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 2 

Abstract 16 

Social interaction between microbes can be described at many levels of details: from the 17 

biochemistry of cell-cell interactions to the ecological dynamics of populations. Choosing an 18 

appropriate level to model microbial communities without losing generality remains a challenge. 19 

Here we show that modeling cross-feeding interactions at an intermediate level between genome-20 

scale metabolic models of individual species and consumer-resource models of ecosystems is 21 

suitable to experimental data. We applied our modeling framework to three published examples of 22 

multi-strain Escherichia coli communities with increasing complexity: uni-, bi-, and multi-23 

directional cross-feeding of either substitutable metabolic byproducts or essential nutrients. The 24 

intermediate-scale model accurately fit empirical data and quantified metabolic exchange rates that 25 

are hard to measure experimentally, even for a complex community of 14 amino acid auxotrophies. 26 

By studying the conditions of species coexistence, the ecological outcomes of cross-feeding 27 

interactions, and each community’s robustness to perturbations, we extracted new quantitative 28 

insights from these three published experimental datasets. Our analysis provides a foundation to 29 

quantify cross-feeding interactions from experimental data, and highlights the importance of 30 

metabolic exchanges in the dynamics and stability of microbial communities.  31 
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Author summary 32 

The behavior of microbial communities such as the human microbiome is hard to predict by its 33 

species composition alone. Our efforts to engineer microbiomes—for example to improve human 34 

health—would benefit from mathematical models that accurately describe how microbes exchange 35 

metabolites with each other and how their environment shapes these exchanges. But what is an 36 

appropriate level of details for those models? We propose an intermediate level to model metabolic 37 

exchanges between microbes. We show that these models can accurately describe population 38 

dynamics in three laboratory communities and predicts their stability in response to perturbations 39 

such as changes in the nutrients available in the medium that they grow on. Our work suggests that 40 

a highly detailed metabolic network model is unnecessary for extracting ecological insights from 41 

experimental data and improves mathematical models so that one day we may be able to predict 42 

the behavior of real-world communities such as the human microbiome.  43 
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 4 

Introduction 44 

Most microorganisms that affect the environments we live in1 and that impact our health2 do not 45 

live in isolation: they live in complex communities where they interact with other strains and 46 

species. The past decade has seen a surge of scientific interest in microbial communities, such as 47 

the human microbiome, but most studies remain limited to cataloguing community composition3. 48 

Our mechanistic understanding of how biochemical processes occurring inside individual 49 

microbial cells command interaction between cells, and lead to the emergent properties of multi-50 

species communities remains limited4.  51 

Microorganisms consume, transform and secrete many kinds of chemicals, including 52 

nutrients, metabolic wastes, extracellular enzymes, antibiotics and cell-cell signaling molecules 53 

such as quorum sensing autoinducers5–8. The chemicals produced by one microbe can impact the 54 

behaviors of others by promoting or inhibiting their growth9, creating multi-directional feedbacks 55 

that can benefit or harm the partners involved10,11. 56 

If a community is well-characterized and given sufficient data on population dynamics, it 57 

should be possible to parameterize the processes involved in microbe-microbe interactions by 58 

fitting mathematical models12. Any model can potentially yield insights13, but the complexity of 59 

most models so far has been either too high for parameterization14, or too low to shed light on 60 

cellular mechanisms15. Microbial processes may be modelled across a range of details: At the low 61 

end of the spectrum we have population dynamic models such as generalized Lotka-Volterra 62 

(gLV)16 and Consumer-Resource (C-R) models17, which treat each organism as a ‘black-box’. For 63 

example, C-R models assume a linear or Monod dependence of microbial growth on resource 64 

uptake kinetics. At the high end of the spectrum, we have detailed single-cell models such as 65 

dynamic flux balance analysis (dFBA)18 and agent-based models19 that have too many parameters 66 
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 5 

to be parameterizable by experimental data. For example, the linear equations for fluxes obtained 67 

from quasi-steady-state assumption of dFBA are underdetermined. What is an appropriate level of 68 

detail to model and constrain microbial processes using data, to produce accurate predictions as 69 

well as new mechanistic insights? 70 

Here we propose a generalizable framework that couples classical ecological models of 71 

population and resource dynamics with coarse-grained intra-species metabolic networks. We show 72 

that modeling communities at this intermediate scale can accurately quantify metabolic processes 73 

from population dynamics data acquired in the laboratory. We demonstrate the approach on three 74 

evolved/engineered communities of Escherichia coli (E. coli) strains with increasing levels of 75 

complexity: (1) unilateral acetate-mediated cross-feeding20, (2) bilateral amino-acid-mediated 76 

cross-feeding between leucine and lysine auxotrophies21, and (3) multilateral amino-acid-mediated 77 

cross-feeding between 14 distinct amino acid autotrophies22. The parameterized models report 78 

inferred leakage fractions of metabolic byproducts that are difficult to measure directly by 79 

experiments, reveal how resource supply and partitioning alter the coexistence and ecological 80 

relationships between cross-feeders, and predict the limits of community robustness against 81 

external perturbations. 82 

 83 

Results 84 

Modeling microbial metabolic processes at an intermediate level. Inspired by the classical 85 

MacArthur’s CR models23 and many follow-ups17,24–26, we propose to integrate CR models with a 86 

coarse-grained yet mechanistic description of cell metabolism. Metabolic reactions can be broadly 87 

classified as catabolic and anabolic, where catabolic reactions break down complex substrates from 88 

culture media into smaller metabolic intermediates that can be used to build up biomass 89 
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components by anabolic reactions. A minimal representation of cell metabolism is a three-layer 90 

network composed of growth substrates at the top, building block metabolites in the middle, and 91 

biomass at the bottom (Fig. 1). The growth substrates can be either substitutable (e.g., glucose and 92 

acetate) or non-substitutable (e.g., glucose and ammonium); however, in our model we consider 93 

only the non-substitutable building blocks for cell growth. In fact, substitutable metabolites can be 94 

mathematically lumped into complementary functional groups that together make a non-95 

substitutable group when coarse-graining metabolic network. Despite its simplicity, this model is 96 

flexible enough to describe the transformation of resources into other resources, non-consumable 97 

chemicals and biomass, regardless of the specific reactions involved. 98 

Based on these assumptions, we developed a dynamic modeling framework that contains 99 

eight kinds of biochemical reactions describing resource uptake, transformation, secretion, 100 

utilization, and degradation (Fig. 1, Supplementary Texts 1.1). Briefly, substrates available in the 101 

growth media can be imported into cells. A certain fraction of the imported substrates is then 102 

broken down into building block metabolites, which can be released back to the surrounding 103 

environment, used by cells for biomass production, consumed by other non-growth processes, and 104 

degraded. Secretable metabolites, when released, can be imported by cells in a way similar to 105 

externally supplied substrates, except that their uptake may be inhibited by other substitutable 106 

substrates that are assumed to be preferentially used (e.g., catabolite repression). The dynamics of 107 

population size change is affected by two elements: population growth and cell death, where the 108 

former may depend on both building blocks and substrates. Here the substrate dependency lumps 109 

the growth effects from metabolites that are not explicitly modeled, which can substantially reduce 110 

model size by defining and choosing model variables for only metabolites known to mediate 111 
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 7 

interpopulation interactions. To model the effects of toxic compounds27 we allow the growth rate 112 

of any cell population can be inhibited by accumulation of toxic metabolites in the environment.  113 

