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Abstract:  
 
The SARS-CoV-2 pandemic has led to unprecedented, nearly real-time genetic tracing due to 
the rapid community sequencing response. Researchers immediately leveraged these data to 
infer the evolutionary relationships among viral samples and to study key biological questions, 
including whether host viral genome editing and recombination are features of SARS-CoV-2 
evolution. This global sequencing effort is inherently decentralized and must rely on data 
collected by many labs using a wide variety of molecular and bioinformatic techniques. There is 
thus a strong possibility that systematic errors associated with lab-specific practices affect some 
sequences in the repositories. We find that some recurrent mutations in reported SARS-CoV-2 
genome sequences have been observed predominantly or exclusively by single labs, 
co-localize with commonly used primer binding sites and are more likely to affect the protein 
coding sequences than other similarly recurrent mutations. We show that their inclusion can 
affect phylogenetic inference on scales relevant to local lineage tracing, and make it appear as 
though there has been an excess of recurrent mutation and/or recombination among viral 
lineages. We suggest how samples can be screened and problematic mutations removed. We 
also develop tools for comparing and visualizing differences among phylogenies and we show 
that consistent clade- and tree-based comparisons can be made between phylogenies 
produced by different groups. These will facilitate evolutionary inferences and comparisons 
among phylogenies produced for a wide array of purposes. Building on the SARS-CoV-2 
Genome Browser at UCSC, we present a toolkit to compare, analyze and combine 
SARS-CoV-2 phylogenies, find and remove potential sequencing errors and establish a widely 
shared, stable clade structure for a more accurate scientific inference and discourse.  
 
Foreword:  
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We wish to thank all groups that responded rapidly by producing these invaluable and essential 
sequence data. Their contributions have enabled an unprecedented, lightning-fast process of 
scientific discovery---truly an incredible benefit for humanity and for the scientific community. We 
emphasize that most lab groups with whom we associate specific suspicious alleles are also 
those who have produced the most sequence data at a time when it was urgently needed. We 
commend their efforts. We have already contacted each group and many have updated their 
sequences. Our goal with this work is not to highlight potential errors, but to understand the 
impacts of these and other kinds of highly recurrent mutations so as to identify commonalities 
among the suspicious examples that can improve sequence quality and analysis going forward.  
 
Introduction: 
 
Extremely rapid whole genome sequencing has enabled nearly real-time tracing of the evolution 
of the SARS-CoV-2 pandemic [1–5]. By leveraging sequence data produced by labs throughout 
the world, researchers can trace transmission of the virus across human populations [6–14]. 
Typically, viral evolution is encapsulated by a phylogenetic tree relating all of the virus samples 
in a large set to one another [5,15–19]. However, despite efforts to mitigate the impact of 
sequencing and assembly errors, and to provide standardized datasets for real-time analysis 
[20], inferred phylogenetic histories of the outbreak often differ between analyses of different 
research groups (Results) and these inferred histories sometimes differ between analyses 
performed by the same group with different data (e.g., 31 different Nextstrain trees produced 
between 3/23 and 4/30, Results). These differences may be created or accentuated when 
samples that contain unidentified sequencing errors are incorporated into the phylogenetic tree. 
Defining stable and easily referenced major clades of the virus is essential for epidemiological 
studies of viral population dynamics [17,18]. An understanding of how errors might be affecting 
the trees that are being published is essential to achieving that goal (Figure 1).  
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Figure 1: Effect of recurrent sequencing mutations on phylogenetic inferences . (Left) 
Pictorial representation of how the evolutionary histories of viral sequences (long black lines 
adjacent to tree nodes) can be traced on a phylogenetic tree using mutational events (green 
and blue circles) that occur. In this case, each mutation occurs once independently.  (Right) The 
introduction of recurrent errors (gray and brown circles) can obscure the true evolutionary 
relationship between sequences leading to the creation of artifactual subgroups/clades 
(green-gray, leaves 2 & 3) and gray-brown, leaves 7 & 8)) and even the incorrect assignment of 
viral sequences to subgroups (leaf 6 no longer correctly groups with the blue subgroup (leaves 
4 & 5); large boxes group together subgroups based on inferred first mutation). 
 
 
 
 
It can be difficult to distinguish sequencing errors of different types from genuine transmitted 
and non-transmitted mutations in genome sequences. Taking a conservative approach, many 
researchers remove mutations that are observed only once during the evolution of the virus 
when constructing a phylogenetic tree, as these may be more likely to be errors [21,22], or 
non-transmitted mutations. However, systematic errors, where the same error from a common 
source is introduced many times in otherwise distinct viral genome sequences, are not removed 
by that approach [23,24]. These are more problematic, as they can appear as if they are 
genuine transmitted mutations (Figure 1). This might result from recurring errors in data 
generation or processing, or due to contamination among samples. Each case induces an 
apparent mutation that may be challenging to rectify with the real structure of the viral tree. 
Consequently, systematic errors can produce support for erroneous relationships between viral 
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isolates and destabilize tree-building efforts. One possible approach is to mask out specific sites 
in the genome sequence where recurring errors are suspected, as suggested previously [24]. 
However, genuine recurrent mutations that may contain important information about properties 
of viral evolution [6,8,25–27] are sometimes hard to distinguish from recurrent systematic errors, 
and this could obscure important biology. Here, we present data that we hope will help the 
community make the important decision as to how to treat potential errors in SARS-CoV-2 
genome sequences.  
 
In addition to their influence on phylogenetic inference, recurrent systematic errors can also lead 
to erroneous inferences about viral mutation processes, recombination and selection. For 
example, artefactual biases in mutational processes could confound signatures of mutational 
hotspots [28–33]. The issue of whether or not recombination has occurred during the outbreak 
is critical to the immunological battle against the virus and is under intense debate [6,34–40]. 
Because many tests of recombination assume that all mutations can only occur once at each 
site, recurrent mutation and systematic errors can confound signatures of recombination 
[6,26,35]. Finally, recurrent mutations have been identified as a possible signatures of elevated 
mutation rates and natural selection in SARS-CoV-2 [8,13,24–26,29,33,35,41], but some of 
these apparent instances of selection may be due systematic errors in the sequences. 
Confusion about recurrent mutations and recombination affects our understanding of host 
response and influences our decisions about which viral molecular processes or specific 
immune epitopes we might want to target in vaccine development. Thus, it is essential that we 
explore the possible extent and impact of systematic errors in the viral genome sequences.  
 
Another basic problem in current investigations of viral evolution is widespread phylogenetic 
uncertainty. In part, this has prevented the community from settling on a consensus definition of 
distinct viral clades (“(sub)types”, “groups”, “lineages”) representing the early divergence events, 
producing a “tower of Babel” problem in the scientific discourse [17,42]. Furthermore, many 
groups are making phylogenetic trees with widely varying goals, including dissecting patterns of 
nucleotide substitution, recurrent mutation, local lineage tracing, and large-scale phylogenomics 
[8,17,26]. The resulting topologies vary dramatically in structure, owing to differences in analysis 
choices and to phylogenetic uncertainty stemming from limited genetic diversity in the 
expanding viral populations. Consistent approaches for identifying commonalities and rectifying 
differences among trees are therefore foundational to the efforts to characterize viral evolution 
and epidemiology. A maximally stable topology will be essential for consistent nomenclature 
and facilitating conversations between analyses [17,42]. 
 
