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Abstract

Reconstructing neuron morphology is central to uncovering the complexity of the
nervous system. That is because the morphology of a neuron essentially provides
the physical constraints to its intrinsic electrophysiological properties and its
connectivity. Recent advances in imaging technologies generated large quantities of
high-resolution 3D images of neurons in the brain. Furthermore, the multispectral
labeling technology, Brainbow permits unambiguous differentiation of neighboring
neurons in a densely labeled brain, therefore enables for the first time the possibility
of studying the connectivity between many neurons from a light microscopy image.
However, lack of reliable automated neuron morphology reconstruction makes data
analysis the bottleneck of extracting rich informatics in neuroscience. Supervoxel-
based neuron segmentation methods have been proposed to solve this problem,
however, the use of previous approaches has been impeded by the large numbers
of errors which arise in the final segmentation. In this paper, we present a novel
unsupervised approach to trace neurons from multispectral Brainbow images, which
prevents segmentation errors and tracing continuity errors using two innovations.
First, we formulate a Gaussian mixture model-based clustering strategy to improve
the separation of segmented color channels that provides accurate skeletonization
results for the following steps. Next, a skeleton graph approach is proposed to allow
the identification and correction of discontinuities in the neuron tree topology. We
find that these innovations allow our approach to outperform current state-of-the-art
approaches, which results in more accurate neuron tracing as a tree representation
close to human expert annotation.

1 Introduction

Brain circuits have long been known to arise from the physical connectivity patterns of many
individual neurons (i.e., the “connectome”). It is valuable, therefore, for neuroscientists to describe
the cable-like axon and dendrite morphologies to aid in the discovery of inputs and outputs of
individual circuits and the roles of different cell types in these circuits (Zeng & Sanes, 2017). This
presents a challenging paradigm for both data acquisition and analysis, as neural networks can
encompass projection neurons spanning many centimeters and local connectivity features on the
scale of hundreds of nanometers. These problems have begun to be addressed by ongoing technical
innovations, however technical implementation details still require careful analysis.
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Figure 1: A, an example
Brainbow image displaying
the cable-like nature of axons
and dendrites. B, a closeup
of the box highlighted in A,
displaying the hollow nature
and noisy nature of Brain-
bow expression. C, a line in-
tensity profile of the line in
B. All images are 15-frame
maximum intensity projec-
tions along the z-axis.

Recent advances in light microscopy and genetic strategies for labeling defined groups of neurons
have enabled neuroscientists to capture these dense volumetric images of neurons in the brain.
Specifically, multispectral volumetric imaging of neurons, termed “Brainbow” (Figure 1A), has
emerged as a promising approach to produce densely labeled brain samples (Livet et al., 2007;
Cai et al., 2013). Briefly, individual neurons in a Brainbow sample each stochastically express
combinations of fluorescent proteins, effectively labeling each neuron a different composite color.
This enables unambiguous identification of individual axons and dendrites within a given volume.
The continued improvement of Brainbow-like tools (Li et al., 2020), together with the advent of
improved imaging technologies such as expansion microscopy (Chen et al., 2015; Tillberg et al., 2016)
and light-sheet microscopy (Hillman et al., 2019; Jahr et al., 2015), makes Brainbow well-poised to
make significant contributions to both connectomics and hypothesis-driven circuit analysis.

Despite the technological advances for collecting these micrographs, approaches for reliably analyzing
and quantifying these rich datasets remain in their infancy. Along with large data sizes (in some cases
as much as several terabytes), this is a difficult problem due to a large number of channels and imaging
noise which is observed in the images (Figure 1B–C). Many tools exist for the manual or semi-manual
reconstruction of neuron structures, such as Neuromantic (Myatt et al., 2012), commercial software
such as Neurolucida. Recently, nTracer (Roossien et al., 2019) was released, specifically built for
the analysis of Brainbow images. While these tools are effective for the reconstruction of small
neuronal volumes, they are difficult to apply at scale due to the reliance on human input to the
annotation, which can encompass tens to hundreds of human hours for even a relatively small image.
Several automated solutions to aspects of the neuron segmentation problem have been proposed for
use in both optical and electron microscopy generated images (Li et al., 2019; Gornet et al., 2019;
Januszewski et al., 2018; Yang et al., 2019; Quan et al., 2016; Xiao & Peng, 2013), including several
which specifically focus on Brainbow (Shao et al., 2012; Bas & Erdogmus, 2010; Wu et al., 2011;
Sümbül et al., 2016). The earlier methods directly operate in voxel-level, which can be extremely
computation-intensive and error-prone due to insufficient color consistency. Though the computation
and color inconsistency issues are addressed in Sümbül et al. (2016), we can observe that this method
results in fragmented (broken) neurite segmentations (Figure 2D, red arrows). These fragmented
segmentations can be caused by a flaw in the supervoxelization process or occlusions by other neurons
in the raw Brainbow data. In addition, none of the segmentation methods provide a tree-like neural
tracing structure, which is required for further neuroinformatics analysis.