The eight types of reactions can be translated to differential equations. We assumed quasi-114 

steady-state for intracellular substrates and metabolites, as metabolic reactions typically occur at 115 

faster time scales compared to ecological dynamics. The time-scale separation thus simplifies our 116 

model by excluding intracellular variables, leaving only three types of variables that describe the 117 

population density of active cells (𝑁! , 𝑙 = 1,2, ,⋯ , 𝑛" ), the extracellular concentrations of 118 

substrates ([𝑆#], 𝑖 = 1,2,⋯ , 𝑛$), and the concentrations of metabolic byproducts excreted by cells 119 

([𝑀%], 𝑗 = 1,2,⋯ , 𝑛&). Assuming a chemostat environment with dilution rate 𝐷 (which reduces 120 

to a batch culture when 𝐷 = 0), the differential equations associated with the three state variables 121 

are given below (Supplementary Equations (9)-(11)) 122 

 𝑑[𝑆#]
𝑑𝑡 = 𝐷3𝑆',# − [𝑆#]5 −6𝐽!,#

)*+,,𝑁!

-!

!./

 (1) 

 𝑑𝑁!
𝑑𝑡 = 𝑁!3𝐽!

0123 − 𝐽!456+7 − 𝐷5 (2) 

 𝑑[𝑀%]
𝑑𝑡 = 𝐷3𝑀',% − 8𝑀%95 +63𝐽!,%

!568,9 − 𝐽!,%
)*+,95𝑁!

-!

!./

 (3) 

where 𝑆',#  and 𝑀',%  are the feed medium concentrations of substrate 𝑆#  and metabolite 𝑀% 123 

respectively. 𝐽!,#
)*+,, and 𝐽!,%

)*+,9represent uptake fluxes of substrates and metabolites respectively, 124 

𝐽!,%
!568,9are metabolite secretion fluxes, and 𝐽!

0123and 𝐽!456+7 stand for per-capita growth and death 125 

rates respectively. We used Monod kinetics for resource uptake (𝐽!,#
)*+,,and 𝐽!,%

)*+,9; Supplementary 126 

Equation (16) and (17)), derived mathematical expressions for metabolite leakage ( 𝐽!,%
!568,9 ; 127 

Supplementary Equation (18) and (19)) and biomass production (𝐽!
0123; Supplementary Equation 128 
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 8 

(20)) using the Liebig’s Law of the Minimum28 (growth rate is proportional to the flux of the 129 

scarcest resource), and modelled cell death using first-order kinetics with constant specific 130 

mortality rate (𝐽!456+7; Supplementary Equation (23)). The functional forms of these kinetic laws 131 

and other details of model derivation are described in Supplementary Texts 1.1. 132 

  133 

Example 1: unilateral acetate-mediated cross-feeding. We first applied our modeling 134 

framework to a well-documented unilateral acetate-mediated cross-feeding polymorphism evolved 135 

from a single ancestral lineage of E. coli in laboratory conditions20 (Supplementary Texts 1.2.1). 136 

The community contains two polymorphic subpopulations (E. coli subspecies) whose metabolism 137 

differs in their quantitative ability to uptake and efflux carbon sources: a glucose specialist strain 138 

(CV103) which has a faster glucose uptake rate but cannot grow on acetate, and an acetate 139 

specialist strain (CV101) which can grow on acetate but has a lower glucose uptake rate. CV103 140 

secretes acetate—a major by-product of its aerobic metabolism—and this way creates a new 141 

ecological niche for CV101. For simplicity, we assumed that glucose and acetate are fully 142 

substitutable resources since E. coli cells can grow on either carbon source with similar yields 143 

(Supplementary Texts 1.2.2). Compared to its complete form (Supplementary Fig. 1), the 144 

simplified model diverts all glucose flux to acetate that acts as the only growth limiting factor (Fig. 145 

2A). Using parameters estimated by manual fitting (Materials and methods, Supplementary Table 146 

1), we show that the model accurately reproduced the observed changes in growth and acetate 147 

concentration in both monoculture and coculture experiments over time (Fig. 2B-E). Particularly, 148 

Fig. 2D shows that acetate is toxic to both strains and CV101 is more susceptible. Although Fig. 149 

2E shows coexistence of CV101 and CV103 within 40 generations, our model predicts that CV103 150 

would be eventually excluded from the community in the long run (Supplementary Fig. 2).  151 
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 9 

The simplified model has 11 parameters, including 8 free parameters, 2 parameters fixed 152 

at literature values, and 1 biological constant (Supplementary Table 1). To assess parameter 153 

uncertainty, we sampled posterior distribution of all free parameters using Markov-Chain-Monte-154 

Carlo (MCMC) algorithm (Material and methods), finding that their medians coincide well with 155 

the default values obtained by manual fitting and used in the simulations (Supplementary Fig. 3, 156 

Supplementary Table 1). Compared to other free parameters, 𝐶/,0  (half maximum inhibitory 157 

concentration of glucose for acetate uptake by CV101) and 𝐼:,6  (half maximum inhibitory 158 

concentration of acetate for CV103 growth) have much wider distributions, suggesting the dataset 159 

(Fig. 2B-E) used to constrain the model is relatively insensitive to changes in their values. We did 160 

not find strong correlations among parameters, except for the maximum glucose uptake rate of 161 

CV101 and CV103 (𝑉/,0 and 𝑉:,0 respectively), which has a Pearson correlation coefficient (PCC) 162 

99.6%. Particularly, the distribution of the acetate leakage fraction has a median 36.7% with 163 

interquartile range from 29.8% to 44.6%, which is consistent with the manually optimized value 164 

33.0%. This value suggests that both cell types have nearly equal carbon flux values between 165 

acetate secretion and glucose uptake, a quantitative relationship that has been observed in a 166 

different E. coli strain29. The high efflux of acetate may be a consequence of adaptive co-evolution 167 

and accumulation of degenerative mutations20. 168 

Our model indicated that the competition outcome depends on the acetate level in the feed 169 

medium (Fig. 2E): CV103 dominates the community without acetate supplementation while 170 

CV101 dominates when 1 mM acetate was supplemented. Fig. 2F outlines the region in the 171 

nutritional space when CV101 grows faster than (gray shading) and equal to (shading boundary) 172 