Our work takes on these two interrelated considerations: systematic errors and phylogenetic 
uncertainty. First, we show that hundreds of samples in the current SARS-CoV-2 sequencing 
datasets are affected by lab-associated mutations, which are potentially erroneous (see also 
[24]). These mutations distort phylogenetic inferences at scales most relevant to local lineage 
tracing and impact inferred patterns of mutational recurrence and recombination. We 
demonstrate that many can be identified and removed by cross-referencing patterns of 
recurrence against the source sequencing lab, and we provide automated methods for detecting 
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suspicious and highly recurrent mutations. Second, to facilitate communication and comparison 
across different SARS-CoV-2 phylogenies, we develop approaches for efficiently comparing and 
visualizing differences among trees. All of the tools and functionality that we describe here are 
publicly available and integrated into the UCSC Genome Browser to facilitate rapid visualization, 
data exploration, and cross referencing among datasets and analyses. We anticipate that these 
methods will fuel more accurate continued discovery during the current pandemic and beyond.  
 
Results/Discussion: 
 
Nextstrain Datasets: 
Our analyses are built in large part on the work of Nextstrain [15]. This team has already 
implemented a number of precautions to remove problematic sites and samples. In particular, 
they remove samples that are too divergent from others or whose date of sampling is 
inconsistent with the number of accumulated mutations. Additionally, all indels in the resulting 
multiple alignment are masked. Here, we do not consider the impact of alternative multiple 
alignments, upstream filtering methods, or the possible impacts of indels. Each of these factors 
has the potential to affect downstream analyses and should be considered carefully. For our 
purposes, we anticipate that Nextstrain’s filters will minimize idiosyncratic errors and should be 
retained in the majority of future analyses. Here, we use as a primary example, 31 different 
Nextstrain trees from days between 3/23/2020 and 4/30/2020. We focused in particular on the 
dataset from 4/19/2020 which contains 3246 variants in total (Methods). The vast majority of 
variants are at low frequency, as is expected for a rapidly expanding population.  
 
Systematic Error Could Be Mistaken for Recurrent Mutation or Recombination 
Non-random errors can present a fundamental challenge for phylogenetic inference and to the 
interpretation of viral evolutionary dynamics. There are at least four possible sources of (real or 
apparent) mutations that recur within independent lineages in a tree, and each makes distinct 
predictions about the source of recurrent mutations (Table 1). In particular, recent work has 
shown a strong bias towards C>U mutation in the SARS-CoV-2 genome [21,42–44]. Systematic 
errors, which usually result from consistent errors in molecular biology techniques or 
bioinformatic data data processing, need not reflect this bias and are not subject to natural 
selection. We therefore anticipate that many systematic errors will affect many mutation types, 
modify protein sequences, and strongly correlate with genome sequences generated in 
particular labs [24].  
 

Source Heritable Typical 
Allele 
Frequency 

C>U 
Biased 

Mutation Bias? 
Minor vs major 

Lab 
Correlation 

Extremal 

Recurrent 
Mutation 

Y Low Y Y N Y 

Recombination Y High Y N N N 
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Systematic 
Error 

N Low N Y Y Y 

Contamination 
Error 

N High Y N Possible N 

Table 1. Expectations for each source of apparent recurrent mutation.  
 
Many Apparently Recurrent Mutations Found in the SARS-CoV-2 Genome 
To examine patterns of recurrent mutation we employ a simple statistic, the parsimony score, 
which is the count of the minimum number of unique mutation events consistent with a tree and 
sample genotypes ([45,46] computed using our software from 
https://github.com/yatisht/strain_phylogenetics, Methods). More sophisticated statistics could be 
employed, but this simple one is effective, is readily interpretable, and can be computed rapidly. 
We restrict most analysis to bi-allelic sites, i.e. sites that contain one the allele in the reference 
genome from the root of the tree (here and in Nextstrain this is, Wuhan-Hu-1, obtained in 
December 2019 in the city of Wuhan) and a single alternate allele. Across the 4/19/2020 
Nextstrain tree, we found 2533, 395, 94, 40, and 44 bi-allelic sites with parsimony score one, 
two, three, four, and five or more, respectively (Figure 2, Figure S1). In particular, there is a 
strong “on diagonal” component of the data that is defined by a linear relationship between the 
log of the alternate allele count and parsimony score (dashed line in Figure 2A, log2-based 
slope = 3.188). These mutations reoccur across the phylogeny at exceptional rates relative to 
their allele frequencies. Hereafter, we refer to the set of variants in this on-diagonal group as 
extremal sites (blue, red, and orange in Figure 2A). This relationship suggests that the extreme 
accumulation of independent clades for the alternate allele is logarithmically related to the 
number of instances of the alternate allele in the phylogeny (Figure 2B). This suggests that even 
the most mutable or error prone sites in the genome will sometimes have alternate alleles 
grouped into clades during phylogenetic inference thereby appearing to be inherited. 
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Figure 2. (A) The relationship between alternate allele count and parsimony score. Point radius 
indicates how many sites share a single parsimony score and alternate allele count. Several 
noteworthy recurrent mutations are labelled. Note that the X-axis is log-scaled. (B) The sizes of 
independent clades for the same alternate allele arranged in descending order. The number of 
lineages per clade is shown on logarithmic scale facilitating comparison with Panel (A). These 
data indicate that when alternate allele clade sizes for a given site are sorted in decreasing 
order, their sizes are reduced going from left to right by a multiplicative factor at each step, 
consistent with the log-linear relationship displayed in Panel (A). Mutations with remarkably high 
recurrence are shown with color reflecting their properties: lab-associated (red), recurrent and 
associated with a poly-U stretch (blue), and high frequency with many forward and backward 
mutations (purple). Grey lines in the background are the same values but for all other mutations 
with parsimony score 4 or greater. The values in parentheses in the mutation  names indicate 
the number of unique clades associated with the alternate allele. Note that in some cases, this 
extends beyond the limit of the X-axis and that the Y-axis is log-scaled for visibility. (C) An 
example of the observed patterns of evolution at one highly recurrent site with reference allele U 
and alternate allele G, site 13402 and parsimony score 14, where 14 alternate allele clades (in 
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red) each represent an apparently independent incidence of the mutation substituting the 
alternate allele.  
 
 
Automated Detection of Extremal Sites 
Lab-association is a straightforward indication that we use below to identify highly suspect 
mutations in the SARS-CoV-2 genome. However, hypermutable sites might also impact 
phylogenetic reconstruction for similar reasons as systematic errors. We therefore sought to 
provide researchers with a method for rapidly identifying and flagging suspiciously recurrent 
mutations. We therefore developed code to identify the “on diagonal” extremal sites and 
produce plots of the output similar to Figure 2, that is available at 
https://github.com/yatisht/strain_phylogenetics. Note that depending on the dataset, this 
component is not always so linear as in Figure 2, but it is associated with highly homoplastic 
sites regardless (e.g., Figure S1).  Our list of extremal sites includes two that we later show are 
strongly lab-associated (A4050C and U13402G), three mutations that are adjacent to >5bp 
poly-U segments in the genome (C11074U, G11083U, and C21575U), as well as two more C>U 
mutations (C21711U, C28887U). Regardless of their proximate causes, highly recurrent 
mutations can negatively impact the accuracy of inferred tree topologies, and thus should be 
removed prior to phylogenetic tree construction and for many subsequent analyses.  
 
SARS-CoV-2 Data Contains Many Lab-Associated Mutations 
To search for systematic errors associated with a particular lab, we extracted the set of sites 
with parsimony score 4 or more. We then flagged sites as lab-associated mutations if more than 
80% of the samples containing the alternate allele were generated by a single group. Using this 
heuristic approach, we found 16 such sites (Table S1). We note that this set of sites contains 
two mutations previously identified as lab-associated mutations [24], some others identified as 
highly homoplastic [8,24,25,42], as well as several identified as evidence for recombination [26]. 
These mutations in lab-associated sites display a range of base compositions and only one is a 
C>U transition (C6255U). This rate of C>U mutation is much less than the genome-wide 
average rate of C>U mutation for non-singleton sites (49%, P = 0.0004914, Fisher’s exact test), 
and differs significantly from the rate of C>U mutation among our set of highly recurrent 
mutations that are not strongly associated with a single sequencing lab (P = 1.005e-07, Fisher’s 
exact test). Furthermore, our set of lab-associated mutations is weakly enriched for protein 
altering mutations relative to other highly recurrent mutations (P = 0.09372). Collectively, our 
results suggest that some recurrent mutations among these 16 could be lab-associated 
systematic errors.  
 
