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Abstract 
Predicting the behavior of others is an essential part of human cognition that enables strategic social 
behavior (e.g., cooperation), and is impaired in multiple clinical populations. Despite its ubiquity, 
social prediction poses a generalization problem that remains poorly understood: We can neither 
assume that others will simply repeat their past behavior in new settings, nor that their future actions 
are entirely unrelated to the past. Here we demonstrate that humans solve this challenge using a 
structure learning mechanism that uncovers other people’s latent, unobservable motives, such as 
greed and risk aversion. In three studies, participants were tasked with predicting the decisions of 
another player in multiple unique economic games such as the Prisoner’s Dilemma. Participants 
achieved accurate social prediction by learning the hidden motivational structure underlying the 
player’s actions to cooperate or defect (e.g., that greed led to defecting in some cases but 
cooperation in others). This motive-based abstraction enabled participants to attend to information 
diagnostic of the player’s next move and disregard irrelevant contextual cues. Moreover, participants 
who successfully learned another’s motives were more strategic in a subsequent competitive 
interaction with that player, reflecting that accurate social structure learning can lead to more optimal 
social behaviors. These findings demonstrate that advantageous social behavior hinges on 
parsimonious and generalizable mental models that leverage others’ latent intentions. 
 

Significance statement 
A hallmark of human cognition is being able to predict the behavior of others. How do we achieve 
social prediction given that we routinely encounter others in a dizzying array of social situations? We 
find people achieve accurate social prediction by inferring another’s hidden motives—motives that 
do not necessarily have a one-to-one correspondence with observable behaviors. Participants were 
able to infer another’s motives using a structure learning mechanism that enabled generalization.  
Individuals used what they learned about others in one setting to predict their actions in an entirely 
new setting. This cognitive process can explain a wealth of social behaviors, ranging from strategic 
economic decisions to stereotyping and racial bias. 
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Introduction 
Humans spend a significant amount of time trying to predict how others will behave. Which millennial 

has not agonized over the perfect emoji to round off a text message, hoping to elicit the desired 
response from a love interest? In a professional context, predicting how a co-worker will respond to 

feedback and adjusting a criticism accordingly can safeguard future collaborations. And even in 
large-scale societal coordination problems like political activism1, climate change mitigation2, and 

disease control3, reliable knowledge about the future intentions of others can be critical to reach the 
desired outcome. 

Despite the ubiquity of social predictions in daily life, little is known about how humans solve this 
difficult task. Consider trying to predict whether a co-worker will be a good collaborator on a project. 

We cannot assume that our co-worker will act just as they did in the past, because each project is 
different (the people involved, the current economic conditions, etc.). Instead, we must selectively 

generalize what we know about our co-worker to this new situation. If we generalize too little from 
past experience, we deny ourselves potentially valuable social information, but generalizing too 
much makes us slow to respond to the changing behavior of others. To solve this generalization 

dilemma during social prediction, humans likely build parsimonious mental models of others’ 
behavior that are easy to update yet provide relatively accurate predictions in diverse social 

settings4. How do we construct and use these mental models to predict the intentions of others? 
Here, we examine the possibility that motives, such as greed5, inequity aversion6,7, and risk 

aversion8,9, form the building blocks of these mental models of others’ behavior. Motives are 
plausible components of such models because they can predict behavior across contexts10, differ 

reliably between people11–15, and are inferred from an early age16–18. Studies of action understanding 
suggest that people can infer another’s motives by observing their actions19. For example, another’s 

food preference can be estimated by using Bayesian inference to compute which of several 
alternative foods is most likely to be selected20. However, this process becomes particularly 

challenging in naturalistic social settings because one behavior can arise from several motives12,21; 
for example, cooperation can stem from fairness concerns6, reputation management22, or warm-glow 
altruism23. To solve this inference problem, people must detect the latent structure of another’s 

choice patterns—i.e. their unobservable overarching goals and motives—across diverse social 
contexts. 

Because it is unknown which cognitive mechanism supports learning of others’ latent motives, 
we test various computational accounts of this structure learning process, which can identify 

mechanisms that are not readily seen by examining behavior alone. Specifically, we evaluate 
whether a feature-based reinforcement learning system, thought to operate during non-social, low-

dimensional structure learning tasks24,25, can support structural learning during social prediction. 
Rather than learn the value of observable features of the task (as is seen in non-social statistical 
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structure learning work24,26–30), feature-based reinforcement learning requires participants to learn 
latent, unobservable features that can account for a person’s behavior, such as a motive like greed 

or risk aversion. If successful, latent structure learning would allow for greater efficiency in social 
prediction by selectively attending24,26,31,32 to task information that is specifically relevant to the 

inferred motive. 
In our experimental Social Prediction Game, participants are tasked with predicting the choices 

of another Player interacting with anonymous Opponents (Fig. 1A) in four types of economic games, 
each characterized by distinct tensions between potential gains and losses: the Harmony Game 

(HG), Snowdrift Game (SG), Stag Hunt (SH), and Prisoner’s Dilemma (PD) (Fig. 1B).  As Players 
move between games, the payoffs associated with cooperating and defecting shift. This causes the 

tensions associated with different underlying motives to vary from game to game, revealing several 
distinct and structured patterns of behavior14. For example, if a Player is motivated by risk aversion, 

they will choose to cooperate in a Snowdrift Game but defect in a Stag Hunt. Although these 
decisions appear contradictory at first blush, they are consistent at a latent motive level, as these 
actions both forgo the highest possible payoff in favor of minimizing potential losses14,33. Other 

motives, such as greed or envy, yield differently structured choice patterns across games14. This 
hidden structure allows us to test whether—and how—participants selectively generalize knowledge 

about others’ behavior to new social settings. We hypothesized that 1) people generalize information 
about others’ decisions between economic games on the basis of latent motives, 2) generalization is 

implemented by a feature-based reinforcement learning system that supports an increasing focusing 
of attention on information relevant to the inferred motives, and 3) people use these inferred motives 

to make more adaptive choices in subsequent competitive interactions. 
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Figure 1. The Social Prediction Game. A. On each trial, the social prediction game is presented as 
a payoff matrix describing the single-shot interaction between a Player (who is tracked across 16 
consecutive trials) and anonymous Opponents (who are different on each trial). B. The values of S 
and T vary from trial to trial and are drawn from a 4x4 ‘game space’ such that each trial belongs to 
one of four canonical economic game types: harmony game (HG), snowdrift game (SG), stag hunt 
(SH), and prisoner’s dilemma (PD). C. Across these different game types, the Player’s true behavior 
(cooperate, C, or defect, D) depends on the Player’s underlying strategy, which is deterministically 
programmed in each block of 16 trials. 
 