In this work, We intend to adapt the computationally efficient supervoxel-based segmentation used
in Sümbül et al. (2016) but to address its fragmented segmentation problem. Aware of that the problem
may be caused by its kernel k-means or spectral clustering, which are theoretically equivalent and
tend to find circular or even-sized clusters (Dhillon et al., 2004), we instead use a probabilistic
Gaussian mixture model. This modification allows the modulation of the distribution of supervoxel-
representation to form more robust clusters and thus reduces the segmentation errors. Next, we extract
a neuron tree topology (tracing), represented as a graph connectivity network, by skeletonization of
the GMM-clustered segmentation. To address breaks in the neuron tracing which arise, we implement
a graph-based method which utilizes the spatial relationship of the segmentation skeleton to bridge
broken links, producing a more reliable tracing result.

Using this novel approach, we compare our automatic tracing to human-generated tracing, finding a
high degree of agreement. Additionally, we show that the proposed approach can deal with loss of
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Figure 2: A, an overview of the data processing pipeline used in this paper. B, linkage bridging
is used to repair broken trees, producing more robust neuron tracings. C, a raw Brainbow image.
D, image C after GMM clustering is performed. E, image D after skeletonization is performed. F,
the final reconstruction of the two neurites from E, pseudocolored for contrast. Arrows are used to
identify places where there are erroneous breaks observed during skeletonization, which are corrected
by linkage bridging. All images are maximum intensity projections of the entire image stack along
the z-axis.

skeleton information and also more complicated neural structures within the input Brainbow images.
In addition, whilst many hours can be spent for humans on reconstructing the neuroanatomy of such
densely labeled multispectral Brainbow images, our proposed method can relieve the high demand
for human annotation. This is a promising development, by which discovery of brain circuits can
thus potentially be automated.

2 Methods

We first revisit the supervoxelization process, and then to solve the fragmentation problem, we make
two innovations here: (i) To avoid biasing the segmentation being even-sized, we replace kernel
k-means with Gaussian mixture model to modulate the supervoxel features which we obtain from the
supervoxelization. (ii) To mitigate the gap between fragmented neurites, we develop a skeleton graph
method (Figure 3) to reconstruct the tracing.

2.1 Denoising

Images generated by confocal microscopy suffer from noise generated in both by stochastic variance in
photon counts (shot noise) and from instrument noise (Sheppard et al., 1992). Figure 1B demonstrates
a simple example of this, where the cross sectional intensity Figure 1C is found to be highly varied.
To reduce these noise sources while preserving structures, we use a nonlocal transform-domain filter
for volumetric data denoising. Assuming the noise is Gaussian, the BM4D denoiser (Maggioni et al.,
2012) is applied in individual channels of the image stack, resulting in a denoised version.

2.2 Supervoxelization

Directly operating at the voxel level on Brainbow images is impractical due to computational
complexity and erroneous due to the large observed color variances in vivo. One solution is to
make supervoxels locally based on colors to oversegment the images (Sümbül et al., 2016). By
making supervoxels, the computation is reduced, while also allowing more sophisticated features to
be calculated at the supervoxel level. First, we restate two assumptions in a local and global context:
(i) locally, neighboring voxels within the same neurites share similar colors; (ii) spatial information
and color information act as a global constraint to obtain optimal segmentation. A watershed
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Figure 3: A, a diagram of
27-point stencil in euclidean
space. B, example con-
structed graph visualization
under Definition 1. Note that,
the black lines between two
nodes are following the path
of the connected components
using 27-point stencil.

transform (Meyer, 1994) is used to generate supervoxels, and each supervoxel is summarized by its
mean color in LUV space (Schanda, 2007).