CV103. The region has a bell shape with the maximum at 0.81 mM glucose and is almost 173 

symmetric around 1 mM acetate. The dose-dependent growth effects can be explained by the 174 
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 10 

conflicting role of acetate which is both a source of carbon and a toxic waste. Acetate at low 175 

concentration serves as nutrient for CV101 and increases its growth rate. However, too much 176 

acetate is toxic and has stronger inhibitory effects on the growth of CV101 compared to CV103 177 

(Fig. 2D). The growth advantage of CV101 conferred by an intermediate level of acetate can be 178 

negated at high glucose level (> 0.81 mM) due to strong carbon catabolite repression resulting in 179 

reduced assimilation of acetate by CV101. 180 

 181 

Coexistence of CV101 and CV103. Coexistence of CV101 and CV103 requires that the growth 182 

rate of both strains is equal to the dilution rate. The nutritional space has two solutions (Fig. 2F, 183 

gray circles) that satisfy the criteria at dilution rate of 0.2 h-1 (the value used in the experiment20). 184 

We then constructed a phase diagram (Fig. 2G) that spans a wide range of acetate leakage fraction 185 

and the feed medium glucose concentration via simulations. Since acetate is not supplemented, 186 

increasing glucose supplementation induces higher release of acetate to the environment. The 187 

entire phase space is divided into five distinct regions with four outcomes, including population 188 

collapse, extinction of CV103 (CV101 wins), extinction of CV101 (CV103 wins) and stable 189 

coexistence. In general, CV103 wins when the supplementation level of glucose is either very low 190 

(acetate level is too low to compensate for the growth disadvantage of CV101 due to slower 191 

glucose uptake) or very high (acetate level is too high to be toxic and strongly inhibits CV101). 192 

Stable coexistence can be maintained within a narrow range of acetate leakage fraction. We show 193 

that the coexistence region is robust to changes in the two most uncertain parameters determined 194 

by MCMC (Supplementary Fig. 4). Note that the narrow coexistence regime does not necessarily 195 

conflict with the observed transient coexistence in Fig. 2E because the theoretical phase diagram 196 

was constructed at steady state when time goes to infinity. 197 
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 11 

Using Chesson’s coexistence theory30, the boundaries of the coexistence region can be 198 

interpreted as the conditions when the fitness (growth rate) difference between CV101 and CV103 199 

is exactly balanced by the stabilizing effects of their niche differences (differential use of carbon 200 

sources; in general, it is a collective name for all mechanisms that lower interspecific competition 201 

relative to intraspecific competition). When acetate is not leaked (i.e., the acetate leakage fraction 202 

is 0), there is no niche difference (the only available carbon source is glucose) and the fitness 203 

difference is determined by the basal growth advantage of CV103 due to faster glucose uptake rate. 204 

Increasing leakage fraction of acetate leads to higher niche difference since acetate accumulation 205 

in the culture allows CV101 to utilize acetate as alternative carbon source and effectively reduces 206 

inter-population competition with CV103 for glucose. Meanwhile, increased acetate leakage also 207 

causes CV101 to grow faster, first reducing the fitness difference between the two strains to 0 (by 208 

overcoming its basal growth disadvantage) and increasing the difference afterwards. As the acetate 209 

leakage fraction increases, the lines of niche and fitness difference can possibly have two 210 

intersection points (Supplementary Fig. 5), between which CV101 and CV103 coexist stably 211 

because their fitness difference is smaller than their niche difference. 212 

 213 

Example 2: bilateral amino-acid-mediated cross-feeding. The second community is 214 

characterized by a synthetic cross-feeding mutualism between lysine and leucine auxotrophies of 215 

E. coli21 (Supplementary Texts 1.3.1). The two mutants differ only by single gene deletions in the 216 

lysine (DlysA) and leucine (DleuA) biosynthesis pathways. Neither mutant can grow in 217 

monoculture, but their coculture can survive by exporting essential amino acids that are needed by 218 

their partners to the extracellular environment and developing a bidirectional, obligate relationship. 219 

For simplicity, we assumed (1) leucine or lysine does not limit growth of the strain that synthesizes 220 
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it de novo (i.e., its producing strain); (2) environment leucine or lysine is not assimilated by its 221 

producing auxotrophic strain (Supplementary Texts 1.3.2). Using MCMC algorithm to estimate 222 

parameter values of the model that does not take these assumptions (Supplementary Fig. 6), we 223 

justified the second assumption by showing that the amino acid uptake rates by their producing 224 

strains are 1-2 orders of magnitude lower than the rates by their non-producing strains 225 

(Supplementary Fig. 7), suggesting that the majority of amino acids in the environment are 226 

assimilated by their auxotrophies. However, it is important to note that the assumption is specific 227 

to nutrient auxotrophies and may not be generalized to non-auxotrophic, wild-type cells. For 228 

example, wild-type E. coli cells that are able to synthesize all amino acids de novo still grow faster 229 

when supplemented with additional amino acids. Using parameters obtained through manual 230 

fitting (Materials and methods, Supplementary Table 2), we show that the simplified model (Fig. 231 

3A) remains effective for quantitatively reproducing the growth and nutrient dynamics in both 232 

monoculture and coculture conditions (Fig. 3B,C).  233 

The simplified model has 15 parameters, including 9 free parameters, 4 parameters fixed 234 

at literature values, and 2 biological constants (Supplementary Table 2). MCMC simulations 235 

confirmed that the posterior median of the free parameters and their values obtained from manual 236 

fitting are close to each other (Supplementary Fig. 8, Supplementary Table 2), except that we 237 

underestimated the mortality rate constant of the leucine auxotroph (𝜂∆!). Relative to other free 238 

parameters, the distributions of 𝐾0  (half-maximal concentration for glucose uptake), 𝜂∆8 239 

(mortality rate constant of the lysine auxotroph), and 𝜂∆!  are much wider and span orders of 240 

magnitudes, suggesting that they are loosely constrained by experimental data. In addition, strong 241 

negative correlations between the maximum uptake rate and yield of the two amino acids (PCC = 242 

-86.9% and -65.5% for leucine and lysine respectively) were found. Finally, the engineered 243 
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interaction between the lysine and leucine auxotrophies is much weaker with only 0.66% 244 