 
Results 
In study 1, 150 participants played the Social Prediction Game. The games between Players and 

Opponents were presented as a 2x2 payoff matrix (Figure 1A) where two of the four possible 
outcomes yield the same payoffs across all trials: (10,10) for mutual cooperation and (5,5) for mutual 
defection. The payoffs assigned to the other potential outcomes, labeled S for sucker’s payoff and T 

for temptation to defect, are drawn from a 4x4 grid (the ‘game space’) such that each of the 16 trials 
is a new game with a unique (S,T) combination. The varying (S,T) payoff values yield four canonical 

economic game types which are represented in four quadrants of the (S,T) game space (Fig. 1B). 
For example, the classic one-shot Prisoner’s Dilemma is found at S < 5 and T > 10, where all 

players are best-off defecting regardless of their opponent’s choice (i.e. mutual defection is the 
unique Nash equilibrium)34,35. Due to these regularities in game incentives, human choice data 

reveals several distinct patterns of correlated choice (i.e. strategies) across the 16 games, with each 
strategy optimizing for a distinct human motive like risk aversion or envy14. We programmed the 
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Players to behave in line with one of four deterministic strategies: two found in human choice data at 
similar rates, namely a greedy strategy labeled Optimist and a risk-averse strategy labeled Pessimist 

(respectively 20% and 21% of the population14), and two not found in human choice data but 
matched for statistical complexity (i.e., Inverse Optimist and Inverse Pessimist; Fig. 1C). 

 
Selective generalization of social information. How might participants approach the Social Prediction 

Game? One possibility is that they expect a Player to simply repeat their past behavior due to stable 
preferences for cooperation10, which amounts to basic reinforcement learning over the response 

options ‘cooperate’ and ‘defect’ without distinguishing between games. Another possibility is that 
participants refrain from generalizing across games at all, because each trial is unique. Since all 

Players cooperate and defect on half the trials, both these strategies would yield on average 50% 
accuracy in our task. However, observed accuracy was significantly greater (59.1%; two-tailed one-

sample t-test: t(149) = 12.2, p < 0.001). 
A third possible strategy is naïve statistical learning, whereby participants detect the mapping 

between S or T and the Player’s choices, e.g. learning that the Inverse Pessimist cooperates when S 

< 5. This reflects how participants learn latent structure in non-social tasks containing abstract stimuli 
like colored shapes and fractals27,28. If true, task performance should be equal across all Player 

strategies as each strategy is a step function with a single change point on the S or T dimension 
(see Figure 1C). However, performance was much higher for human than artificial strategies 

(Optimist and Pessimist: average accuracy 71.6%; Inverse strategies: 46.5%; two-tailed paired-
samples t-test: t(149) = 22.0, p < 0.001; Figure 2A), revealing that naïve statistical learning does not 

capture learning in this task. 
These findings demonstrate that a) participants selectively generalize information across 

games by learning a latent structure that links game incentives to choice, and b) participants hold 
strong prior expectations about the nature of this latent structure, as they were able to predict the 

choices of the human Players but not artificial ones. We next used computational modeling to 
illuminate the nature of this latent structure and how participants acquired it when generalizing 
information about others’ decisions across games. 
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Figure 2. Behavioral results. In studies 1 (A) and 2 (B), task performance for inferring human 
strategies (Optimist and Pessimist) was greater than inferring artificial strategies (Inverse Optimist 
and Inverse Pessimist), and the computational model accurately reproduced this effect. Each gray 
dot is a participant. Black diamonds indicate average participant accuracy. Red error bars are 95% 
confidence intervals of average accuracy obtained from simulating the fitted model 1000 times per 
participant. ***P<0.001. 
 
Motives guide social structure learning. To determine how participants generalize information across 

games during social prediction, we built a formal model of structural learning that could capture how 
participants map the S and T game variables onto choices made. To do this, we leverage recent 

developments in feature-based reinforcement learning where agents do not learn the value of stimuli 
per se (e.g. apples or oranges), but rather the decision relevance of stimulus features (e.g. their size 

or color)24,29. We adapted this class of model by allowing it to learn not just over observable task 
features S and T, but also over unobservable features such as game types or a Player’s motives. 
 Task behavior was best captured by a model that generalized information across games 

according to four human motives: Cooperativeness, Greed, Risk aversion, and Nash equilibrium play 
(structure by motives; Figure 3A; see Methods). Model comparison using the Bayesian Information 

Criterion (BIC)36 showed that the average fit of this model was superior to two alternative models: a 
model that treated each trial as unique (no structure; mean ΔBIC = -55.41, Wilcoxon sign-rank test 

W = 7, p < 0.001) and a model that generalized according to game type (structure by game type; 
mean ΔBIC = -5.95, W = 1641, p < 0.001; Figure 3B). Quality checks (Supplemental Information 

section SI.1) and posterior predictive checks (Figures 2A and 3C) confirmed the robustness of the 
structure by motives model. These results support our hypotheses that participants rely on a feature-

based reinforcement learning system that leverages latent motives as a mental scaffold, to 
generalize what they know about another person across social settings. 
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Figure 3. Computational models. A. The four motives included in the winning ‘structure by motives’ 
model make different behavioral predictions across the S-T game space. B. Model comparison for 
study 1 showed that each participant’s behavior was best described by a model including a subset of 
the four motives. BIC: Bayesian Information Criterion. Error bars represent bootstrapped 95% 
confidence intervals. *** p < 0.001 in two-tailed, non-parametric Wilcoxon sign-rank test. C. Posterior 
predictive checks show that the model captures the fine-grained patterns of observed behavior in 
study 1 as a function of player strategy, S, and T. 
 
Effort-accuracy trade-off in social structure learning. Our observation of structure learning in a social 

prediction task poses an interesting puzzle. On the one hand, it is likely that structure learning 
improves social prediction when facing a variety of latent motives in one’s social environment12,14. 

On the other hand, identifying latent motives is effortful, as it taxes working memory (i.e. updating 
the predictive value of several motives at once) and requires one to pay attention to many different 

task features that each inform different motives, such as the values of S and T. To trade off accuracy 
and effort, participants may therefore consider only a subset of the four motives in their mental 
models of others’ behavior. To test this, we again fit the motives model to the participants’ prediction 

data, this time comparing different model versions that each contained a unique subset of motives 
(i.e. only Cooperativeness, only Greed, Cooperativeness + Greed, and so on). We then ran model 

comparisons at the subject level, again using BIC as criterion to reward model accuracy and 
penalize complexity (i.e. the number of motives in a given model). 