The potential causes of lab-associated mutations are numerous. A non-exhaustive list follows. 
First, primers for reverse transcription or PCR might introduce systematic errors either via errant 
priming, because they “overwrite” true variation, or because of errors during bioinformatic 
processing. For example, the commonly used ARTIC primer sets amplify the viral genome from 
metatranscriptomic cDNA by tiling the viral genome with PCR amplicons (https://artic.network/). 
Second, if a portion (perhaps a single amplicon) from a contaminating sample were present in 
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many sequencing reactions from a single lab, this could propagate variants across all genome 
sequences from a single group. Third, contamination from the human transcriptome itself might 
be inadvertently included in assembled viral genomes.  
 
Two labs contributed a disproportionate number of lab-associated mutations in our dataset, 
suggesting a consistent source of these alternate alleles (Table S1). One lab group is strongly 
associated with two adjacent high parsimony score mutations A24389C and G24390C. These 
occur in a 10bp sequence that otherwise closely resembles an Oxford Nanopore sequencing 
adapter, CAGCACCTT, and is adjacent to an ARTIC primer binding site. Here, the differences 
between the genome sequence and adapter are bolded . See also [24], where a commenter on 
that work comes to a similar conclusion regarding the likely source of these mutations. 
Additionally, A4050C, U8022G, U13402G, and A13947U (Figure 2, Table S1) are associated 
with this same lab and either overlap or are within 10bp of ARTIC primer binding sites 
(14_left_alt4, 26_right, 44_right, and 47_left, respectively), suggesting that a consistent 
bioinformatics data processing error may be responsible. Sequences submitted by another lab 
group are strongly associated with four additional high parsimony score mutations, G2198A, 
G3145U, A3778G, and C6255U (Figure 2, Table S1). Here again, each of these intersects one 
of the ARTIC primer binding sites (8_left, 11_left, 13_left and 20_right respectively, Figure 3). In 
aggregate, our set of lab-associated mutations are significantly closer to ARTIC primer binding 
sites than would be expected by chance (P = 0.0283, permutation test, Figure 3). Our results 
therefore suggest that mutations intersecting or immediately surrounding commonly used primer 
binding sites should be subjected to particular scrutiny.  

 
 
Figure 3.  UCSC Genome Browser display of lab-associated mutations and ARTIC 
primers.  Bases 3130 to 4070 of the SARS-CoV-2 genome are displayed, containing four 
lab-associated mutations highlighted in light blue. G3145U, A3778G and A4050C overlap 
ARTIC primer bind sites. An interactive view of this figure is available from: 
http://genome.ucsc.edu/s/SARS_CoV2/labAssocMuts 
 
 
Another lab-associated mutation, C22802G, also overlaps an ARTIC primer (76_left, Table S1), 
but the ultimate source is unrelated. In this case, that would not be possible because these 
SARS-CoV-2 genomes were assembled from whole metatranscriptomic data without PCR 
selection. Instead, the cause appears to be misalignment of a human ribosomal RNA sequence 
that was incorporated into the consensuses for a subset of genomes produced by this group 
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(Dr. Darrin Lemmer, Pers. Comm.). This highlights the broad range of possible causes of 
lab-associated mutations.  
 
It is more challenging to identify the specific sources of the other five lab-associated mutations 
that we observed, but commonalities are informative. Three of these mutations are associated 
with a single group and each is a G>U transversion (G3564U, G8790U, G24933U, Table S1). 
Even more strikingly, each mutation occurs in a GGU motif, suggesting a common molecular 
mechanism might underlie this set of lab-associated mutations as well (i.e., GGU > GUU). One 
possible hint is that this group uses a transposase-based library preparation method, which is 
relatively uncommon among SARS-CoV-2 sequencing groups and might explain this unique 
signature. Beyond these, G1149U and U153G are associated with two different sequencing 
groups, but do not show similar signatures as other variants (Table S1). More generally, the fact 
that many recurrent mutations are associated with genome sequences produced by individual 
lab groups suggests that consistent data processing or generation issues affect many sites. For 
example, sample contamination, which can be quite challenging to confidently detect, might also 
contribute to mutational recurrence and might not strongly be lab-associated (Text S1). 
However, we caution that this does not definitively prove that these apparent mutations are 
errors, but we believe it is prudent to remove these sites for most analyses until additional 
sequencing corroborates them.  
 
Lab-Associated Mutations are Consistent with Simulated Systematic Error 
To study how systematic errors affect phylogenetic inference and inferred properties of viral 
evolution, we experimentally introduced errors in replicate experiments. We found that the 
parsimony score displays a roughly linear relationship with the log of the alternate allele count, 
as it does for extremal sites in Nextstrain trees we examined built on different days in April, but 
with varying slope (Figure 4). This is expected because errors will sometimes occur in sample 
genomes whose positions are close on the real phylogeny and even in sister lineages. 
Tree-building methods could then group these samples into a single clade. Importantly, the 
effect of drawing samples together can cause systematic error, or hypermutable sites for that 
matter, to appear heritable.  
 
Additionally, we find that viral genetic background and mutation type is an important contributor 
to this relationship. When errors are placed randomly across Australian samples (Figure 4A), we 
see much higher parsimony scores than when errors are placed only in samples from France 
collected between March 1 and March 17 (Figure 4B). The difference likely reflects the fact that 
the samples from France are more closely related. Because many of the lab-associated 
mutations that we identified are derived from a similarly restricted time and geographic region as 
our samples from France, parsimony scores at those sites closely resemble these sets of 
simulated error (Figure 4B). This suggests that the identification of lab-associated mutations will 
become increasingly straightforward as the viral populations accumulate genetic diversity. We 
also observe that mutations that truly occur less often during SARS-CoV-2 evolution (e.g., C to 
G) have slightly lower parsimony scores. This is likely due to modelling nucleotide-specific 
mutation rates during tree-building where mutations consistent with viral mutational processes 
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are less likely to be erroneously grouped. Importantly, our results suggest that a simple heuristic 
based on each site’s parsimony score and recurrence is sufficient to identify most 
lab-associated mutations above very low frequencies. However, extremely infrequent 
lab-associated error could be challenging to distinguish from more conventional sequencing 
error.  
 
Because systematic errors also affect the inferred tree, they can impact inferred patterns of 
mutational recurrence at other positions in the genome as well. In 50 out of 54 total experiments 
where we introduced a single recurrent error, we found that the parsimony score increased at 
other sites (range 2 to 44). This emphasizes the importance of identifying and excluding such 
mutations prior to inferring the final tree and downstream analyses.  
 

 
Figure 4: Parsimony scores at sites with introduced systematic errors. We added artificial 
errors to 10, 25, and 50 Australian (A) and early-March French (B) samples at the sites 
A11991G (purple), C22214G (blue), and C10029U (orange) in three replicates, then produced 
phylogenies and computed the parsimony score at each site. (C) We also introduced errors to 
the early-March French samples two at a time per sequence rather than individually. For 
comparison, we also show the values for three lab-associated mutations (C6255U, U13402G, 
A4050C; A, B) and for pair of linked lab-associated mutations (A24389C and G24390C; C). 
Each panel (A-C) contains a best-fit line (as in Figure 2A), for the relationship between log2 
alternate allele count and parsimony in simulated error data (slopes = 10.0, 5.55, and 1.0). (D-F) 
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Corresponding clade sizes arranged in descending order for error simulations in (A-C, 
respectively, as in Figure 2B).  
 