(interquartile range [0.52%, 0.85%]) leucine and 1.13% (interquartile range [0.91%, 1.41%]) 245 

lysine released back to the environment (their corresponding values obtained through manual 246 

fitting are 0.32% and 1.39% respectively), compared to the evolved acetate-mediated cross-247 

feeding interaction (~30% acetate leakage) we studied in Example 1. 248 

 249 

Coexistence of the lysine and leucine auxotrophies. We sought to explore when the two 250 

auxotrophic strains coexist in chemostat. Fig. 3D shows the phase diagram at different 251 

combinations of the lysine and leucine leakage fraction via simulations. We did not see competitive 252 

exclusion, which is expected because the interdependence between the two strains is mutually 253 

obligate. It is important to note from Fig. 3D that the minimum leakage fraction of leucine (5.50%) 254 

and lysine (9.50%) required by coexistence at dilution rate 0.1 h-1 are far larger than the actual 255 

secreted percentages that we fit from experimental data (posterior median 0.66% and 1.13% for 256 

leucine and lysine leakage respectively), suggesting that the two engineered strains may not be 257 

able to coexist in such condition (but they may coexist at lower dilution rate). Interestingly, the 258 

bottom left boundary of the coexistence region describes a negative interaction between the 259 

minimum of the two leakage fractions, suggesting that decreasing leakage of one amino acid must 260 

be compensated by increasing leakage of the other in order to satisfy the minimum requirement of 261 

coexistence. 262 

Coexistence is possible in the majority of the phase space, suggesting that the community 263 

is insensitive to the changes in the leakage rates. A striking feature of the diagram is that, increasing 264 

the fraction of lysine leakage fraction may trigger a discontinuous, abrupt switch from a steady 265 

state dominated by the leucine auxotroph (regime R1) to a steady state dominated by the lysine 266 
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auxotroph (regime R2). Such abrupt, discontinuous regime shifts are a common feature of 267 

microbial communities limited by several essential nutrients31. What accompanies with the 268 

compositional shift is the qualitative change in the nutrient utilization strategies adopted by the 269 

two strains (Fig. 3E). Before the switch, growth of the lysine auxotroph is limited by shared 270 

glucose while that of the leucine auxotroph is limited by leucine secreted by the lysine auxotroph. 271 

When the lysine leakage fraction increases over the threshold of the shift, the lysine auxotroph is 272 

limited by lysine secreted by the leucine auxotroph while the leucine auxotroph is limited by shared 273 

glucose. Our results indicate that the cellular metabolic strategies that are needed to maintain stable 274 

coexistence of the two amino acid auxotrophies vary in a discontinuous manner with continuous 275 

changes in amino acid leakage fractions.  276 

 277 

Supplementation of cross-fed metabolites can reverse the sign of microbial social interactions. 278 

Cross-feeding interactions within a microbial community may be described as social interactions 279 

with costs and benefits to the members involved32,33. Those costs and benefits can be altered by 280 

environmental perturbations that supply or remove the cross-fed metabolites from the environment. 281 

Using the bilateral amino-acid-mediated cross-feeding model, we investigated how the 282 

supplementation of amino acids affected ecological relationships between cross-feeders at the 283 

steady state (Material and methods).  284 

 The phase space that spans a wide range of the leucine and lysine concentrations in the 285 

feed medium suggest four possible ecological relationships, including competition, amensalism, 286 

mutualism and parasitism (Fig. 4A). Mutualism was maintained over a broad range of supplied 287 

amino acid concentrations, even though amino acid supplementation releases the dependence of 288 

one auxotroph on the other and is hence detrimental to the mutualistic relationship. In the 289 
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mutualism regime, glucose is in excess and both amino acid auxotrophies are limited by the 290 

essential amino acids they cannot produce (Fig. 4B, left column). Further addition of amino acids 291 

leads to compositional dominance of one auxotrophic strain, but not necessarily competitive 292 

exclusion. Supplementation of leucine destabilizes the community by excluding the lysine 293 

auxotroph (Fig. 4B, middle column), whereas adding lysine only reduced the relative abundance 294 

of the leucine auxotroph, rather than leading to the loss of its entire population (Fig. 4B, right 295 

column). These results suggest that adding cross-fed nutrients can induce competition between 296 

community members that previously interacted mutualistically, and shift positive interactions to 297 

negative interactions. 298 

Why supplementation of lysine and leucine cause such asymmetrical long-term effects on 299 

the community’s composition and stability? We found that the outcome may be dependent on 300 

whether one or both auxotrophies is limited by glucose. When glucose limits both auxotrophies 301 

(Fig. 4B, middle column), competitive exclusion occurs and the leucine auxotroph wins because 302 

it has the same glucose uptake kinetics as the lysine auxotroph but lower mortality rate 303 

(Supplementary Table 2). When only the lysine auxotroph is limited by glucose (Fig. 4B, right 304 

column), the leucine auxotroph can sustain its population by growing on leucine released by its 305 

competitor. Whether coexistence of the two auxotrophies remains stable with increased level of 306 

amino acids supplementation can also be understood from the conditions when the net growth rate 307 

(growth rate minus mortality rate) of both populations equal to the dilution rate in the nutritional 308 

space (Fig. 4C). Coexistence requires that the steady state leucine must be equal to 5.25 × 10<= 309 

mM, suggesting that supplementing too much leucine would devastate the ability of the system to 310 

self-regulate and reach that level at steady state. By contrast, a solution with high lysine 311 
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concentration is always feasible, which explains why coexistence can be maintained at very high 312 

level of lysine supplementation. 313 

 314 

Example 3: multilateral cross-feeding between 14 amino acid auxotrophies. To further 315 

demonstrate the utility of our modeling framework, we studied cross-feeding interactions within 316 

communities of more than two members. We modeled a community of 14 amino acid auxotrophies 317 

engineered from E. coli by genetic knockout22 (Fig. 5A). The 14-auxotroph model was directly 318 

extended from the 2-auxotroph model developed above by considering each auxotroph can 319 

potentially release all other 13 amino acids to the shared environment (Supplementary Texts 1.4.1). 320 

Although all feeding possibilities are known, the consumer feeding preferences are not. By fitting 321 

experimental data on the population compositions we aimed to infer the unknown feeding 322 

pattern—what amino acids and how much they are released by each auxotrophic strain to feed 323 

each other. 324 

 The model has 269 parameters, including 219 free parameters, 36 parameters fixed at 325 

literature values, and 14 biological constants. Parameter values were obtained through both 326 

automatic (amino acid leakage fractions) and manual (the rest) data fitting (Material and methods, 327 

Supplementary Table 3). We show that the fit gave an excellent match to the observed population 328 

density fold changes in pairwise cocultures (Fig. 5B, PCC = 94%), except for cross-feeding pairs 329 

whose fold change values are less than 1. The observed reduction in population density may be 330 

caused by cell death in the absence of nutrients but it is difficult to know because the measurement 331 

of optical density at low inoculation amount (107 cells/mL) is highly noisy. For simplicity, we 332 

assumed no cell death and set mortality rates to zero in the simulation, which explains why the 333 

simulated population density fold changes are always non-decreasing. To compare our model with 334 
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higher-level models that do not include explicit nutrients, we adopted a Lotka-Volterra (LV) type 335 

model used in the literature22,33, which guarantees that cross-feeding is obligate for growth 336 

 𝑑𝑥/
𝑑𝑡 = 𝐶/,>𝑥> D

𝑥/
𝑥/ + 𝑏

F D1 −
𝑥/ + 𝑥>
𝑘 F 		 (4) 

 
𝑑𝑥>
𝑑𝑡 = 𝐶>,/𝑥/ D

𝑥>
𝑥> + 𝑏

F D1 −
𝑥/ + 𝑥>
𝑘 F	 (5) 