Confirming our hypothesis, we found that the predictions of all participants were best 
accounted for by a model that specified only a subset of the four motives rather than by the full 

model containing all four motives (mean ΔBIC = -14.88, W = 0, p < 0.001; Figure 3B). 30% of 
participants considered only a single motive, 50% considered two motives, and 20% considered 

three motives simultaneously. Participants who built more complex mental models showed superior 
task performance but also spent more time making their predictions (SI.2), demonstrating the effort-

accuracy trade-off of structure learning. 
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Participants also differed in what motives they considered. 87% of participants considered 
Greed in their mental model, 51% considered Cooperativeness, 31% considered Nash, and only 

21% of participants considered Risk aversion. Accordingly, since Greed drives the Optimism 
strategy, task performance was much higher during the Optimist block (average accuracy 87.0%) 

than the Pessimist block (average accuracy 56.3%; two-tailed paired-samples t-test: t(149) = 14.7, p 
< 0.001). To test what drove these individual differences in motives considered, we compared each 

participant’s best motive subset to his/her decision strategy (which participants reported during the 
task instructions). The Cooperativeness motive was more commonly considered in others by 

participants who had reported their own decision strategy to be cooperative during the task 
instructions (one-tailed binomial test p = 0.010), and the same was true for the Risk aversion motive 

in participants who had reported a pessimistic strategy (p < 0.001). These self-anchoring effects 
suggest that our own motives shape our constrained mental models of others’ behavior. 

 
Social structure learning facilitates attentional focus. Although participants with more extensive 
mental models were slower to make social predictions, this relative time cost decreased between 

early trials (1-8) and late trials (9-16) (SI.2), reflecting the fact that structure learning involves 
gradually simplifying complex decision problems31. Specifically, it has been suggested that structure 

learning facilitates an attentional focus on information relevant to the (learned) latent structure of the 
task24,26. We tested this mechanistic hypothesis in study 2, where 50 participants played the same 

game—behaviorally replicating the findings from study 1 (SI.3)—only this time in the laboratory and 
while undergoing concurrent eye-tracking. We hypothesized that as participants learned the motives 

of the Player, they would focus their attention to the task features relevant to those specific motives, 
namely the temptation to defect T for the Optimist player and the sucker’s payoff S for the Pessimist 

(Figure 1C). 
Confirming our prediction, participants spent a greater percentage of the trial looking at T 

relative to S in the Optimist block than the Pessimist block (two-tailed paired-samples t-test t(49) = 
5.11, p < 0.001; Figure 4A). To test whether this gaze difference developed as a function of using a 
structure learning mechanism, we split the Optimist and Pessimist blocks into four mini-blocks of four 

consecutive trials in which each game type was visited once, and ran a mixed-effects regression 
with random subject intercepts to test whether Player strategy (Optimist/Pessimist) interacted with 

mini-block number to predict relative gaze (S versus T). The strategy-mini-block interaction was 
significant (F(1,347) = 16.9, p < 0.001) with the greatest shift in attention taking place in the first 4-8 

trials (Figure 4B), confirming that the attentional shift between the temptation to defect and the 
sucker’s payoff was conditional on learning about the Players’ strategies. 

The gaze data also validated our computational model, as the model was able to predict 
gaze over time as a function of the participant’s beliefs about the player’s motives (SI.4; Figure 4C). 



 10 

Finally, participants who shifted their gaze more to the diagnostic information (T for Optimist, S for 
Pessimist) also performed better at the task (Pessimist block, correlation between relative gaze to S 

versus T and accuracy: r(48) = 0.37, p = 0.008; ceiling effect in Optimist block with on average 14 of 
16 trials correct), establishing an important role for attention in scaffolding social structure learning. 

 

  
Figure 4. Eye-tracking results for study 2. A. Participants selectively looked at information 
diagnostic of a Player’s strategy, i.e. T for Optimist and S for Pessimist. B. Selective attention 
developed over time as participants learn the Player’s motives. C. The computational model was fit 
only to choice and confidence data, but qualitatively reproduced the participants’ gaze shift over time 
as displayed in panel B. 
 
Structure learning supports adaptive social choice. In studies 1 and 2, we found that people use a 

structure learning system to infer the latent motives of others in order to predict which social 
decisions those others will make. People likely engage in social structure learning—despite the 

associated effort—because it enables them to strategically adapt their behavior to what others will 
do. However, deploying strategic social behavior requires a deep and flexible understanding of the 

underlying latent structure of another’s motives, which can enable a person to generalize another’s 
motives to contexts that have never been experienced before. 
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To test this generalization effect to new situations, we carried out a third study in which 
participants first played a block of the Social Prediction Game where the Player was programmed to 

be either an Optimist or Pessimist. Afterwards, participants played the Inspection Game37,38, playing 
as the Employer and the Player taking the role of the Employee. In the Inspection Game, the 

Employee receives a wage from the Employer and chooses to either ‘work’ (which creates revenue 
for the Employer but is costly for the Employee) or ‘shirk’. Because the Employee receives the wage 

regardless of whether he or she actually works, shirking has the higher payoff if it goes unnoticed. 
However, the Employer can choose to pay a cost to inspect the Employee and withhold the wage if 

the Employee is found shirking. Given these rules, an Optimist Employee—who is motivated by 
greed—will always shirk to obtain the maximal payoff, while a Pessimist Employee—who is 

motivated by risk aversion—will always work to avoid being caught shirking (Figure 5A). Conversely, 
it is best for the Employer to pay for inspecting only if the Employee is likely to shirk. The natural 

mapping of motives in the Social Prediction Game to the Employee’s behaviors in the Inspection 
Game create a strong test for whether successful structure learning in one context is adaptively used 
to behave more strategically in an entirely different context. We predicted that successfully learning 

the motives of the Player during the Social Prediction Game should lead to paying more to inspect 
an Optimist than a Pessimist in the Inspection Game. 