 
 
Correlated Lab-Associated Mutations Have Large Impacts on Phylogenetic Inference 
If infrequent but highly correlated errors were introduced at different sites in many samples, this 
could cause more samples to be grouped into a clade. We might not easily detect these errors 
based on recurrence. Two lab-associated mutations, A24389C and G24390C, are not just on 
adjacent genomic locations but are nearly perfectly correlated across samples. These sites 
have low parsimony scores when compared to other lab-associated mutations (4 and 5, 
respectively, Figure 4C). When we introduced similar correlated errors, we found that the 
parsimony scores were lower than in single error introduction experiments. Nonetheless, in only 
two error introduction experiments (out of 9) with 10 affected samples did we see a parsimony 
score as low as 3. Although low frequency and highly correlated error could be challenging to 
identify in general, we believe this is infrequent in our dataset (see Text S2). Therefore we have 
not included tests for correlated errors in our suggested methods for finding lab-associated 
mutations, but adjacent correlated sites should be carefully scrutinized.  
 
Lab-Associated Mutations Affect Phylogenetic Inferences on Scales Relevant to Local Lineage 
Tracing 
To investigate the impacts of lab-specific mutations on phylogenetic inference, we removed 
(“masked”) each of the 16 sites with a lab-associated mutation (Table S1). Importantly, 
removing lab-associated mutations sometimes impacted phylogenetic patterns at other sites. 
For example, after removing all lab-associated mutations, the evidence for back-mutations at 
C14408U is eliminated, while many forward-mutations remain (e.g., Figure 5). In fact, the 
parsimony score changed for 107 sites and decreased for 53 sites on the tree that we inferred 
after removing all of the lab-associated mutations relative to the tree inferred including all sites. 
Additionally, we find that many samples containing lab-associated mutations have been 
repositioned on local topologies (e.g., Figure 5). Furthermore, in some cases the placement of 
closely related lineages that are unaffected by lab-associated mutations is also affected (Figure 
S2). These mutations therefore affect phylogenetic inferences at scales relevant to local lineage 
tracing, which may obscure dynamics of local transmission.  
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Figure 5. Lab-associated mutations impact phylogenetic inferences.  Part of the tree we 
inferred from the 4/19/2020 Nextstrain dataset (left) compared to the corresponding part of tree 
after removal of sites with lab-associated mutation (right). Lab-associated mutations (red) can 
affect the inferred phylogeny and are associated with apparent back-mutation to the ancestral 
allele (grey in column 14408, left) at other sites (white). When lab-associated mutations are 
removed, the resulting tree (right) shows no evidence for back-mutation at those sites (now 
white in column 14408), though several independent forward mutations remain evident.  
 
 
 
 
To examine the effect of each lab-associated mutation and the other extremal sites in isolation 
from one another, we individually masked each site and inferred a phylogeny. As a comparison, 
we also masked a set of sites that have similar alternate allele frequencies as the 
lab-associated mutations, but each has a parsimony score of one. The distributions of 
entropy-weighted total distance (a measure of distance between trees, described below) are 
remarkably similar when masking individual lab-associated sites, other extremal sites, and our 
control sites (Figure 6). Most exceed the distance we observed when we independently inferred 
two trees from the same input alignment (dashed black line). Our results therefore suggest that 
the lab-associated and extremal sites can impact tree-building approaches on par with real 
mutations, although the effects are typically small on the scale of whole topologies, as is 
expected given their typically low allele frequencies (Figure 6, Figure S3). 
 
Phylogenies made after removing two mutations, one control and one lab-associated are 
outliers for entropy-weighted total distance (Figure 6, Figure S4) and other tree distance 
statistics (Figure S3). In each case, however, the likelihood of the tree produced from the full 
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dataset is actually higher (Table S5), suggesting that our tree-building method discovered a 
different locally optimal but less favorable topology rather than a dramatic impact of each site 
individually. These results suggest higher level uncertainty in the tree topology largely 
independent of the effects of lab-associated mutations.  
 
 

 
Figure 6: The relationship between alternate allele frequencies of lab-associated 
mutations and effect of masking on inferred tree topology. Entropy-weighted total distances 
relative to the reference maximum likelihood phylogeny are shown for phylogenies constructed 
after masking individual sites. Blue points correspond to sites with lab-specific alternate alleles, 
grey points correspond to control sites with parsimony scores of 1 and similar alternate allele 
frequencies to the sites with lab-specific alternate alleles, and brown points correspond to 
non-lab-specific extremal sites. The black horizontal line indicates the entropy-weighted total 
distance value for a maximum likelihood phylogeny constructed from an alignment identical to 
that of the reference phylogeny. Two outliers, C21590U (control) and G1149U (lab-associated) 
have outsize effects on inferred tree topology. 
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Recurrent Mutations Not Associated with a Lab Reflect the Mutation Spectrum of The 
SARS-CoV-2 Genome 
Hypermutation rather than positive selection may explain many remaining highly recurrent sites. 
Previous analyses showed that the rate of C>U mutation is exceptionally high relative to other 
mutation types in the viral genome [10,25,43,47]. This class of mutations should show increased 
evidence of recurring multiple times because they experience elevated mutation rates [25]. 
Indeed, parsimony scores at sites containing C>U mutations are significantly higher than those 
for all other mutation types (P < 2.2e-16, Wilcoxon Test, Figure 7). Furthermore, parsimony 
scores at C>U sites also significantly exceed those at G>A (P = 5.993e-12) as well as U>C (P = 
1.407e-10) sites. This mutational bias might be driven by APOBEC editing of the viral genome 
[25,43,44,47–49]. Consistent with previous results [43,44,47–49], we find that 5’-[U|A]C>U 
mutation more frequently than 5’-[C|G]C>U (P = 0.0501), but we do not see a similar effect for 3’ 
flanking sites at 5’-C>U[U|A] relative to 5’-C>U[G|C] mutations (P = 0.378). The highly biased 
spectrum of C>U mutations and the correlation with local sequence context implies that the 
plus-stranded virus biology may be leading to recurrent C>U mutations [47].  
 
Of the 83 highly recurrent mutations with parsimony greater than three, 50 are bi-allelic, not 
strongly lab-associated, and have an alternate allele frequency less than 0.01. Of these, 42 are 
C>U mutations. This is a significant excess of C>U mutations relative to the rate among 
non-singleton bi-allelic sites with parsimony score three or fewer (P = 3.658e-07, Fisher’s exact 
test). Additionally, C>U mutations that do not affect the underlying amino acid sequences 
display higher parsimony scores than do C>U mutations that do affect amino acid sequences (P 
= 0.0553, Wilcoxon test, Figure 7). This suggests that negative selection has played a role in 
shaping the distribution of highly recurrent mutations by purging strongly deleterious alleles.  
 