After supervoxelization, we yield a set of supervoxels S = {si}, where si denotes a supervoxel. The
spatio-color constraint is imposed on supervoxel set S. We use a graph G = (V,E) to represent the
spatio-color relationship, where each supervoxel si in S represents a node in V . Edges are configured
between pairs of supervoxels where: (i) the spatial distance between two supervoxels is less than δs
or (ii) the color dissimilarity is less than δc. In this way, the affinity matrix is constructed as

A(i, j) =

{
e−γd

2
ij , (i, j) ∈ E

0, otherwise
(1)

where γ is the Gaussian kernel parameter, and dij is the dissimilarity of color between two supervoxels.
Note that the affinity matrix A ∈ RN×N is a sparse matrix where N represents the number of
supervoxels. Instead of using A directly, we decompose A into lower dimension d by utilizing
eigenvalue decomposition algorithm (Baglama et al., 2003), where d is the number of eigenvectors
with the d largest eigenvalues. We denote the updated affinity matrix as our feature X ∈ RN×d which
is of the form

X = eig(I −D− 1
2AD− 1

2 ) (2)

where I denotes identity matrix, and Dii =
∑
j Aij , so that the eigendecomposition is imposed on

the symmetric normalized Laplacian matrix.

2.3 Neuron Segmentation

Supervised learning methods (e.g., Gornet et al.) rely on a volumetric ground truth segmentation,
which is difficult and, in many cases, infeasible. Thus, unsupervised approaches, such as kernel
k-means and spectral clustering, allow more efficient solutions. However, after applying kernel
k-means, we observe imperfect segmentation results, particularly with fragmentation near differences
in neuron caliber (Figure 4). Thus, instead of imposing hard clusters on X via kernel k-means or
its variants (Dhillon et al., 2004), we approximate the distribution of the feature X using mixture
of Gaussians (GMM). We hypothesize that GMM will perform better because it does not bias the
cluster sizes to have specific structures as does kernel k-means (Circular). We use the expectation-
maximization (EM) algorithm to iteratively optimize the model and check the variational lower bound
until convergence is accomplished.

2.4 Neuron Tracing

Despite the improvements in image segmentation, we still observe fragmented structures (Figure 2D)
among the inferred neurons. To generate a compact tracing, we propose a method to merge fragmented
topologies into one continuous tree. The fragmented neurites can be caused by the supervoxelization
process and occlusions by the other neurons in the raw Brainbow data; the former problem has been
eased by the implementation of GMM, but the latter persists. Thus, we develop a graph-based method
to “bridge” the broken links within the same neurite. We first skeletonize the segmentation and use
the resulting skeleton in the following operations.

Definition 1. Given a skeleton represented by a set of points, using a 27-point stencil, we define core
points with at least 3 neighbors as branch points, and core points with only 1 neighbor as end points.
This is demonstrated in Figure 3.
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Algorithm 1 Skeleton graph construction and linkage bridging

Require: skeleton point set Sp, distance threshold ∆s

1: find points in Sp with at least 3 neighbors as branch points Pb and points with 1 neighbor as end
points Pe, using a 27-point stencil

2: for every two nodes {pi, pj} in {Pb, Pe} do
3: represent the link Lij as the path of connected components between pi and pj
4: end for
5: construct the skeleton graph G = (P,L), where P is the union set of Pb and Pe
6: for every two subgraphs Gi and Gj in G do
7: for every pair of end nodes pie in Gi and pje in Gj do
8: if distance between pie and pje < distance threshold ∆s then
9: link pie and pje (e.g., using A? search algorithm, Dijkstra algorithm, etc.)

10: remove pie and pje from Pe
11: update skeleton graph G
12: end if
13: end for
14: end for
15: return updated G, denoted as compact skeleton graph Gc

Skeleton graph construction. We represent branch points Pb and end points Pe as the nodes (i.e.,
branch and end nodes) in the graph, where the edges or links L between every two connected nodes
are coded by the paths of the connected components between two nodes (Figure 3B). Note that, in
this way, the points with 2 neighbors in the set of skeleton points can be well-represented by the
links, and thus there is no need to represent these points as nodes. Abandoning the points with two
neighbors also reduces the computation and improves efficiency. The skeleton graph is configured as
G = (P,L), where P is the union set of branch nodes Pb and end nodes Pe.

Linkage bridging. Broken linkages occur when two end points are incorrectly formed on opposite
ends of a fragmented segmentation. Here, our way of constructing the graph is well-suited for
bridging these broken connections. First, we extract subgraphs based on the connectivity of all
the nodes. Next, we examine every pair of end nodes within two different subgraphs. When the
distance, in our case a Euclidean distance, is less than threshold ∆s, we link the two end nodes, and
thus we can obtain a more compact graph. The process is iterated until all pairs of subgraphs have
been examined. A detailed description of this process is given in Algorithm 1, and we also show an
alternative implementation using k-d tree in Supp. Algorithm 1.