Confirming our hypothesis, participants were willing to pay an average of $4.99 more to 
inspect the Optimist ($20.10) compared to the Pessimist ($15.11; within subject; two-tailed Wilcoxon 

signed-rank test: W = 2031.5, p < 0.001; Figure 5B). This reveals that participants were successful in 
detecting another’s latent motives in one context and generalizing this information to make more 

adaptive choices in new, never before experienced situations. Furthermore, a participant’s 
willingness to pay was mediated by how well they inferred the motives in the Social Prediction 

Game. The better a participant performed in the Social Prediction Game, the more they paid to 
inspect Optimists relative to Pessimists (r(151) = 0.35, p < 0.001; Figure 5C). These costly 

inspections paid off: The more participants distinguished between Optimistic and Pessimistic 
Employees in the Inspection Game, the more they earned as an Employer (at $15 default inspection 
cost: r(151) = 0.72, p < 0.001). 
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Figure 5. Study 3’s task and results. A. Payoff matrix of the Inspection Game, which was played 
after completing the Social Prediction Game. B. Despite an absence of feedback in the Inspection 
Game, participants paid more to inspect Employees who exhibited Optimistic versus Pessimistic 
strategies in the preceding Social Prediction Game, revealing generalization of structure across 
tasks. Each dot is a participant; overlapping dots have darker colors. C. The difference in 
Willingness to pay for inspecting between Optimist and Pessimist is predicted by learning 
performance on the Social Prediction Game. 
 
 
Discussion 
People routinely predict the behavior of others across a dizzying array of social situations. We have 
shown that such sophisticated social prediction is achieved through structure learning: participants 

credit another person’s choices to latent, unobservable motives, such as greed and risk aversion, 
and use this motive-based abstraction to successfully predict decisions in entirely new interactions 

with different social tensions. Through structure learning, participants were able to disregard 
irrelevant contextual cues and attend to information that was diagnostic of the other player’s future 

actions. Better use of structure learning led to more strategic behaviors in a subsequent competitive 
decision task with the same player, reflecting the adaptive value of accurate social prediction in 

everyday life. Together, these findings provide a mechanistic and computational account of social 
prediction, illuminating how humans adaptively reduce a principal source of uncertainty in our social 

world39: Other people. 
This work establishes structure learning24,25,29,31 as a critical mechanism for successful social 

cognition. In our experiments, popular learning models such as reinforcement learning and naïve 
statistical learning could not account for the selective generalization of social information exhibited 

by participants. Instead, participants stripped down the complexities of the social exchange, leaving 
only a few latent dimensions by which to generalize what they had learned to entirely new contexts. 
This structure learning process was captured by a feature-based reinforcement learning model, 

originally developed for tracking relevant stimulus features in non-social decision tasks24–26, which 
we adapted to learn over unobservable features of human social engagement such as motives. This 

establishes feature-based RL as an algorithmic implementation of structure learning in social 
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cognition, in contrast to existing accounts using non-parametric Bayesian models20,40–42. In line with 
the predictions of feature-based RL24, response times were slower on early trials, when participants 

were considering multiple motives as potential causes of the player’s choices, and became faster as 
participants honed in on a single motive and deployed selective attention to information relevant to 

that motive. This gradual narrowing of attention allowed participants to limit cognitive resource use 
while still achieving accurate social prediction. In this way, motive-based structure learning is to 

social cognition what chunking is to working memory43,44: a cognitive adaptation that leverages the 
inherent structure of the world. 

This cognitive adaptation allows us to navigate our complex and evolving social environment 
by uncovering its latent structure, which is a better basis for generalization than simply attending to 

context cues or others’ actions. Consider a toy example of a resistance hero who never lies to her 
parents, but during enemy occupation staunchly denies being part of the opposition to protect her 

family. A superficial ‘bookkeeping’ of this person’s behavior—she never lies—would fail to predict 
her actions in the novel context of war, while a deeper understanding of her latent motives—caring 
for her family—would facilitate accurate behavioral predictions. Similarly, in the Social Prediction 

Game, Optimist and Pessimist players cooperated and defected equally often (50% of trials), and 
therefore generalizing only by their observable choices would yield identical (and highly uncertain) 

predictions in all new games. However, by abstracting and generalizing the Players’ latent motives 
from the combination of game incentives and choices made, our participants correctly predicted 

divergent behavior in an entirely new context, the Inspection Game37,38. After successfully learning 
latent structure, participants paid for inspections only when it was valuable to do so, thereby earning 

significantly more money. This intimates that many strategic socio-economic behaviors that rely on 
predictions about others’ future choices in novel contexts, such as competitive bargaining45, market 

entry46,47, and collective action2,33,48,49, are scaffolded by a motive-based structure learning 
mechanism. Given that social motives (e.g., greed) vary between individuals in the 

population10,12,14,15,50, effective inference of these motives in others is likely instrumental in achieving 
competitive and collaborative goals. 

How do people construct and apply abstracted mental models of others’ motives? Our data 

suggest that attention plays a key role in guiding this process. Attention is a fundamental cognitive 
mechanism as it affords optimal access to behaviorally relevant information with limited processing 

capacity51. Our findings show how attention supports social prediction. In the Social Prediction 
Game, as in everyday social interactions, there were multiple cues that could be predictive of 

another’s behavior, from the player payoffs S and T to the order of the games or even the initials of 
the player. Structure learning allowed participants to disregard superficial cues and attend to 

information relevant to the players’ latent motives. Although this process facilitated accurate social 
prediction with limited effort if the inferred motives were correct, incorrect structure learning caused 
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counterproductive attention on irrelevant information. For example, participants who did not consider 
risk aversion failed to shift their attention to the sucker’s payoff (S) during the Pessimist block and 

instead kept looking at the temptation to defect (T), thereby missing out on information predictive of 
the player’s choices. This suggests that what we can learn about other people is limited by our 

expectations. Our mental models of others effectively constrain what we pay attention to, causing 
blind spots that prevent us from properly updating our beliefs and potentially contributing to 

stereotype52,53 and confirmation bias54. 
Our findings have implications for understanding these social behaviors in the real world. For 

example, police officers may disproportionally target racial minorities55 because of a bias in 
information search, where inaccurate mental models of minorities’ motives cause police officers to 

misinterpret behavior or ignore exonerating information. Although future work can directly test this 
hypothesis, our tasks and models help to disentangle the complementary roles of prior beliefs, 

information search, and structure learning in social prediction, providing new avenues for 
understanding failures of social prediction observed in everyday life.  
 