Evidence suggests that any contribution of sequencing error to the excess of C>U mutation is 
small. Alternate alleles at 81.4% of sites with parsimony greater than 3 are corroborated by 
more than one sequencing technology. Of those, 77% of bi-allelic sites are C>U transitions 
(Table S2). Illumina C>T errors in raw sequence reads are typically enriched in the contexts of 
flanking G regions [50,51], but here we do not see this pattern. Similarly, nanopore sequencing 
typically creates errors in homopolymer stretches [52], but we only see a few recurrent 
mutations associated with such regions. Notable exceptions are the extremal sites C11074U, 
and C21575U, which abut poly-U stretches in the genome and might result from replication 
slippage (see also G11083U). It is possible that the excess of C>U mutations are driven in part 
by high error rates during reverse transcription [53–56], which is required for cDNA sequencing. 
However, C>U mutation is overrepresented in high frequency mutations as well (9/20 frequency 
> 0.025 mutations are C>U, Table S3), indicating that this bias likely reflects a true mutational 
process. Additionally, these mutations are approximately as distant from ARTIC primer binding 
sites as we would expect by chance (P = 0.7851, Permutation Test, Table S2). Collectively, our 
results suggest that neither library preparation or sequencing error is not the major driving force 
behind biased C>U mutation observed at highly recurrent mutations that are not strongly 
associated with a single lab. However, even if real, the existence of these highly recurrent 
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mutations does not require that they are heritable (it must be that many viral mutations are 
never transmitted), in which case their phylogenetic behavior should be the same as systematic 
errors.  
 

 
Figure 7. Recurrence of mutations during SARS-CoV-2 evolution. (A) Frequencies of parsimony 
scores for C>U (Black) vs all other mutation types (Grey). (B) Frequencies of parsimony scores 
for C>U mutations that do affect amino acid sequences (Grey), and those that do not affect 
amino acid sequences (Black).  
 
 
 
Possible Mitigations for Lab-Associated and other Highly Recurrent Mutations 
We proposed a simple heuristic approach to detect lab-associated mutations. To briefly reiterate 
here, first we identify sites that experience mutations on at least four independent branches of 
the SARS-CoV-2 tree, and then we extract the set where 80% or more of the alternate allele 
comes from sequences produced by a single lab. These are classified as lab-associated 
recurrent mutations. Then for all sites we plot parsimony score versus log2 of alternate allele 
count and determine a set of extremal sites as described in Methods. We recommend that 
lab-associated and most extremal mutations be masked for the purposes of constructing a 
phylogenetic tree to be used in downstream analyses. One exception here is extremal site 
11083, which is sufficiently high frequency that it affects inference of the deepest branches of 
the tree. We suggest that it should be included during phylogenetic inference. However, 
alternative masking strategies that remove small clades containing apparent forward and 
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backwards mutations at high frequency sites might also be effective and will be investigated 
going forward. Many downstream analyses following tree-building should consider masking 
11083 as well. After masking the set of lab-associated and extremal sites, the samples which 
previously contained them can be retained in phylogenetic inference and downstream analyses. 
Tracks identifying these sites are available on the UCSC Genome Browser and in Table S1.  
 
Though not a focus here, we emphasize that filtering for genomic regions that are difficult to 
assemble or align (e.g., those used by Nextstrain to filter the ends of chromosomes as defined 
here https://github.com/nextstrain/ncov) should also be rigorously employed. In fact, in light of 
our discovery of a possible lab-associated mutation at position 153, which is just within the 
usual filtering range, we suggest that it may be preferable to simply mask the full 5’ and 3’ UTR 
regions, which are typically harder to assemble and align confidently.  
 
To examine the aggregate effect of lab-associated and extremal mutations, we inferred a tree 
for the full dataset, and another after masking all lab-associated and extremal mutations except 
11083 using IQ-TREE 2 with 1000 ultrafast bootstraps [57,58]. We then collapsed all branches 
that do not contain a mutation into a polytomy. In contrast to the single site masking 
experiments above, here the topologies of the two maximum likelihood consensus trees differ 
significantly. The symmetric entropy-weighted total distance between the two topologies is not 
large, 9.4 , but the fit to the multiple alignment having masked these sites improved by 189 
log-likelihood units relative to the tree inferred without lab-associated and extremal mutations. 
Below, we show that confident relationships at higher branches in the topology are minimally 
affected relative to other widely-used phylogenies, which were inferred including lab-associated 
and extremal mutations. Our phylogeny produced following these masking recommendations is 
available from the UCSC Genome Browser (Figure 8), and we will update and maintain this 
resource as we add new data, as other suspicious mutations are identified, and as improved 
masking recommendations are developed.  
 
Many of the most intriguing and evolutionarily relevant biological phenomena, such as viral 
recombination and recurrent mutation, explicitly require inferences based on homoplastic 
mutations. Special caution is clearly warranted. For these analyses, it is still necessary to mask 
lab-associated mutations and extremal sites because they can destabilize phylogenetic 
inference, but clearly one could not exclude all homoplasies. In light of significant phylogenetic 
uncertainty, which we address below, we recommend that each analysis be repeated across 
alternative possible tree topologies to confirm the robustness of biological inferences. However, 
this is not without significant challenges and the most general solution for confirming recurrent 
mutation or recombination is heritability. If a mutant or recombinant lineage grows sufficiently 
large and is corroborated by many labs, we can be much more confident [26]. We therefore 
suggest that evidence of heritability and independent sequence confirmation should be required 
to support inferences of either recurrent mutation or recombination.  
 
Exploring Data Quality and Mutational Recurrence Using Our Tools 
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SARS-CoV-2 sequence data is growing at an incredible pace. Here we developed tools to 
enable investigations of similar patterns in updated and additional datasets. To summarize: (1) 
we provide a method for rapidly computing parsimony scores to identify highly recurrent 
positions; (2) we provide an approach for identification of unusually recurrent sites relative to 
their allele frequencies (here, termed extremal); (3) we provide an approach for semi-automated 
metadata correction (See Methods), which improved detection of lab-associated mutations; and 
(4) we provide a method for identifying the set of highly homoplastic mutations that are strongly 
associated with individual sequencing labs. Our heuristic cutoffs appear to perform well in the 
datasets we examined, but the program is designed to empower users to explore other datasets 
and other filters as well. Software to perform each analysis are provided via GitHub 
(https://github.com/lgozasht/COVID-19-Lab-Specific-Bias-Filter and 
https://github.com/yatisht/strain_phylogenetics). 
 
Visualizing Data Quality, Genetic Variation and Correlation via the UCSC SARS-CoV-2 Genome 
Browser 
Data visualization remains one of the most powerful mechanisms for identifying unusual 
patterns and possible errors in genome sequence data (e.g., Figure 3, above). Therefore, as an 
integral part of this work, we provide powerful data exploration and visualization tools that can 
be applied to future variation datasets as well. Output from our programs for computing 
parsimony scores and detecting lab-association mutations can be imported directly into the 
UCSC SARS-CoV-2 Genome Browser [59] as custom tracks to facilitate visual exploration of 
suspect mutations with a user defined vcf file and tree. This is a very useful visualization 
framework for data quality control and for investigating the root causes of highly recurrent 
mutation. For example, it is straightforward to explore the relationships between phylogeny, 
genetic variation, and functional genomic annotations (Figure 8).  
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Figure 8.  UCSC Genome Browser view of all lab-associated mutations in the context of 
parsimony scores, alternate allele frequencies, the full genetic variation dataset with 
phylogenetic tree constructed after removing lab-associated and extremal mutations. This 
genetic variation data can be cross-referenced against many other diverse datasets available in 
the UCSC SARS-CoV-2 Genome Browser. Interactive view: 
http://genome.ucsc.edu/s/SARS_CoV2/labAssocMutsAll 
 
 
Researchers can upload their own aligned SARS-CoV-2 genome samples and phylogenetic 
trees to the SARS-CoV-2 Genome Browser in order to compare their phylogenetic analysis to 
those from Nextstrain and COG-UK, and also to look at the specific molecular features of the 
clades that their phylogenetic analysis identifies (Text S4). These molecular features include 
widely used primer pairs (as in Figure 3) as well as CRISPR guides, predicted and validated 
epitopes for CD4+ and CD8+ T-cells, key functional sites on the viral genome including 
cleavage sites for viral proteases PL-PRO and 3CL-PRO as well as cleavage sites for host 
proteases, locations of important RNA secondary structures, the locations of the transcriptional 
regulatory sequences, locations of protein phosphorylation and glycosylation sites, identification 
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of sites in the virus that are highly conserved or rapidly evolving in closely related viruses in bats 
and other mammals, as well as a lively “crowd-sourced annotation” set where any researcher 
can point out additional sites on the viral genome of special functional, diagnostic, or therapeutic 
significance [59]. This helps researchers to quickly determine if alternate alleles they believe 
characterize a new viral clade may be significant beyond their role as epidemiological markers. 
Instructions for producing custom genome-browser tracks for a given phylogeny and variation 
dataset are provided in Text S4. 
 