𝑥/ and 𝑥> are cell densities of any two amino acid auxotrophies, 𝐶/,> and 𝐶>,/ are their cooperative 337 

coefficients, 𝑏 is a constant that tunes the saturation concentration of 𝑥/ and 𝑥>, and 𝑘 is another 338 

constant that represents carrying capacity. We show that the LV-type model can at best achieve a 339 

PCC of 33%, using parameters optimized by MCMC algorithm (i.e., parameters from the MCMC 340 

sample with the highest PCC). Although this LV-type model has a smaller number of parameters 341 

than ours (198 vs. 269), the number of free parameters between the two models is of similar size 342 

and comparable (198 vs. 205; note that 14 mortality rates in our model were set to zero). 343 

Fig. 5C reports the estimated leakage fractions of 14 amino acids by their amino acid 344 

auxotrophies in a matrix form. Although the 14 auxotrophies were derived from the same parent 345 

strain, they showed very different profiles of amino acid leakage: some auxotrophies such as the 346 

methionine auxotroph DM (36.41% total carbon loss) are highly cooperative whereas others such 347 

as the tryptophan auxotroph DW (1.37% total carbon loss) have very low cooperativity. These 348 

differences may be attributed to how metabolic network structure was disrupted to generate the 349 

auxotrophies and the concomitant changes in metabolic fluxes. One such example is the strong 350 

release (13.32%) of threonine by the methionine auxotroph. Since methionine and threonine 351 

biosynthesis pathways branch off from the same precursor homoserine, block of one pathway may 352 

lead to increased fluxes of another pathway and leakage of corresponding amino acids. However, 353 

the leakage fraction of methionine by the threonine auxotroph is very low (0.1%), suggesting that 354 
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network topology is not the only factor that affects leakage flux. Since methionine is the most 355 

expensive amino acid to produce in terms of ATP consumption34, its biosynthesis and leakage rates 356 

may be tightly regulated and only loosely depend on the level of its precursors. 357 

 358 

The 14-member community converges to a stable coexisting subset at steady state. Besides 359 

the pairwise coculture data (Fig. 5B), our model also reproduced the population dynamics of 360 

serially diluted cocultures of all 14 auxotrophies and four selected 13-auxotroph combinations (Fig. 361 

6A). The fit is reasonably good at the log scale, except for the methionine-auxotroph-absent 362 

community which seems to undergo non-ecological processes that rescue the threonine auxotroph 363 

(DT) from the brink of extinction between day 2 and day 3. Quantitatively, the PCCs between 364 

observed and predicted values on the log scale are 88.71% (all 14 auxotrophies), 75.30% (lysine-365 

auxotroph-absent), 78.34% (arginine-auxotroph-absent), 52.93% (threonine-auxotroph-absent), 366 

and 8.90% (methionine-auxotroph-absent).  367 

As shown in Fig. 6A, most amino acid auxotrophies were diluted away very quickly but 368 

some, such as the isoleucine auxotroph (DI), exhibited transient recovery dynamics after the initial 369 

decay. To understand the transient dynamics, we used the same model to infer the concentration 370 

dynamics of glucose and all amino acids, which are hidden states (not yet observed) that are 371 

relatively costly and inaccurate to measure in experiments. Supplementary Fig. 9 shows that the 372 

population density of the isoleucine auxotroph had an initial drop because the isoleucine pool had 373 

not been accumulated to a critical size that allows the actual growth to compensate for its mortality 374 

and system dilution. As the pool size increases, its net growth rate (growth minus mortality) 375 

surpasses the dilution rate and recovers its population density, which eventually levels off when 376 

the positive and negative effects are balanced. 377 
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 By simulating the 14-auxotroph community model to steady state, we further predicted that 378 

the initial 14-strain mixture converges to a stable coexisting subset that contains 4 amino acid 379 

auxotrophies that are deficient in biosynthesis of isoleucine (DI), lysine (DK), methionine (DM), 380 

and threonine (DT) (Fig. 6B). The predicted coexistence state was successfully validated by two 381 

independent observations over 50-day serial dilution22, a much longer period of time than the 382 

duration of the training dataset (7-day serial dilution; Fig. 6A). The resource-consumer 383 

relationships of the 4-member community are shown in a bipartite network (Fig. 7A), where 3 384 

amino acid secretion fluxes were identified as essential (solid arrows) as their deletions resulted in 385 

community member loss (Supplementary Fig. 10). These essential fluxes suggest that the primary 386 

feeders for DK, DM, DT are DT, DI, DM respectively; however, none of DK, DM, DT dominates 387 

the feeding of DI and their contributions to the isoleucine pool in the environment are substitutable. 388 

 389 

Mutualistic cross-feeding network is prone to collapse after external perturbations. Using the 390 

model developed above, we computationally tested how external perturbations, including nutrient 391 

downshift, the addition of antibiotics, and invasion of cheating phenotypes (the same auxotrophic 392 

dependence but no amino acid leakage) affect the stability of coexistence among the 4 auxotrophic 393 

strains that would otherwise be stable (Material and methods). The 4-member community was able 394 

to cope with these disturbances to a certain extent and remained integrated. Beyond the thresholds, 395 

all three perturbation types resulted in community collapse as a result of domino effect (Fig. 7B-396 

D), implying that tightly coupled cooperative communities are fragile and prone to collapse. Since 397 

antibiotics inhibit growth of individual strains (targeting consumer nodes in the bipartite network) 398 

while cheaters are amino acid sinks (targeting resource nodes in the bipartite network), we 399 

identified that DT and methionine as the weakest consumer node (Fig. 7C) and resource node (Fig. 400 
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7D) in the bipartite network respectively. Our results suggest that DTàK (secretion of lysine by 401 

the threonine auxotroph) and MàDM (uptake of methionine by the methionine auxotroph)—the 402 

outgoing links from the two weakest nodes that are also essential to maintain community 403 

integrity—are the weakest metabolic fluxes that may set the resistance level of the community to 404 

external perturbations35. 405 

 406 

Discussion 407 

Predicting population dynamics of a microbial community from interactions between its 408 

members is difficult because interaction happens across multiple scales of biological 409 

organization36. Here we propose a mechanistic ecology model based on a coarse-grained 410 

representation of cell metabolism that accurately describes the population dynamics of three 411 

laboratory communities with well-defined metabolic exchanges. Previous studies have used 412 

genome-scale models and metabolic flux analysis, but these studies require flux measurements by 413 

isotope tracing and metabolomics to fit the adjustable flux parameters. Some success was also 414 

achieved by fitting the time series data with coarser-grained ecological models37–41 such as the 415 

gLV equations; however, in gLV-type models, interspecific interactions are phenomenologically 416 

defined based on density dependency, which gives little mechanistic understanding of the 417 

underlying mechanism15. By contrast, our model has explicit formulations of context dependency 418 

by representing the chemical flows within and between microbes and thus can explain the 419 

metabolic part of microbe-microbe interactions. 420 

When we have limited prior knowledge and data on a given community it becomes critical 421 

to choose the right level of details. However, by applying our approach to well-defined laboratory 422 

systems, we show that a highly detailed metabolic network is not necessary for developing useful 423 
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ecological models. In single-bacteria studies, coarse-grained metabolic models have been 424 

employed to understand the design principles of metabolic networks and their regulation42, as well 425 

as to predict metabolic flux distributions useful for synthetic biology43 and industrial44 applications. 426 