Methods 
Study 1: Procedure. This experiment (as well as Study 2 and 3) was approved by the Institutional 

Review Board of Brown University. 150 participants (95 males, 52 females, 3 no response; mean 
age 35.4 ± 10.0y) participated via Amazon Mechanical Turk (MTurk). All gave written informed 

consent before starting the experiment. The task was written in Javascript and made accessible 
using Psiturk 2.3.056. Participants first read instructions and were quizzed to ensure their 

understanding and filter out potential bots. Participants were then asked to indicate for each game 
type in the Social Prediction Game how they themselves would choose, from which we estimated 

the participants’ own decision strategy. They then completed the Social Prediction Game (SPG). 
 

Task. Participants played 4 blocks of the SPG, each block with a different Player, and were tasked 
with predicting the choices of this particular Player across 16 consecutive economic games. Players 
always played single-shot against anonymous Opponents. Each game was presented as a 2x2 

payoff matrix (Figure 1A) where the Player and Opponent both have two choices: cooperation and 
defection. In the task, these choices were labeled by arbitrary color words (blue, green, etc.) whose 

mapping to cooperate and defect changed on every task block. 
The games varied on two features central to social interactions: Risk of cooperating (here 

operationalized as the sucker’s payoff, S) and temptation to defect (T) (Figure 1B). At T < 10 and S > 
5, the games fall under a class of Harmony Game, where each player’s payoff-maximizing action 

aligns with the jointly payoff-maximizing action and thus no conflict arises except through potential 
envy57. At T > 10 and S > 5 the games are classified as Snowdrift Games (also known as 
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Volunteer’s Dilemmas), which are anti-coordination games where unilateral defection is preferable to 
mutual cooperation, but mutual defection yields the smallest payoff for all58. At T > 10 and S < 5 lie 

the Prisoner’s Dilemma games, which are characterized by a high temptation to defect even if one’s 
opponent defects as well, and cooperation is risky as unilateral cooperation yields the lowest 

possible payoff34. At T < 10 and S < 5 the games are Stag Hunts, in which mutual cooperation yields 
the highest payoff for both, but cooperation is risky as unilateral cooperation is met with the lowest 

payoff59. 
The task of the participant was to indicate, on each trial, what they believed the Player would 

choose to do in the current game, and to rate their confidence in this prediction on an 11-point scale 
from 0% to 100% (10% increments). They received feedback on every trial indicating whether their 

prediction was correct or not, and earned a $0.01 bonus for every correct trial. At the end of 16 trials 
(1 block), the participants self-reported what they believed the Player’s strategy was using a free-

response answer box. After four blocks, the total earned bonus was presented to the participant and 
added the base payment. The participant was then taken to a survey hosted on Qualtrics to finish 
the experiment. 

 
Computational models. We built three versions of the model with different types of features that each 

reflect a different psychological model about how participants might carve up the 4x4 game space in 
order to generalize information across trials. 

Model 1 (structure by motives) learns over four features representing psychological motives 
that span the entire game space. This reflects the hypothesis that participants realize that the 

Player’s behavior across all games is driven by overarching motives, which is used to generalize 
learning across games to improve predictions. Model 1 can support sophisticated generalization 

across the game space whereby cooperation in one game type predicts defection in another—a 
common pattern in human choices caused by the fact that consistently adhering to one motive can 

lead to different choices in different games14,33. As features in this model, we included four motives 
whose influence on behavior in economic games is well-documented: Cooperativeness (which 
always predicts Cooperate)60, Greed (which maximizes the maximal payoff)5, Risk aversion (which 

maximizes the minimal payoff)61, and Nash (which plays the Nash equilibrium)35 (Figure 3A). Note 
that the model does not assume that these motives drive the participant’s own choices, but rather 

that the participant might consider these motives as drivers of the other Players’ decisions. 
Model 2 (no structure) learns over 17 features: One for each unique (S,T) combination and 

one ‘intercept’ feature that spans the entire game space. It can thus generalize information across all 
games equally and treat each game as unique, but it cannot selectively generalize within a subset of 

games. It reflects the hypothesis that participants generalize learning about a Player only in the 
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coarsest way possible—across all games equally—without realizing how several different games 
might elicit the same, or different, decisions from a Player. 

Model 3 (structure by game types) learns over five features: One for each game type (i.e. 
quadrant in the game space) and one intercept. This model reflects the hypothesis that participants 

recognize that behavior is consistent within a game type (e.g. stag hunt) and thus benefits from 
grouping learning experiences by game type. Since Player behavior is fully consistent within game 

type, this strategy could be very successful in the current task. 
In each of our three candidate models, predictions for the Player’s choice are made based on 

the weighted average predictions of each included model feature (i.e. games, game types, and 
motives; see Figure 3A-C): 

𝑉"##$%&'(% = 	∑ 𝑤-𝑓-(𝑆, 𝑇)4
-56        (1) 

Where 𝑓-(𝑆, 𝑇) is the feature’s prediction at the current S and T values, expressed as 1 for 

Cooperate and -1 for Defect; 𝑤- is the associated feature weight; 𝑖 is the feature number; 𝑘 is the 

total number of features, and 𝑉"##$%&'(% is the ‘value of predicting cooperate’. We then apply a 

softmax decision rule to produce the model prediction: 

𝑃"##$%&'(% =
%:⋅<=>>?@ABC@

6D%:⋅<=>>?@ABC@
        (2)  

Where 𝛽 is the inverse temperature parameter of the softmax function and 𝑃"##$%&'(%  

represents the likelihood that the Player will cooperate given the current state of the model. During 

learning, the Player’s actual choice is compared to the model’s prediction to compute a prediction 

error 𝑃𝐸: 

𝑃𝐸 = 𝑐ℎ𝑜𝑖𝑐𝑒 − 𝑃"##$%&'(%        (3) 

Where 𝑐ℎ𝑜𝑖𝑐𝑒 is 1 if the Player cooperated and 0 if the Player defected. Therefore, the 

prediction error is >=0 if the Player Cooperated and <= 0 if the Player Defected. This sign difference 

is used in the next step, where each feature weight 𝑤- is updated based on the prediction error, the 

learning rate 𝛼, and the direction of the prediction, for all 𝑖 from 1 to 𝑘: 

𝑤-,(D6 = 𝑤-,( + 𝛼 ⋅ 𝑃𝐸 ⋅ 𝑓-(𝑆, 𝑇)        (4) 

Where 𝑓-(𝑆, 𝑇), as before, is 1 for Cooperate and -1 for Defect. Combining this sign with the 

sign of the prediction error allows the model to increase a feature weight if the prediction of the 

associated feature was correct (i.e. 𝑓- = 1 and 𝑃𝐸 > 0 or 𝑓- = −1 and 𝑃𝐸 < 0), and conversely to 

decrease the weight if the feature was incorrect (when 𝑓- and 𝑃𝐸 have opposite signs).  