Phylogenetic Uncertainty and Facilitating Tree Comparisons Across Analyses 
In the second part of this work, we address concerns arising from phylogenetic uncertainty. As 
expected for a relatively slowly-evolving and rapidly expanding viral population [60], there is 
substantial uncertainty in the SARS-CoV-2 phylogeny. This extends well beyond the typically 
localized impacts of lab-associated and highly recurrent mutations, and instead derives from the 
fact that most branches in the SARS-CoV-2 phylogeny are supported by few mutations. 
Undoubtedly, thousands of unique phylogenies will be produced by groups studying this viral 
outbreak and these may sometimes support conflicting evolutionary relationships. We therefore 
sought to provide tools to facilitate interpretation of commonalities and differences among such 
large phylogenies. 
 
A tree comparison algorithm using entropy-weighted matching splits 
There are many metrics for measuring the total distance between two or more phylogenetic 
trees [61–66]. One popular metric (Maximum Cluster distance (MCdist)) also identifies the 
best-matching clades between the two trees. A clade in a rooted tree splits the leaf nodes of 
that tree into two sets: those inside the clade and those outside the clade. Given a clade C in 
tree T and a clade C’ in tree T’,  the split distance between C and C’ is the number of leaves that 
have to be moved so that the split for C in T becomes equal to the split for C’ in T’. The 
(nonsymmetric) correspondence between the clades of T and the clades of T’ established by 
minimizing the split distance is referred to as the “maximum cluster alignment” or “best split 
alignment” from T to T’, [61]. This is particularly appealing here because we aim to facilitate 
comparisons across phylogenetic trees both globally and at individual clades.  
 
We implemented a modified version of MCdist in https://github.com/yatisht/strain_phylogenetics 
to compare two trees, T and T’, both restricted to the same set of samples, with two 
improvements. First, we proportionally weighted the split distance between each clade C of T to 
the best matching clade in T’ by the entropy of C, i.e., by H(p) = -p log 2(p) - (1-p) log 2(1-p) where 
p is the fraction of leaves from T that are in C (see Methods, Figure 9). The entropy-weighted 
matching split distance emphasizes the importance of the clades in T in terms of how much 
information about the leaves they carry, which helps highlight clades where the most dramatic 
changes have occured. The sum, over all clades in T, of the entropy-weighted matching split 
distance to the best-matching clade in T’ is referred to as entropy-weighted total distance from T 
to T’. Second, we label all internal branches in T and T’, and identify the most similar branches 
in both trees based on the clades they define. When multiple branches in T’ match the branch b 
in T with the same best split distance, we report all best-matching branches (Methods). 
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Additionally, we confirmed that our statistic is a robust measure of tree distance, judging by the 
strong correlation with other frequently used tree distance metrics (Text S3). Our 
implementation can compute this statistic for two trees of size 10,000 leaves in just 20 minutes 
on a single CPU, so it scales to the large trees required for SARS-CoV-2 phylogenetics.  
 

 
Figure 9:  Entropy-weighted distance statistic. (A) Example trees (T and T’) for this 
comparison with identical sets of leaves but different topologies. Internal branches are labelled 
in red. (B) The split distance statistic for each T node (see Methods for notation). Split distance 
of each T split (branch) from all T’ splits plus a “garbage node” (ɸ) containing a null set of 
leaves, with the matching split distance and its corresponding T’ split (branch) for each T split 
(branch) highlighted in red. Multiple T’ splits can match a T split but the garbage node is given 
precedence (as is the case in T branch 4). (C) Table showing the entropy, best-matching T’ 
branch(es), matching split distance and entropy-weighted matching split distance for each 
branch in T, as well as the entropy-weighted total distance D(T,T’) between T and T’. 
 
 
 
A Fast Algorithm for Producing Tanglegrams for Trees with Thousands of Leaves 
A tanglegram is the most often used method of visualizing the topological difference between 
two rooted phylogenetic trees defined on the same set of leaf taxa (here, termed samples)[67]. 
We expect that tanglegrams will have a wide use for analyzing and comparing different 
SARS-CoV-2 phylogenies. Tanglegrams plot two trees side-by-side with their common leaves 
connected by straight lines (e.g., Figure S5). For visually appealing and informative 
tanglegrams, clades in both trees are arranged in a similar vertical order (given the tree 
topology constraints) with minimum crossing of connecting lines with each other. While there are 
a number of tree node “rotation” algorithms that optimize tanglegrams for visual appeal [67,68], 
we found none of the available implementations that we tested [68,69] worked reasonably for 
phylogenies as large as SARS-CoV-2 phylogenies, either producing unacceptable results or not 
able to finish the computation. We therefore developed a fast heuristic approach that produces 
vastly improved tanglegrams (Methods, Figure S5, 
https://github.com/yatisht/strain_phylogenetics). Our approach takes approximately one minute 
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for the tanglegrams we show here, and we use this heuristic for displaying tanglegrams 
throughout the text. 
 
Nextstrain Phylogenies Vary Significantly Over Time 
We next explored differences among trees made by the same group from slightly different 
sample sets with the goal of understanding phylogenetic stability as new samples are 
incorporated. For the purposes of comparison, we restricted 31 Nextstrain trees produced 
between March 23, 2020 and April 30, 2020 to just the 468 samples they all have in common. 
Comparing topologies, we found that a number of these 468 samples moved back and forth 
between different clade designations during the month (Figure S5), including samples in the 
specific clades (A1a, A2, A2a, A6, A7, B, B1, B2, B4) named and analyzed by the Nexstrain 
consortium during this period (e.g., Table S6). Note that the Nextstrain clade ID system was 
updated while we were finalizing this work [70]. We then measured all pairwise tree distances 
between restricted trees and found that they varied widely (normalized entropy-weighted total 
distances ranged from 0.089 to 0.352, Figure 10). There is therefore substantial variation in 
Nextstrain phylogenies over time. 
 

 
Figure 10. Comparisons of Nextstrain trees over time. (A) Multidimensional scaling of 
normalized entropy-weighted total distances among phylogenetic trees produced by Nextstrain 
from March and April. Each topology is labelled with its date and dates are depicted in a color 
gradient from 3/23 (red) to 4/30 (blue). Coordinates 1 and 2 are plotted here and each 
contributes 34% and 15% of the total variance explained, respectively. (B) Relationships 
between Nextstrain phylogenies are shown in a tree-of-trees, “meta-tree” [64] we constructed, 
which displays the distances among topologies of the constitutive trees. .  
 