Trace generation. In order to perform quantitative analysis from generated tracing, we developed
a technique to generate SWC tracing files (Stockley et al., 1993). The SWC file format is used
broadly by the neuroinformatics community and employed as the transaction format of various
Fiji (Schindelin et al., 2012) plugins for calculating neuromorphology features. Our technique makes
full use of the properties of Gc. In general, a neurite starts from an end node and stops at an end
node and the path between two connected end nodes can be interpreted as part of the neurite. In
practice, we try to find the shortest paths from the seed node p0e to following end nodes pie in the same
subgraph, such that the union set of these found shortest paths can be interpreted as the final tracing
result T (Tracing) which is of the form

T = {p0e → pie}, i ∈ {1, · · · , n− 1} (3)

where n is the number of end nodes in the compact skeleton graph Gc. We note that p0e can be
randomly selected from any end node, determined using a set of criteria (e.g., the end node furthest to
the left of the image), or manually input. For our comparisons, we manually selected the end nodes to
be consistent with our human annotation or chose p0e to be the end node with the smallest coordinate
in unannotated data.

2.5 Trace Comparison

To quantify differences between different neuron tracings, we make use of the DIADEM met-
ric (Gillette et al., 2011), which was derived as a way of objectively comparing the topologies of
different neuron reconstructions. We used the published evaluation code, which generates a maximum
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value of 1 for perfectly-matching reconstruction, and 0 for a reconstruction which has no matched
nodes to the gold standard. It is worth noting, however, that the DIADEM metric heavily weighs
the branching topology of the neurite so, occasionally, visually-similar neurons will result in poor
DIADEM scores. When running the DIADEM code, we used the parameter default preset ‘1’, while
additionally lessening the X-Y-Z node-matching distance to 10 pixels, to account for the diameter of
large-caliber neurites in the test image.

3 Datasets

We generated two test images for validation of our method in this report. Expansion microscopy (Shen
et al., 2020) was applied to physically expand brain tissue by 4× from a Brainbow-labeled PV/Som-
Cre mouse. A 3-channel image was collected, followed by manual channel alignment and histogram
matched using Fiji (Schindelin et al., 2012). The resulting image was then cropped to 364×372×169
voxels, representing an effective voxel size of 75 nm× 75 nm× 175 nm and a physical volume of
27.3 µm× 27.9 µm× 29.6 µm, to form a manageable test case. This image is used in Figures 2, 4, 5,
and 7.

We collected a second image (Figure 6) by injecting the Brainbow viral reporter into the hippocampal
CA1 region of a POMC-Cre reporter mouse. 3-channel imaging was performed as above, without
the use of sample expansion. This image was cropped to 300× 300× 300 voxels to encompass the
branches of approximately a single neuron for demonstration purposes, and represents a voxel size of
0.42 µm× 0.42 µm× 1.00 µm and a physical volume of 126 µm× 126 µm× 300 µm.

4 Results

We first compare our neuron segmentation method (Methods 2.3) against the state-of-the-art method
of Sümbül et al. by applying it to the first Brainbow image described above (Figure 4). Other than
the number of clusters, the remaining parameters (described in Supp. Text) are held constant between
the two methods, to ensure that differences observed are the result of algorithm changes. Overall,
compared with the previous method, more continuous neuron processes are easily observed using
GMM clustering. Channels which are well spectrally separated in the image result segmentations
which are equivalent between the two methods (e.g., Figure 4B1 and C1). When neurons of different
color intersect, we find that our method results in fewer “extra” voxels being segmented to the
wrong channel (Figure 4B3 and C3; see arrows in insets). Finally, our method preserves continuous
structures better, as observed by less degree of fragmentation in regions where calibers of the neurites
vary (Figure 4B2,4 and C2,4). These improvements result in segmentations that are more coherent
and is crucial to accurate downstream automated data analyses.

Next, we implemented a neuron tracing routine to generate skeleton-like tree structure as neuron
morphology presentation (Methods 2.4). To determine if our trace-generation method was robust to
information loss introduced by segmentation errors, we performed a data loss simulation (Figure 5).
Briefly, we calculated the skeletons for the two neurites found in Figure 4B2, after the random
removal of between 0 and 50 points out of each 100, resulting in fragmented skeletons (Figure 5A,
B). Upon evaluation, we find that both reconstructions are visually robust to large amounts of data
loss, however, several loop structures are formed due to the loss of connectivity in dense regions (red
arrows). The artificially-fragmented skeletons were then compared against the non-removal control
using the DIADEM metric (Gillette et al., 2011) (Figure 5C). The quantification of the top neurite, as
indicated by the DIADEM scores close to 1 indicates that there our linkage bridging method is robust
against the loss of data in this case. We observe a similar trend in accuracy loss in the bottom neurite,
however, the loop structures formed in error cause the DIADEM metric to be lower. Together, these
results suggest that the qualitative structure of tracing is highly robust to the loss of data.