 
Model fitting. The feature weights are reset to their a priori values at the start of each task block (i.e. 

predicting each new Player). These prior weights are free parameters that are determined when 

fitting the model to each participant’s data, along with the learning rate 𝛼 and the softmax inverse 
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temperature 𝛽. Model 1 thus has six free parameters (four feature weights, 𝛼, and 𝛽), Model 2 has 

19, and Model 3 has seven. 
To fit the free parameters, we defined the objective function as the sum of squared errors 

between the model prediction and the participant’s prediction weighted by confidence. Confidence-

weighted predictions 𝑥 are computed as follows: 

𝑥 = S
6D"#TU-V%T"%

W
, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒

6\"#TU-V%T"%
W

, 𝑑𝑒𝑓𝑒𝑐𝑡
        (5) 

For example, if the participant rated 70% confidence that the Player would defect, the 
confidence-weighted prediction is (1 – 0.7) / 2 = 0.15. To compute the sum of squared error of the 
model, we compared the confidence-weighted prediction to the model prediction: 

𝑆𝑆𝐸 = ∑ ^𝑥 − 𝑃"##$%&'(%_
WT

(56        (6) 

Where 𝑡 indicates trial, 𝑛 indicates the total number of trials (64 in study 1, 128 in study 2), 

and 𝑆𝑆𝐸 indicates the sum of squared model error. We used the Matlab function fmincon to find the 

parameter combination that minimizes 𝑆𝑆𝐸. Finally, we computed BIC to penalize model fit by model 
complexity (i.e. number of free parameters), using the assumption that model error was normally 

distributed: 

𝐿𝐿 = ∑ log 6
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𝑒
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(56       (7) 

𝐵𝐼𝐶 = −2 ⋅ 𝐿𝐿 + (𝑘 + 2) ⋅ log 𝑛        (8) 

Where 𝜎 is the standard deviation of the model errors 𝑥 − 𝑃"##$%&'(% , 𝑘 is the number of 

feature weights in the model (𝑘	 + 	2 thus represents the number of free parameters), and 𝑛 is the 
number of observations (trials). BIC is an appropriate choice of model selection metric, as it allowed 

for reliable model selection in synthetic data (SI.1).  
 

Study 2: Procedure. 50 participants (38 women, 12 men; mean age 22.2 ± 7.3y) played 8 blocks of 
the Social Prediction Game in the laboratory while undergoing concurrent eye-tracking. All 

participants gave written informed consent before the start of the experiment. Each participant 
played two blocks with each Player type (Optimist, Pessimist, etc.) in pseudorandom order such that 

each Player type occurred once in the first four blocks and once in the second four blocks. Each 
Player was labeled with a unique set of initials, regardless of strategy. Participants took a break 

between block 4 and 5. The task was generated using the Psychophysics Toolbox for Matlab. 
Otherwise, the task and computational model used in study 2 were identical to those in study 1. 

 
Eye-tracking. Eye tracking data was collected using a SensoMotoric Instruments (SMI; Teltow, 
Germany) iView X RED. Participants were seated comfortably and upright in a straight-backed chair 
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at 50-70 cm from the screen, and were instructed to move as little as possible. The Social Prediction 
Game was preceded by a proprietary SMI eye tracker calibration and validation procedure in Matlab, 

which was repeated if necessary until the deviation in visual angle between the validation target and 
the recorded gaze fixation was below 2 degrees. Average deviation after calibration (X,Y) was 

(0.65°, 0.86°) for the left eye and (0.74°, 0.88°) for the right eye. The calibration and validation 
procedures were repeated after the break before task block 5. 

Gaze data were preprocessed by converting the raw data to fixations by grouping data points 
based on spatial and temporal distance using SMI software with default settings. Next, all fixations 

outside of the bounding box of the rectangular payoff matrix on the screen were excluded. Circular 
regions of interest (ROIs) were then defined with 100 pixel radius around the center of each of the 

eight numbers in the payoff matrix. We then computed the relative gaze to each ROI by dividing the 
summed fixation duration in that ROI by the total fixation duration in the entire payoff matrix. We 

computed relative gaze to each ROI per eye and then averaged over the two eyes to obtain the 
overall relative gaze to each ROI. For the S-T difference scores, we subtracted relative gaze to T 
(summed over both T ROIs on the screen) from relative gaze to S (summed over both S ROIs). 

 
Study 3: Procedure. 153 participants (92 males, 61 females; mean age 37.6±10.4y) gave written 

informed consent before starting the experiment. They first played one block of the Social Prediction 
Game and then a block of the Inspection Game (IG), with the same Player. Participants then played 

another block of the Social Prediction Game and Inspection Game with a different Player. For both 
Players, they could thus use what they had learned about that specific Player in the Social Prediction 

Game to improve their decision-making in the Inspection Game. Critically, the Inspection Game is 
structurally distinct from all games included in studies 1 and 2, as the game is not symmetric (e.g. 

mutual cooperation yields unequal payoffs). Moreover, whereas our participants only observed other 
Players in the Social Prediction Game, they actively participated in the Inspection Game and their 

monetary reward was yoked to this game’s outcomes. The Inspection Game is thus a strong test for 
selective generalization of learned information about the Player to a novel task. 

The two Players were programmed as either Optimist or Pessimist in random order. These 

two strategies were identical to study 1 and 2 for the SPG; for the Inspection Game the Optimist 
always shirks and the Pessimist always works. Since there was no feedback during the IG, decision-

making was solely driven by what the participant had learned during the SPG. On each round of the 
IG, the participant could earn money from 1) a base pay of $30 and 2) the revenue generated by a 

working Employee (but not a shirking one) diminished by 3) the wage paid to the Employee and 4) 
the cost of an inspection (only if chosen). Therefore, the Inspection Game provides an incentive for 

the Employer to Inspect in order to avoid paying a wage unnecessarily, but only if the Employee is 
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shirking. The participant’s earnings of one randomly selected round of the Inspection Game were 
paid out as a bonus with $1 in the game converted to $0.01 for the participant. 