 
Multidimensional scaling (MDS) of the pairwise distances among each topology, as well as 
meta-tree analysis [64] reveals a strong relationship between topologies and the date that each 
tree was produced (Figure 10). In particular, the first MDS coordinate is strongly correlated with 
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the release date of the tree (Spearman’s rho = 0.688, P = 3.087e-05). This effect is expected 
and likely driven, at least in part, by the impact of the sample set used to produce the resulting 
tree, which necessarily changes as new data are incorporated. Indeed, the proportion of 
overlapping samples used in constructing each pair of trees is strongly negatively correlated 
with the normalized entropy-weighted total distance between their topologies (r = -0.384, P = 
4e-05, Mantel test), while the set of 468 samples for which we analyze topology is held fixed for 
all trees. These tools provide the research community a method for tracking the phylogenies of 
SARS-CoV-2 as the pandemic progresses and phylogenies are produced for larger and larger 
sample sets. The tools can detect when older clades are confirmed as new samples 
accumulate, stabilizing inference of these clades, as well as track new subclades as they grow. 
If inconsistent data is causing persistent clade instability, which may result from lab-associated 
sequencing errors or actual recombination, it should be visible in this analysis.   
 
Higher-Level Branches Are Remarkably Consistent Across Analyses 
Even if it was possible to obtain error-free data and multiple alignments as well as have all 
groups use that same data, different tree inference approaches can produce different 
topologies. Furthermore, there is substantial uncertainty inherent to SARS-CoV-2 evolution 
because there are few mutations that uniquely mark each branch. Nonetheless, it is essential 
that epidemiologists studying the pandemic be able to communicate phylogenetically informed 
observations [17,42]. As discussed above, the clade placements of individual samples, even 
when inferred by the same group, can vary as different datasets are incorporated into the tree 
construction process (e.g. Table S4, Figure 10). Differences between groups are expected to be 
even more pronounced. This threatens to leave the community with a “tower of Babel” problem 
in clade characterization and naming from various different phylogenetic trees. Indeed, the 
names used for Nextstrain consortium clades (A1a, A2, A2a, A6, A7, B, B1, B2, B4) have 
nothing whatsoever to do with the clades names (A, B, A.1, A.2, B.1, B.2, A.1.1, etc.) suggested 
by the COG-UK consortium [17,18], and without a 1-1 correspondence between the 
topologically defined clades in their respective phylogenetic trees, it is difficult to translate 
nomenclature in order to conduct precise scientific discourse pertaining to the evolutionary 
conclusions reached by these groups. Adding further difficulty to this situation, clade naming 
approaches based on phylogenies must themselves be subject to change as the pandemic 
spreads and as the evolution of new genotypes requires naming new clades and modifying 
existing clades. As clade based comparisons are an essential part of consistent scientific 
discourse, tools are needed to ameliorate these difficulties.  
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Figure 11: Comparison of Nextstrain and COG-UK trees. (A) A tanglegram of the Nextstrain 
tree from 4/19 (left) with the COG-UK tree from 4/24 (right). Each tree has 4167 samples. (B) 
The COG-UK clades (which they term “lineages”) having the highest Jaccard similarity 
coefficient (J) with each Nextstrain (NS) named clade and vice versa, where the Jaccard 
similarity coefficient is computed using the set of samples from the root of that clade. Clades 
with more than 200 samples are shown in bold font and called “big”, the others “small”. While 
the naming schemes differ, for each big Nexstrain clade there is a closely corresponding 
COG-UK clade, and vice-versa.  
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To explore the differences among available phylogenies and to provide guidelines for 
clade-based comparisons across possible evolutionary histories, we used our approach to 
identify the correspondence between the Nextstrain phylogeny produced on April 19, 2020 and 
the COG-UK phylogeny produced on April 24, 2020 (Figure 11A). We observe good agreement 
between the big Nextstrain named clades and their corresponding best matching named clades 
in the COG-UK tree and vice versa (e.g., “A2a” clade in Nextstrain, “B.1” clade in COG-UK, etc, 
Figure 11B), suggesting that these clades are reasonably stable across different analyses. 
However, in small named subclades within those big clades, there are many noteworthy 
differences between the two topologies, and the overall congruence is significantly reduced 
(Figure 11A). In addition to differences in methodology, this reflects a difference in the time 
when clades were originally named and the intents of each nomenclature system. Nextstrain 
named clades much earlier and many did not increase in size subsequently, others have since 
emerged and were named by COG-UK later. Additionally, the COG-UK system is intentionally 
dynamic and clades that have become inactive are removed. As a consequence, some clades 
do not have an obvious named analog in the two systems resulting in low similarities (Figure 
11B).  
 
Perhaps the most obvious difference between the topologies is that the COG-UK tree has many 
more large polytomies (Figure 11A). This reflects the decisions motivating their analysis [17,71], 
where the authors’ goal is to provide a well-supported and stable topology to facilitate lucid 
communication about viral lineages for evolutionary as well as epidemiological studies. This 
contrasts with the Nextstrain consortium’s primary goal of up-to-date transmission tracing. As is 
typical in phylogenetics, topological stability comes as a tradeoff against the cost of articulation 
in the branches. Because of the many different motivations for constructing phylogenetic trees, 
it is a certainty that many independent trees will be used to study the evolution of SARS-CoV-2. 
Comparisons using our approaches can enable communication about evolving viral lineages 
across disparate analyses by facilitating the identification and visualization of the most closely 
matching clades.  
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Figure 12: Comparison of Nextstrain and the COG-UK trees. (A) A tanglegram of our 
Nextstrain consensus tree (left) and COG-UK tree from 4/24 (right). Each tree has 422 samples. 
(B) The COG-UK lineages having the highest Jaccard similarity coefficient (J) with each 
Nextstrain consensus (NS) named clade and vice versa. Big clades defined in Fig. 11 (those 
containing 200 or more samples in the Fig. 11A trees) are in bold. Lineages in ‘N/A’ (B.1.3, 
B.1.p2 and B.1.p21) were pruned out as a result of restricting the trees to common samples. (C) 
A tanglegram of our tree produced after masking all lab-associated and extremal mutations 
except 11083 (left) and COG-UK tree from 4/24 (right). Each tree has 4172 samples and the 
samples (branches) have been colored based on COG-UK lineage labels.   
 
Higher Branches in Our Tree Closely Mirror A Nextstrain “Consensus” Tree and the COG-UK 
Tree 
To identify stable nodes across analyses we compared a Nextstrain “consensus tree” and the 
COG-UK tree. To do this, we produced a majority rule clade consensus tree [72] for the 422 
common samples in 31 Nextstrain releases between 3/23 to 4/30, and restricted the COG-UK 
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tree to these same samples. We find exceptionally good congruence between our Nextstrain 
consensus and the COG-UK phylogenies (Figure 12A), even though the inference methods 
differed substantially. Specifically, the COG-UK tree is built using a more typical bootstrapping 
approach [58] whereas our approach for building a Nextstrain “consensus” from trees produced 
on subsequent days would resemble a kind of “bootstrapping by samples” approach. This 
congruence reaffirms the idea that the COG-UK tree provides a stable “backbone” to enable 
direct conversations in epidemiology. Nonetheless, we still observe several small 
rearrangements between the two topologies, suggesting that both will likely be subject to clade 
refinements in the future.  
 
We also observed good overall congruence between the tree that we produced after removing 
lab-associated and extremal mutations (except 11083, see above) and the COG-UK tree 
(Figure 12C). Here, the sample size is much larger, 4172, allowing for a much more quantitative 
comparison. The correspondence between the two trees is very high with normalized entropy 
weighted total distance of just 0.12. Because lab-associated and extremal mutations were used 
in the COG-UK tree but not in our tree, this consistency among topologies supports our 
assertion that the effect of lab-associated and extremal mutations will typically not result in 
large-scale reorganizations of large clades across the phylogeny. Each tree including our 
Nextstrain “consensus” is available for visualization through the UCSC Genome Browser (Figure 
8, S6).  
 
