In case more than one segment overlapped with a gene, 846 

number was chosen that had the highest absolute value. (b) Genes are shown with log2 ratios higher 847 

than 0.5 or lower than -0.5 in at least one sample. 848 

Additional file 5: Table S4. RNA-seq analysis. (a) Log2FCs (relative to all benign samples) for all genes 849 
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Additional file 6: Table S5. Proteomics data of 210 PCa samples with duplicates. (a) Sample information 853 
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intensity of 2,371 proteins quantified in 210 PCa samples. 855 

Additional file 7: Table S6. Integration analysis of 66 tumor samples. (a) L1-norm of the ‘centroid 856 
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after network smoothing in the group G4/5 compared to the group G1 in all three layers (CNA, mRNA 867 
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Figure legends 1178 

 1179 

Figure 1. Proteogenomics analysis of 105 tissue regions from 39 PCa patients. a Representative 1180 
immunohistochemistry images of prostate tissues and the selection of BPH and tumorous tissue regions 1181 
for genome, transcriptome and proteome analysis. b Kaplan-Meier curves for our cohort when the 1182 
patients are stratified by the overall grade (left), the TA1 or TA grade group (middle) and the TA2 or TA 1183 
grade group (right). Point-wise 95% confidence bands are shown for the whole range of time values. 1184 

 1185 

Figure 2. Molecular perturbation scores for point mutations, CNAs, transcriptome and proteome data. 1186 
a Distributions of the first type of molecular perturbation scores (DE_count’s) for the four grade groups 1187 
(visualized as violin plots) at the mutation layer (upper left), CNA layer (upper right), mRNA layer (lower 1188 
left) and protein layer (lower right). Points represent the actual values. The horizontal lines correspond 1189 
to the median value in each of the four grade groups. b Distributions of the second type of molecular 1190 
perturbation scores (DE_sum’s) for the four grade groups (visualized as violin plots) at the CNA layer 1191 
(upper left), mRNA layer (upper right) and protein layer (lower left). Points represent the actual values. 1192 
The horizontal lines correspond to the median value in each of the four grade groups. P values (in each 1193 
of the titles) show the significance of the one-sided Wilcoxon rank sum test where the values of G3 and 1194 
G4/5 are gathered together and compared to the values of G1 and G2 (also gathered together). 1195 

 1196 

Figure 3. Within-group similarity at the different layers quantified by different similarity measures. a, 1197 
b Distributions of the similarity scores between the individual tumor samples and the centroid using the 1198 
Pearson correlation (a) and MI (b) for the four grade groups (visualized as violin plots) at the CNA (upper 1199 
left), mRNA (upper right) and protein (lower left) layers. Points represent the actual values. The 1200 
horizontal lines correspond to the median value in each of the four grade groups. P values from the one-1201 
sided Wilcoxon rank sum test comparing G4/5 versus G1: 0.0014 for the CNA, 0.89 for the mRNA and 1202 
0.053 for the protein layer with the Pearson correlation, and 0.027 for the CNA, 0.0052 for the mRNA 1203 
and 0.0081 for the protein layer with the MI. c Density plots of the FCs in the four grade groups for three 1204 
selected proteins among the 20 highest scoring (score: mean of the absolute FCs across all tumor 1205 
samples) proteins. Vertical lines correspond to the average FC in each of the four grade groups. The 1206 
selected proteins have more extreme FCs in the high-grade tumors (G3 and G4/5). d Heatmap of the 1207 
CNA matrix reduced to the significant regulators of the target gene ACPP output by the fitted elastic net 1208 
model (i.e. those with a non-zero beta coefficient). The columns are ordered based on the grade group 1209 
while there is a hierarchical clustering of the rows. The added colorbar depicts the mRNA FCs of the 1210 
target gene ACPP. 1211 