At the start of each IG block, the participant self-reported how likely they believed it was that 
the current Player (indicated by initials) would be working in the Inspection Game. Participants rated 

the Optimist player at 41.3% likely to work and Pessimist at 54.8%, demonstrating that inferences 
about others’ motives were explicitly available. During the IG, a staircase procedure determined the 

participant’s willingness to pay for Inspection on the current round by raising the cost of inspecting if 
the participant had chosen to inspect on the previous trial, and lowering it if the participant had 

chosen not to inspect. The willingness to pay (i.e. the indifference point) was computed by averaging 
the cost of inspecting across the last 5 of the 15 trials of the staircase procedure. Additionally, at the 

end of each IG block, the participant self-reported how much they would be willing to pay for 
inspection (between $0 and $30). 

 
Software and code availability 

Low-level behavioral data analysis (e.g. computing averages, running t-tests and one-way F-tests) 

was carried out in Python 3.7.4 using the packages Numpy 1.17.2, Pandas 0.25.1, and Scipy 1.3.1. 
Figures were created using Matplotlib 3.1.1 and Seaborn 0.9.0 for Python. Mixed-effects regressions 

were carried out in R using the packages lme4 1.1-21 and lmerTest 3.1-1. Computational modeling 
was performed in Matlab R2019b using the fmincon function from the Optimization Toolbox and 

custom code. All code will be made available online upon publication. 
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Supplemental Information 
 
Supplemental Results 
 
SI.1. Model quality checks. First, we confirmed that the model fit of Model 1 (structure by motives) 
was superior to the best alternative (structure by game types) for the majority of participants (113 out 

of 149; excluding one outlier who had extremely poor model fit due to always reporting 100% 
confidence), indicating that the mean BIC difference reported in the main text was not driven by a 

small number of outlier subjects but rather reflected a consistent effect throughout the dataset. The 
reduced motives model (best subset of motives) was superior to structure by game types for 144 out 

of 149 participants and superior to four motives for all 149 participants. 
Second, we checked whether our set of four canonical motives was appropriate for 

describing the motives inferred by our participants. To this end, we generated 5000 sets of pseudo-
motives by shuffling the four canonical motive features as defined across the 16 S-T ‘tiles’ in the S-T 

game space. That is, for each pseudo-motive set we included 1) a feature that predicts cooperate in 
each game, i.e. identical to the Cooperativeness motive; 2) two features that predict cooperate in 8 

contiguous S-T coordinates in the S-T game space, thus retaining the spatial properties of the Greed 
and Risk aversion motives; 3) a feature that predicts cooperate in 6 contiguous S-T coordinates, 
50/50 cooperate/defect in 4 S-T coordinates adjacent to the cooperate coordinates, and defect in the 

remaining 6 coordinates. Some examples of pseudo-motive sets are given in Supplemental Figure 
1A. Results showed that our 4 canonical motives yielded a superior model fit (mean SSE across 

participants = 4.10) to the 5000 pseudo-motive sets (Supplemental Figure 1B), confirming that we 
likely did not overlook important motives or alternate bases for generalization when evaluating our 

winning model. 
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Figure S1. Comparison between Model 3 with 4 canonical motives (Cooperativeness, Greed, Risk 
aversion, Nash) and 5000 randomly generated pseudo-motives (which are the 4 canonical motives 
shuffled in the S-T game space). A. Three examples of randomly generated pseudo-motives. B. 
Histogram of model error when populating the computational model with the pseudo-motives (grey 
bars) versus the four canonical motives described in the main text (black vertical line). SSE: sum of 
squared error. 
 

Third, since our analyses rest on a model selection procedure across subjects as well as 

within subjects, we tested whether our models could in fact be distinguished from one another with 
the current experimental design. To this end, we ran a model recovery procedure62 where we 

generated 300 pseudo-datasets by simulating each model 100 times, following the experiments (i.e. 
trial order) of the first 100 participants in our study. We then fit each of the three candidate models to 

each pseudo-dataset, counting the number of times that the winning model mirrored the data-
generating model. Results are displayed in the confusion matrix in Supplemental Figure 2. Inverting 

the recovery results shows that if the best-fitting model for a given dataset was ‘structure by motives’ 
(Model 3 in the main text), there was a 73% chance that this was in fact the true data-generating 

model, while there was a 20% chance that the true model was Model 2 (structure by game types). 
The reverse error (i.e., the ‘game types’ model winning while ‘motives’ actually generated the data) 
was less likely at 6%. Therefore, even when accounting for this potential confusion between models, 

Model 3 outperformed Model 2 for the majority of participants. The model recovery results thus show 

A

B
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that the models were indeed distinguishable in the current experimental design, and that the 
‘structure by motives’ model can be reliably interpreted as the winning model. 

 

 
Figure S2. Model recovery results. A. Model confusion matrix shows the probability that the data-
generated model also wins in model selection using the Bayesian Information Criterion. B. Model 
inversion matrix shows the probability that the recovered model is the true data-generating model. 
Together, these matrices indicate that the ‘structure by motives’ model is distinguishable from the 
alternative models given the current experimental design. 
 
 
  

A B
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SI.2. Effort-accuracy trade-off. There were significant differences in task performance between the 
groups of participants with different numbers of motives in their mental model of the Players 

(F(2,147) = 10.5, p < 0.001), with participants who considered three motives exhibiting better 
performance than those who considered two (two-sided two-sample t-test t(119) = 2.24, p = 0.027), 

and two motives yielding better performance than one (t(104) = 2.93, p = 0.004; Supplemental 
Figure 3A). 

Although considering more motives was associated with better performance in the SPG, 
building and updating a complex model of others’ choices comes at a cost. Our model predicts that 

in early stages of a task block, when the participant does not yet know the strategy of the Player, a 
complex model (i.e. many motives considered) requires one to evaluate multiple predictions at once. 

In line with this prediction, average log response times were significantly longer on trials 1-8 than on 
trials 9-16 (Wilcoxon sign-rank test W = 1245, p < 0.001). 

Moreover, some motives require more information than others. For example, if the participant 
believes that Players are solely driven by the tendency to cooperate, one does not need to inspect 
the payoff matrix of the current trial to make the ‘cooperate’ prediction. On the other hand, to predict 

the actions of a Player who plays the Nash equilibrium, one needs to gather information about both 
the sucker’s payoff (S) and the temptation to defect (T). To predict the Greed and Risk aversion 

motives, one only needs one parameter (T or S, respectively). Since information sampling takes 
time, we predicted that participants who needed to sample S and T would take longer than 

participants who did not. However, this effect should be specific to early trials of a task block, where 
participants have not yet narrowed down their mental model of the Player. To test this, we reasoned 

that participants who considered the Greed motive would focus on T, participants who considered 
the Risk motive would focus on S, and participants who considered both Greed and Risk and/or the 

Nash motive would need to attend to both S and T. We thus compared log response times on trials 
1-8 of each block for participants who needed to sample S and T, S or T, or neither S nor T. 