Compared to genome-scale models, using coarse-grained models linking ecology and metabolism 427 

is simple and has recently become popular26,45,46. Depending on the research question, a coarse-428 

grained metabolic network can be created at any level of granularity from a single reaction to the 429 

complete whole genome-scale reconstruction. The choice of granularity and how to derive a 430 

simpler model from the more complex one are usually empirical but can be facilitated by more 431 

systematic approaches to reduce dimensionality. 432 

Our model could extract new insights from those previously published empirical data on 433 

well-defined laboratory systems. The analysis shows that unidirectional cross-feeding is 434 

equivalent to a commensalism and bidirectional cross-feeding is equivalent to a mutualism. As 435 

shown by our study (Fig. 2-4) and previous work27,32, the actual relationship between cross-feeders, 436 

however, can be diverse in simple environments (e.g., glucose minimal medium) with constant 437 

resource supply due to a combination of positive effects of cross-feeding with negative effects of 438 

competition and toxicity of cross-fed metabolites, suggesting that the exact outcome cannot be 439 

precisely delineated by the cross-feeding type alone. For example, we predicted that, without 440 

supplementation of amino acids, coexistence of the leucine and lysine auxtrophies can only be 441 

achieved when one strain is limited in growth by glucose while the other strain is limited by the 442 

amino acid it is auxotrophic for (Fig. 3E). Although it is theoretically possible that growth of the 443 

two auxotrophies is simultaneously limited by the amino acids they are auxotrophic for (i.e., the 444 

lysine auxotroph limited by lysine and the leucine auxotroph limited by leucine), this interaction 445 

pattern does not occur in the phase diagram because glucose will always be sufficiently depleted 446 
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to a level that becomes growth limiting to at least one strain. The control of resource pool 447 

availability via population dynamics has been demonstrated to be a key mechanism for microbial 448 

community to optimize the metabolic strategy of its members to yield resistance to invasions and 449 

to achieve maximum biomass46. 450 

Mechanistic models including explicit nutrients and other realistic features, such as the 451 

models presented in this study, can help identify knowledge gaps47. For example, recent 452 

experiments have demonstrated that the coexistence of two carbon source specialists in the 453 

unilateral cross-feeding example is mutualistic in the sense that the consortium is fitter than the 454 

individuals48. The syntropy can be explained by a null expectation from theoretical ecology 455 

models49: the glucose specialist provides acetate in an exchange for a service provided by the 456 

acetate specialist which scavenges the acetate down to a level at which growth inhibition is 457 

insignificant. Although the mechanism of resource-service exchange has been considered in our 458 

model, the coexistence regime in the phase diagram (Fig. 2G) is competitive, rather than 459 

mutualistic. Since mutualism occurs when the reciprocal benefits associated with cross-feeding 460 

outweigh competitive costs50, our model may predict either or both of lower benefits and higher 461 

costs than needed to achieve mutualistic coexistence. Overall, the cost-benefit nature of the cross-462 

feeding interaction between polymorphic E. coli strains is more complex than thought and warrants 463 

further research. 464 

Our modeling framework explains well the three published experiments but has noteworthy 465 

limitations. For example, we assume that the leakage flux is proportional to the conversion rate 466 

from substrate to metabolite (proportionality assumption), rather than proportional to the internal 467 

metabolite concentration. When does this assumption remain valid and how does it break down? 468 

By leveraging our previous experiences in modeling E. coli growth and resource allocation43,51, 469 
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we developed a coarse-grained single-strain model that explicitly assumes a linear dependency of 470 

leakage rate on metabolite concentration (Supplementary Texts 1.5). We found that the 471 

proportionality assumption remains valid for an internal metabolite when its concentration was 472 

perturbed at the upstream, rather than the downstream of the metabolite (Supplementary Fig. 11). 473 

This makes sense because the proportionality assumption couples metabolite leakage with 474 

upstream biosynthesis but does not take feedback regulation from downstream reactions and 475 

metabolites into accounts. When a perturbation is imposed from the downstream side, the 476 

proportionality assumption can lead to undesired behavior such as high leakage flux at low 477 

metabolite concentration. Although the assumption remains valid in the context of the current 478 

study where resource availability is the only varying external condition, it may prevent us from 479 

generalizing our modeling framework to different types of perturbations. Future studies may 480 

correct this limitation by incorporating metabolite concentration and associated reaction kinetics. 481 

So far, the current framework has been applied to well-characterized communities with 482 

known chemicals and associated interactions which provided a ground through to assess our model. 483 

Can the same approach be applied to infer community structure of complex microbiomes (e.g., 484 

human gut microbiome) where most of the metabolic exchanges involved in microbe-microbe 485 

interactions are still unknown? Our model has the potential if some technical challenges can be 486 

solved. First, direct modeling of a real-world microbiome with hundreds of species would be 487 

hurdled by too many unknown model parameters. One way to solve this problem is to simply 488 

ignore the rare species38. Another—arguably better—approach might be by grouping species 489 

composition into functional guilds using unsupervised methods that infer those groups from the 490 

data alone52, or to use prior knowledge from genomics or taxonomy to create such functional 491 

groups. Second, inferring chemical mediators within a community of interacting populations is a 492 
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nontrivial task. It can be facilitated by prior knowledge such as searching the literature or 493 

leveraging systems biology tools such as community-level metabolic network reconstruction53. 494 

Finally, our model is nonlinear, so that an efficient and robust nonlinear regression approach for 495 

parameter estimation is essential. For a model with similar size to the 14-auxotroph community 496 

we analyzed here, non-linear optimization algorithms may fail to converge to a realistic set of 497 

parameters and manual parameter selection is often the only feasible approach. Although we 498 

primarily chose the manual method to calibrate our models in this proof-of-concept study, manual 499 

fitting is a subjective and time‐consuming process, requires an expert operator with prior 500 

knowledge to choose physically and biologically realistic values, and perhaps more importantly, 501 

is unable to infer correlations among parameters. These downsides of manual parameter fitting has, 502 

at least for now, precluded it from being applied to large-scale microbial communities. On the 503 

positive side, the process of trial-and-error was greatly improved by the speed at which the 504 

intermediate-scale model runs simulations on a regular desktop computer. Beyond these technical 505 

issues, the model itself can be extended in multiple ways such as incorporating mechanisms of 506 

resource allocation46. Despite any present limitations, we anticipate that network inference using 507 

mechanism-explicit models can open new avenues for microbiome research towards more 508 

quantitative, mechanistic, and predictive science. 509 

 510 

Materials and methods 511 

Cross-feeding models. The modeling framework presented in this study was developed by 512 

integrating a classical ecology model for population and nutrient dynamics with a coarse-grained 513 

description of cell metabolism. Custom MATLAB R2018a (The MathWorks, Inc., Natick, MA, 514 