 1212 

Figure 4. Consistently dysregulated sub-networks, Network Component 1 heatmaps and validation in 1213 
three independent cohorts. a Sub-networks consistently dysregulated in high-grade compared to low-1214 
grade tumors. There is a significant up-regulation of the FCs of the depicted genes (colored in red) after 1215 
network smoothing in the group G4/5 compared to the group G1 in all three layers (CNA, mRNA and 1216 
protein). b Same as in (a) but here there is a significant down-regulation of the FCs of the depicted genes 1217 
(colored in blue) after network smoothing in the group G4/5 compared to G1 in all layers. Functional 1218 
annotation of the sub-networks in (a) and (b) with more than one node is given. c Heatmap of the CNA 1219 
matrix reduced to the Network Component 1 genes. The columns are ordered based on the grade group. 1220 
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The bottom colorbar depicts the effect size of each sample, i.e. its average FC across the genes of the 1221 
Network Component 1. The next colorbar represents the negative logarithm in base 10 of the P value 1222 
from the t-test. The above colorbar shows whether the result is significant: significant results are colored 1223 
in black and the rest in white. The top colorbar depicts the grade group of each sample. A black box has 1224 
marks the ‘interesting’ area with amplification of Network Component 1. Gray rectangles at the bottom 1225 
show the grade group of the patients (low, intermediate, high) where the samples have (mainly) come 1226 
from. d, e Same as in (c) but for the mRNA and the proteins. The samples removed due to degradation 1227 
(mRNA) are shown in gray. f Kaplan-Meier curves for ‘altered’ and ‘unaltered’ samples in the three 1228 
independent studies, TCGA (left), MSKCC (middle) and Aarhus (right) using the corresponding CNA data 1229 
when available (first row) and mRNA data (second row). 1230 

 1231 

Figure 5. Within-patient similarity at the different layers. a Distributions of the within-group similarities 1232 
for the four grade groups (visualized as violin plots) based on the Pearson correlation at the CNA layer 1233 
(upper left), mRNA layer (upper right) and protein layer (lower left). A ‘violin’ with the correlations 1234 
between TA1 and paired TA2 for the different patients has been added to all three plots and colored in 1235 
purple. Points represent the actual values. The horizontal lines correspond to the median value in each 1236 
of the groups. This analysis is similar to Fig. 3a – but it is not identical. P values from the one-sided 1237 
Wilcoxon rank sum test comparing the within-patient to the within-group similarities (where all values 1238 
from the four groups are gathered together): 8.97e-09 for the CNA, 4.42e-08 for the mRNA and 6.27e-04 1239 
for the protein layer. b The correlations between TA1 and paired TA2 for the different patients at one 1240 
layer are plotted against the corresponding correlations at another layer for each pair of layers: mRNA 1241 
versus CNA (upper left), protein versus CNA (upper right) and protein versus mRNA (bottom left). The 1242 
points are labeled and colored based on the overall grade in all plots; r: Pearson correlation.  1243 

 1244 
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Figure 4 (continued) 1264 
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Figure 5 1268 

 1269 

 1270 
 1271 

 1272 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.02.16.950378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.16.950378
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Background
	Results
	Proteogenomic analysis of the sample cohort identifies known PCa biomarkers.
	Molecular perturbations correlate with tumor grade.
	Inter-patient heterogeneity decreases along protein biosynthesis.
	Effects of distinct CNAs converge on common proteins.
	Joint network effects of CNAs drive tumor progression.
	Analysis of distinct tumor nodules defines intra-patient heterogeneity (TA1 versus TA2 comparison).

	Discussion
	Conclusions
	Patients and samples
	Exome sequencing and somatic variant analysis
	CNA analysis of exome-seq data
	OncoScan Microarrays
	RNA Sequencing
	RNA-seq - 3’ bias correction
	Gene fusions
	PCT assisted sample preparation for SWATH-MS
	SWATH assay query library for prostate tissue proteome
	Peptide quantification using OpenSWATH
	Statistical analysis
	Computation of molecular perturbation scores
	Network propagation/smoothing
	Network Component 1 analysis
	Independent cohorts validation
	Analysis of regulators and target genes
	Differences between similarity/distance measures
	Mutual information

	Availability of data and materials
	Acknowledgements
	Funding
	Authors’ contributions
	Ethics declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Supplementary information
	References
	Figure legends