Response times were significantly different (F(2,147) = 4.64, p = 0.011) for each of these three 
groups of participants, with attention on S or T being associated with slower RTs than not attending 
to either S nor T (Mann-Whitney U = 2, p = 0.010) and a trend for S and T being slower than S or T 

(U = 2309.5, p = 0.077; Supplemental Figure 3B). As predicted, the response time difference 
between S and T and S or T was significantly smaller at the end of a block than at the beginning 

(two-tailed two-sample t-test on early-late trial difference scores t(147) = 2.10, p = 0.037). This 
suggests that as participants learn about the motives of the Player, they limit their attention to task 

features that are relevant to those specific motives—a hallmark of structure learning24,25,31.  
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Figure S3. A. Accuracy in study 1 as a function of the number of motives considered (i.e. the 
number of motives included in the participant’s best-fitting model). B. Response times in study 1 as a 
function of the amount of information sampled by participants, based on the motives included in their 
best-fitting model. 
 

 
  

* p < 0.05 
*** p < 0.001

A B
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SI.3. Replicating study 1’s behavioral effects in study 2. In study 2, as in study 1, participants 
performed better than chance at the Social Prediction Game (average accuracy 62.7%, two-tailed 

one-sample t-test against 50%: t(49) = 47.5, p < 0.001), and were better able to predict human 
compared to artificial strategies (two-tailed paired-samples t-test t(49) = 16.9, p < 0.001; Figure 2B). 

The structure by motives model again outperformed the alternative models (mean ΔBIC motives 
– no structure = -90.7, W = 0, p < 0.001; mean ΔBIC motives – game types = -15.6, W = 13, p < 

0.001) with a subset of the four motives fitting data better than the full model for 49 out of 50 
participants (mean ΔBIC = -11.7, W = 0, p < 0.001). 
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SI.4. Mental models predict gaze. Having confirmed key theoretical predictions about visual attention 
in social structure learning, we used eye-tracking to test the computational model developed in 

Study 1. If accurate, this model should be able to predict not just our participants’ behavioral 
predictions and confidence ratings, but also individual differences in gaze. One way to test this is to 

compare gaze between participants who did, or did, not consider the Risk motive as driving the 
Players’ choices, as this motive was considered by about half (58%) of the participants 

(Cooperativeness: 26%; Greed: 82%, Nash: 56%). We hypothesized that participants whose best-
fitting model did not incorporate Risk would focus less on the sucker’s payoff of the games. 

Confirming this, participants who considered Risk looked significantly more at S (the risk aversion 
motive) relative to T than those who did not (two-tailed two-sample t-test t(49) = 2.04, p = 0.047; 

Figure 4B). This group effect was mirrored with our computational model in a posterior predictive 
check (Figure 4C). 

To provide a strong test of our computational model, we hypothesized that we could predict 
relative gaze to S and T at the trial level from the computational model fitted only to predictions and 
confidence ratings. To this end, we computed how informative it would be for a participant at a given 

trial to look at S or T given the participants’ current beliefs about the Player’s motives. On each trial, 
we first computed the model prediction Pcooperate for each possible combination of S and T (i.e. the 

conditional distribution), and compared this to the marginal distribution over S or T using Kullback-
Leibler (KL) divergence. For example, consider the case where the model holds that a participant 

currently believes that the Player is strongly motivated by Greed, a strategy whose choices are 
determined by the value of T (temptation to defect). In this case, the marginal distribution over T will 

be very similar to the full conditional distribution over S and T, since the model prediction is 
dominated by T. This means that the model prediction’s probability distribution will not change much 

if the participant looks at S, while looking at T will have a big impact on the probability distribution. 
This change (KL divergence) in probability distribution can thus be interpreted as the value of 

information associated with S and T, computed as follows: 

𝐷uv(𝑆) = ∑ P(𝑐𝑜𝑜𝑝|𝑆, 𝑇) log y^𝑐𝑜𝑜𝑝z𝑆, 𝑇_
y^𝑐𝑜𝑜𝑝z𝑇_{,|       (1) 

𝐷uv(𝑇) = ∑ P(𝑐𝑜𝑜𝑝|𝑆, 𝑇) log y^𝑐𝑜𝑜𝑝z𝑆, 𝑇_
y^𝑐𝑜𝑜𝑝z𝑆_{,|       (2) 

Where DKL(S) indicates KL divergence of the change in probability distribution upon looking 

at S, P(coop|S,T) denotes the conditional distribution, and P(coop|S) denotes the marginal 
distribution over S. We then predicted relative gaze to S versus T per trial by computing the 

information value difference VOIT-S between the two variables: 

𝑉𝑂𝐼|\{ = 𝐷uv(𝑇) − 𝐷uv(𝑆)        (3) 

Here, a VOIT-S of 1 means that given the current belief state of the model, it is only valuable 
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to look at T (e.g. if the model is highly certain that the Player is an Optimist) while inspecting S is 
only valuable when VOIT-S is -1. 

Using this metric of information value, we were able to predict trial-by-trial gaze of the 
participants by correlating trial-wise VOIT-S as generated by the model to the observed relative gaze 

difference between T and S. The correlation was significantly positive across the 50 participants 
(two-tailed Wilcoxon sign-rank test of correlation coefficients: W = 186, p < 0.001; Supplemental 

Figure 4A). An example participant is shown in Supplemental Figure 4B. This result could never be 
achieved by a model learning over games (Model 2) or game types (Model 3), as these alternative 

models assign equal information value to S and T on every trial and therefore cannot account for 
gaze shifting over time between S and T. These results constitute an out-of-sample test of our 

computational model, as the model was trained on behavioral data but tested on gaze, and thus 
provide strong confirmatory evidence that the motives we infer in others drive visual attention in 

social structure learning. 
 

 
Figure S4. Predicting gaze from the model. A. The Spearman correlation between trial-by-trial gaze 

predicted from the model and observed gaze was significantly positive across the sample. B. Data 

from one example subject illustrate how the model-predicted gaze (blue line) tracks the observed 

gaze (orange line) trial-by-trial.  

A B
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