USA) codes were developed to perform computational simulations and analyses of all three cross-515 
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feeding communities. Please refer to Supplementary Texts for a detailed description of the general 516 

modeling framework and its applications to each cross-feeding community. 517 

 518 

Parameter estimation. Our goal was to manually parameterize cross-feeding models directly 519 

from experimental data, which are typically cell density and metabolite concentrations in the 520 

culture. The manual process of parameter estimation began with initial values of parameters 521 

selected to be either equal to their previously reported values or assumed to be of the same order 522 

of magnitude based on the literature data. This was followed by the iterative evaluation of model 523 

outputs and refinement until sufficient concordance between the model predictions and the 524 

experimental data is achieved.  525 

The only exception of parameters that were fit automatically are the amino acid leakage 526 

fractions of the 14 amino acid auxotrophies. Under a few assumptions, our model can be simplified 527 

and exactly solved for steady state population density in pairwise cocultures (Supplementary Texts 528 

1.4.2). The values of these parameters were then estimated by minimizing the least square error 529 

between observed and calculated fold changes of population density across all pairwise batch 530 

cocultures. Once obtained, these values were fixed in the process of manually fitting the other 531 

parameters of the model. 532 

 533 

Parameter sensitivity analysis. To estimate parameter uncertainty and identify their potential 534 

correlations, we used an adaptive MCMC (Markov-Chain-Monte-Carlo) method for sampling the 535 

posterior distribution of parameters under constraints of experimental data. We obtained the 536 

MATLAB code for this method from https://github.com/mjlaine/mcmcstat. Briefly, this method 537 

constructs a sequence of random samples in the parameter space by the Metropolis-Hastings 538 
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algorithm: at each iteration, the algorithm randomly picks a candidate of the next sample (i.e., 539 

parameter set) based on the current sample value. The candidate is accepted with a probability 540 

determined by the ratio of the likelihood of the new sample to that of the current sample and the 541 

likelihood is given by a negative exponential function where the exponent is the prediction error 542 

of our model using a given parameter set. Please refer to the original publication54 for details of 543 

the method.  544 

We ran MCMC simulations for both 2-membebr communities with unilateral and bilateral 545 

cross-feeding relationships. The posterior distribution of each parameter was estimated from 546 

100,000 MCMC samples after a burn-in period of 10,000 samples. We assumed a Gaussian prior 547 

with standard deviation 0.01. We used symmetric mean absolute percentage error as the cost 548 

function that is minimized by the Metropolis-Hastings algorithm: 549 

Unilateral cross-feeding: /
?"#$#

D0.1∑ |A%&',)<A')*,,)|
|A%&',)|B|A')*,,)|#∈D#0.>F,G + ∑ |A%&',)<A')*,,)|

|A%&',)|B|A')*,,)|#∈D#0.>H,I F 550 

Bilateral cross-feeding:  /
?"#$#

∑ |A%&',)<A')*,,)|
|A%&',)|B|A')*,,)|#∈D#0.:J,K  551 

where 𝑦2L$,# is the observed datum i, 𝑦$#&,# is its simulated value, and 𝑁46+6 is the total number of 552 

data points. Note that the data from different experiments have unequal weights in the unilateral 553 

cross-feeding example. 554 

 555 

Simulation of batch, continuous, and serially diluted culture. Deterministic trajectories and 556 

their steady states in batch and chemostat conditions were simulated by solving the differential 557 

equations from the beginning to the end. Simulations of serial dilution transfer were slightly 558 

different in the aspect that the equations were only integrated within each day. The initial condition 559 

at the beginning of a day was obtained by dividing all population densities and nutrient 560 
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concentrations at the end of the previous day by the dilution factor and resetting the feed medium 561 

nutrient concentrations to their initial values at day 0. 562 

 563 

Classification of interspecific ecological relationship. We simulated chemostat cocultures of the 564 

lysine and leucine auxotrophies at increasing levels of amino acid supplementation in the feed 565 

medium, and computed the net effect (+,0,-) of one population on the other by comparing to 566 

monoculture simulation. The pairwise ecological relationship between the two populations can 567 

then be determined by the signs of their reciprocal impacts55: (+,+): mutualism; (-,-): competition; 568 

(+,0) and (0,+): commensalism; (-,0) and (0,-): amensalism;  (+,-) or (-,+): parasitism; (0,0): no 569 

effect.  570 

 571 

Network perturbation. External perturbations were exerted upon the steady state of the 4-572 

auxotroph community. Nutrient downshift was simulated by decreasing the feed medium 573 

concentration of glucose at the beginning of simulations. The effects of an antibiotic that inhibit 574 

growth of the amino acid auxotroph 𝑖  was simulated by multiplying the growth rate of the 575 

auxotroph by an inhibitory term, i.e., 𝐽!
0123 → 𝐽!

0123 (1 + [𝐴]/𝐾#)⁄ , where [𝐴] is the antibiotic 576 

concentration and 𝐾#  is the inhibition constant. We assumed antibiotic concentration remains 577 

constant and chose 𝐾# = 1	𝜇𝑀. The cheaters of each amino acid auxotroph were simulated by 578 

turning off all amino acid leakages of the auxotroph. They were mixed with the resident 579 

community in varying ratios at the beginning of simulations. For all three perturbation types, the 580 

feed medium glucose concentration is 0.2 wt.% in the unperturbed condition and serial dilution 581 

was run to steady state at 60 days. 582 

 583 
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Figure Legends: 713 

 714 

Figure 1 | Schematic diagram illustrating our model and its potential applications in 715 

microbial ecology research. A distinguishing feature of our microbial community model is that 716 

each community member harbors a coarse-grained metabolic network. Briefly, the metabolic 717 

network transforms growth substrates (S) to non-substitutable building block metabolites (M1, M2) 718 

and then to biomass whose production rate is set by the supply flux of the most limiting resource 719 

among all substrates and metabolites. The intracellularly synthesized metabolites can be secreted 720 

to the environment and then utilized by the community as public goods. For simplicity, the network 721 

is visually illustrated using one substrate and two metabolites but it can be extended to any number 722 

of nutrients. Enabled by the simplified metabolic network, different community members can 723 

interact through a variety of mechanisms, including exploitative competitions for shared substrates, 724 

cooperative exchanges of nutritional metabolites, and direct inhibition by secreting toxic 725 

compounds. Using training data from batch, chemostat or serial dilution cultures, our model can 726 

be parameterized to infer microbial processes underlying the data and then used to explore 727 

ecological questions and generate testable predictions. Pointed arrows denote the material flow 728 

and blunt-end arrows represent growth inhibition.  729 
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 730 