Then, we evaluated our method on a more complexly-branched sample as shown in Figure 6. Along
with large color variance in the same neuron, the interweaving neural structure of this image can be
hard even for human annotation. Figure 6B shows the result of bridging the fragmented segmentation
into a compact tracing. We observe that even for the neurites with low intensity (Supp. Figure 4B,
red arrows), our proposed can trace the neurites and add them into the reconstructed neuron tree.
It is apparent that several branches are oversegmented, as a result of segmentation cross-talk with
the green channel. This behavior can be tuned by parameter choice, however, we found that neuron
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A C1

B4B2 B3

B1

C4C2 C3

Figure 4: A, the input raw Brainbow image stack. B1–4, selected GMM segmentation results. C1–4,
selected kernel k-means segmentation results. Insets are provided to show detail. The complete
segmentation result can is visualized in Supp. Figure 1 and the tracings are available in Supp. Figures
2, 3. All the images are using maximum intensity projections along the z-axis and are rotated for
better visualization.
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Figure 5: The study on ro-
bustness of our proposed
method to loss of image
information. A and B,
comparisons on the trac-
ing result of the left and
right neurons found in
Figure 4B2. C, the DI-
ADEM quality score of
each setting for A and
B. Tracings have been ro-
tated and rescaled to fit
plotting area.

“pruning” requires less human intervention time when proofreading a tracing as compared to adding
missed branches.

Finally, as a test of the accuracy of our algorithm and applicability for large-scale neural circuit
reconstruction experiments, we generated 7 neuron tracings from our test image (Figures 7A, B) and
also reconstructed the same neurons by manual tracing. The automatically-generated tracings agree
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A B
Figure 6: A, the pro-
jection of test image
with interweaving neural
branches along the z-axis.
B, the tracing result us-
ing the proposed method
for the purple neuron in
the test image. Both im-
ages are maximum pro-
jections along the z-axis.
Additional segmentation
results are presented in
Supp. Figure 4.
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Figure 7: A, an overview z-
projection of the test image, for
reference. B, high caliber neu-
rons (N = 7) were automat-
ically reconstructed and their
structures are visualized as z-
projections of the resultant trac-
ing files. C–F, several exam-
ple neurons from B are shown
next to manual human tracing.
The DIADEM quality score
for each pair is shown below
each panel. Red arrows are dis-
cussed within the text. Note
in C that slight differences ex-
ist between the two reconstruc-
tions, however, because they
are smaller than the size limit
for the algorithm, it reports a
complete reconstruction. Neu-
rons have been rotated and
rescaled to fit the plotting area.
G, the DIADEM scores of all 7
neurons in B (µ = 0.82; Range
= [0.53, 1.0]).

well with the human “gold standard” results (Figures 7C–G), with an average DIADEM score of 0.82.
There are several features to be noted within these reconstructions: First, we find that there are some
features which are reconstructed by the proposed method are not annotated by our human tracing
(e.g., Figure 7E, arrow). Upon manual inspection, some of these small features represent spines that
are difficult to resolve in the image. Additionally, one outlier reconstruction (Figure 7F) performed
poorly, due to a small loop introduced by a nearby similarly-colored neurite (arrow). Overall, this
experiment suggests the ability to perform large, automated reconstructions of Brainbow-labeled
neurons with accuracy comparable to human annotation.

5 Discussion

In this paper, we present a method that enables the efficient generation of neuron structural traces
from densely labeled multispectral Brainbow images. Specifically, our use of GMM clustering, as
well as a graph-theoretic method for neuron trace repair, prevent fragmentation errors which result
from the application of previous methods. We show by comparison to the human annotation of the
same images that our method is robust and efficient while introducing minimal errors.
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We hope that this work will find application with the many worldwide efforts to create whole-
organism neural maps. Human proofreading time in these experiments can be astronomical, so
improving automation has the potential to accelerate science by increasing its efficiency. Further,
these developments may be relevant to similar tracing-extraction problems, such as retinal tracing.

Broader Impact

Here, we present an unsupervised approach for neural tracing on densely labeled multispectral
Brainbow images. Since it can relieve the high demand for human labor, our proposed method can
help with the human annotations on Brainbow images which can potentially enables supervised or
weakly-supervised approaches to learning brain circuits. Although approaches for reliably analyzing
and quantifying Brainbow images remain in their infancy, we hope our work can draw the attention
of researchers to this interesting field.
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