Figure 2 | Unilateral acetate-mediated cross-feeding between evolved E. coli isolates. (A) 731 

Schematic diagram of the model. The glucose specialist (CV103) and acetate specialist (CV101) 732 

are two E. coli mutants with different metabolic strategies20: the glucose specialist has improved 733 

glucose uptake kinetics while the acetate specialist is able to use acetate as an additional carbon 734 

source. At high concentration, acetate inhibits growth of both strains and its uptake by the acetate 735 

specialist strain is weakly repressed by glucose. Since glucose and acetate are substitutable, all 736 

glucose is converted to acetate which serves as the sole limiting factor for cell growth. (B-E) 737 

Manual model calibration. Circles: experimental data; lines: simulations. (B,C) 0.1% glucose-738 
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limited batch monoculture without supplementing acetate20. (D) 0.0125% glucose-limited batch 739 

monoculture supplemented with different concentrations of acetate56. (E) 0.00625% glucose-740 

limited chemostat (dilution rate: D=0.2 h-1) coculture with (1 mM) and without acetate 741 

supplementation20. The time for one generation is defined as log(2)/D. (F) Growth rate ratio of 742 

CV101 to CV103 in the nutritional space. The gray shading indicates when CV101 grows faster 743 

than CV103 and the gray circles mark when their growth rates are both equal to the dilution rate 744 

0.2 h-1. (G) The simulated steady-state phase diagram.  745 
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 746 

Figure 3 | Bilateral cross-feeding between engineered E. coli amino acid auxotrophies. (A) 747 

Schematic diagram of the model. The E. coli lysine auxotroph (DK) and leucine auxotroph (DL) 748 

compete for glucose while additionally acquiring essential amino acids from each other. Growth 749 

of each auxotroph is determined by the more limiting resource between glucose and the amino 750 

acid it needs to grow. (B,C) Manual model calibration. Circles: data; lines: simulation. (B) 2 g/L 751 

glucose-limited batch monoculture supplemented with 10 mg/L amino acids21. (C) 2 g/L glucose-752 

limited batch coculture without amino acid supplementation21. (D) The simulated steady-state 753 

phase diagram. The feed medium glucose concentration is 10 mM. (E) The metabolic strategies 754 
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adopted by DK and DL in the coexistence regime. All chemostat simulations were run at dilution 755 

rate of 0.1 h-1.   756 
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 757 

Figure 4 | Impacts of amino acid supplementation on ecological relationships between two 758 

amino acid cross-feeders. (A) The simulated steady-state phase diagram for different levels of 759 

amino acid supplementation. (B) Representative system dynamic trajectories of specific phases in 760 

(A). DGR: the difference between growth rate when set by amino acid as the sole limiting factor 761 

and when set by glucose as the sole limiting factor (the minimum of the two determines the actual 762 

growth rate). A positive or negative value of DGR indicates that cell growth is limited by glucose 763 

or amino acid respectively. (C) The isosurface of equal net growth rate (growth rate minus 764 

mortality rate) between the lysine and leucine auxotrophies. The dashed lines (blue and green) 765 

indicate when their net growth rates are equal to 0.1 h-1 (the dilution rate used throughout the 766 

figure). Abbreviations: glucose (G); lysine (K); leucine (L); lysine auxotroph (DK); leucine 767 

auxotroph (DL). 768 

 769 
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 770 

Figure 5 | Modeling a consortium of 14 amino acid auxotrophies. (A) Schematic diagram of 771 

the model. Each labeled empty circle represents one amino acid auxotroph and each filled circle 772 

with the same color corresponds to the amino acid that it is auxotrophic for. Gray arrows indicate 773 

production and release of amino acids to the environment and black arrows indicate the uptake of 774 

amino acids by their auxotrophies. (B) Scatter plot (upper panel) and Pearson correlation (bottom 775 

panel) between observed22 and predicted cell density fold changes across all pairwise batch 776 

coculture of 14 E. coli amino acid auxotrophies. Orange circles: our model with manually curated 777 

parameters; Blue circles: a Lotka-Volterra-type model with parameters adopted from Mee et al.22; 778 

Green circles: the same Lotka-Volterra-type model with parameters optimized by Markov-Chain-779 

Monte-Carlo (MCMC) algorithm. (C) Predicted amino acid leakage profiles (converted to 780 

percentage of carbon loss) for the 14 amino acid auxotrophies. Each value in the matrix describes 781 

the fraction of carbon loss due to release of the amino acid in the row by the auxotroph in the 782 
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column. Abbreviations: cysteine auxotroph (DC), phenylalanine auxotroph (DF), glycine 783 

auxotroph (DG), histidine auxotroph (DH), isoleucine auxotroph (DI), lysine auxotroph (DK), 784 

leucine auxotroph (DL), methionine auxotroph (DM), proline auxotroph (DP), arginine auxotroph 785 

(DR), serine auxotroph (DS), threonine auxotroph (DT), tryptophan auxotroph (DW), and tyrosine 786 

auxotroph (DY).   787 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.02.19.956383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.956383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

 788 

Figure 6 | Prediction of the long-term steady state of the community of 14 amino acid 789 

auxotrophies. (A) Parameters other than the amino acid leakage fractions (obtained from fitting 790 

pairwise coculture data in Fig. 5) were manually optimized from the observed population density 791 

during a 7-day 100-fold serial dilution of one 14-auxotroph and four 13-auxotroph communities. 792 

Filled circles: experiments22; Lines: simulation. (B) Simulation of the trained 14-member model 793 

over 50 daily passages of the community into fresh medium. The observed long-term stable 794 

coexistence of a four-auxotroph subset (DI, DK, DM, DT) was correctly predicted. The two 795 
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replicates of experimental observations were adopted from Mee et al.22. See Fig. 5 legend for 796 

abbreviations of the names of amino acid auxotrophies.  797 
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 798 

 799 

Figure 7 | Collapse of mutualistic cross-feeding network following external perturbations. (A) 800 

Bipartite interaction network of the subset of amino acid auxotrophies that stably coexist over 801 

long-term serial dilution (see also Fig. 6B). The network contains resource nodes (I, K, M, T for 802 

isoleucine, lysine, methionine, and threonine respectively) and consumer nodes (DI, DK, DM, DT 803 

are their corresponding auxotrophies). Each directed link indicates the presence of a resource-804 

consumer relationship whose corresponding parameter value is not zero. An directed link is 805 

essential if its removal leads to loss of community members. (B-D) External perturbations, 806 
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including decreasing nutrient concentration (B), increasing antibiotic concentration (C), and 807 

introducing noncooperative cheaters (D), result in an abrupt collapse of the community when the 808 

perturbation level exceeds a certain threshold.  809 
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