Powerful Tools for Visualizing, Interpreting Differences Among Phylogenies 
Different analysis goals require varying levels of phylogenetic resolution and certainty, and it is 
very likely that hundreds of partially independent phylogenies will be produced studying 
SARS-CoV-2 evolution. For that reason, we have sought to provide the community with 
effective methods for tree-based comparisons. In particular, here we provide (1) improved 
methods for quantitative comparison among trees at the level of whole topologies and at 
individual nodes; (2) an extremely rapid tanglegram clade rotation method for visualization of 
differences among tree topologies; and (3) dynamic tree visualization capabilities within the 
SARS-CoV-2 Genome Browser. Importantly, each method that we present scales well to 
thousands of samples, and is integrated into the SARS-CoV-2 Genome Browser to facilitate 
rapid comparison with existing phylogenetic datasets, and to cross-reference sites to molecular 
information relevant to basic biology, diagnostics, and therapy. Software to run each analysis is 
available from https://github.com/yatisht/strain_phylogenetics. 
 
Conclusion and Outlook  
The SARS-CoV-2 pandemic has driven an impressive global community response providing 
real-time sequencing data to trace the viral outbreak [1–5]. Because these efforts are both 
decentralized and urgent, there is potential for systematic differences in data generation and 
processing to inject inappropriate biases and signal into these data [24]. Similarly, thousands of 
distinct and differing phylogenies will be made from these data. In this work, we sought to 
provide tools to detect and interpret sources of conflict and uncertainty in local and global 
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phylogenies. We integrate these into powerful visualization systems to facilitate continued global 
analysis of viral population dynamics.  
 
Methods:  
 
Obtaining Nextstrain Trees and Genotype Data 
We have downloaded genomic variation data from http://nextstrain.org/ncov, which is ultimately 
processed and derived from the GISAID database [73], and transformed it into Variant Call 
Format (VCF, [74]) file with genotypes for all samples as assigned by Nextstrain, a Newick tree 
file, and associated files for display in the UCSC SARS-CoV-2 Genome Browser. Software to 
perform this is described here 
(https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/utils/otto/nextstrainNcov/nextst
rain.py). 
 
Obtaining and Correcting Sample Metadata  
We obtained the GISAID metadata table in bulk from GISAID [75]. Before we were able to 
search for lab-associated mutations, we identified various errors in GISAID metadata files, most 
of which appear to be due to misspellings and inconsistent naming conventions of “originating” 
and “submitting” labs across separate sample submissions. We therefore developed a simple 
approach to detect these errors systematically based on the character content and length of 
“originating” and “submitting” lab names 
(https://github.com/lgozasht/COVID-19-Lab-Specific-Bias-Filter). We merge coincident metadata 
under consistent lab names if “originating” or “submitting” lab names share 70% length similarity 
and 90% character similarity or 70% length similarity and 80% identical character positions, and 
output a revised metadata file. We checked all merged names by hand to ensure accuracy, and 
we maintain a log of each merger event and annotate low confidence mergers. Our updated 
metadata table is available from https://github.com/lgozasht/COVID-19-Lab-Specific-Bias-Filter. 
 
Identification of Highly Recurrent Mutations 
To detect mutations that reoccur many times through viral evolution, we computed the 
parsimony score [45,46] for each polymorphic site (our program is available from 
https://github.com/yatisht/strain_phylogenetics). Briefly, conditional on a tree, we compute the 
minimum number of branches that have experienced a mutation at a single site to 
accommodate the phylogenetic distribution of the mutant and reference allele. These are 
candidate highly recurrent mutations, but we note that these mutations, or others elsewhere on 
the chromosome, might also impact the process of tree building itself, and the score should be 
interpreted with caution if counting the specific rate of occurrence at a given site is of interest.  
 
Automated Identification of Extremal sites 
After computing the parsimony score for each polymorphic site, we identified a set of extremal 
sites that displayed exceptional parsimony scores relative to their allele frequencies as follows. 
First, we excluded sites with rare alternate alleles, i.e. sites whose alternate allele frequency 
was found to be lower than a certain threshold K, where K is the maximum alternate allele 
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frequency at which at least two sites had saturated parsimony scores (i.e. parsimony score 
equals alternate allele count). Second, we extracted sites whose parsimony score was found to 
be the highest among sites with the same or smaller alternate allele frequency. Finally, we also 
required that extremal sites have an alternate allele frequency that is lowest among all sites with 
its parsimony score or higher. A program to perform this search is available at 
https://github.com/yatisht/strain_phylogenetics. This program also optionally allows for extremal 
sites to be identified without including C>U mutations as these are particularly abundant in 
SARS-CoV-2 genomes.  
 
Discovery of Lab-Associated Mutations 
We systematically flagged possible variants resulting from lab-specific biases based on the 
proportion of lab-specific alternate allele calls and respective alternate allele frequency 
(https://github.com/lgozasht/COVID-19-Lab-Specific-Bias-Filter). To do this, we first filtered 
variants with parsimony score greater than 4 using concurrent Nextstrain tree and vcf files from 
4/19/2020. Next, we obtained metadata for all COVID-19 genomes on GISAID (accessed 
4/28/2020) and computed the proportion of alternate allele calls contributed by each “originating 
lab” and “submitting lab” for each filtered variant. We then employed a Fisher’s exact test 
associating the number of major and alternate alleles attributed to each specific “originating” 
and “submitting” lab and the respective global major and alternate allele counts. We flagged 
variants for which one lab accounts for more than 80% of the total alternate allele calls and for 
which a Fisher’s Exact Test suggests a strong correlation (at the p < 0.01 level) between that 
lab and samples containing the alternate allele. We note that these cutoffs are somewhat 
arbitrary, and may require modification in the future, but the subdivision of the data is consistent 
with our expectations as described in Results. Because samples are not independent and 
identically distributed, p-values may not reflect error but rather relatedness among samples 
sequenced at a single facility. For example, if a single lab sampled a transmission chain, many 
mutations could be strongly associated with that facility. These should be interpreted cautiously, 
however, there is no obvious reason why unrelated samples sequenced at the same facility 
should share an excess of homoplasious mutations. 
 
Testing for Overlap with ARTIC Primers 
To compare our highly recurrent mutations to the ARTIC primer set, we downloaded the 
positions of the ARTIC primer binding sites from 
(https://github.com/artic-network/artic-ncov2019/blob/master/primer_schemes/nCoV-2019/V3/n
CoV-2019.bed , last accessed 5/6/2020). We computed the number of mutation in each category 
that overlapped primer binding sites, and we computed the mean distance between each variant 
and the nearest primer binding site. To test for enrichment for overlap and proximity to primer 
binding sites, we performed a permutation test where we selected positions at random without 
replacement across the viral genome to compare to our observed distribution for the real 
mutations. Each permutation was performed 10,000 times.  
 
A Clade Comparison Method using Branch Splits 
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Comparison of clades is made using a symmetric notion of a clade that are called splits as 
defined in TreeCmp [61]. In a rooted tree, the branches are directed to point away from the root, 
and a directed branch defining a clade divides all the leaves (lineages) into 2 categories: those 
in the clade (reachable by following additional directed edges forward from the branch; we call 
this being “inside” the branch) and the rest, i.e. those not in the clade (“outside” the branch, we 
might say these samples are in the “unclade”). It is the root of the tree that polarizes each split 
by providing a direction for the branch; i.e. providing a concept of “inside” versus “outside”, or 
equivalently “clade” versus “unclade”. These two sets, say A and B, define the split. The split is 
denoted as A|B. 
  
Two phylogenetic trees are similar if their branches produce a similar set of splits. When 
comparing two phylogenetic trees, we begin by finding the common leaf set. That is, the set of 
leaves (lineages) that are included in both trees. Then for each tree and each branch in that 
tree, the reduced split  is obtained from the split by removing all samples not in the common 
leaf set for the two trees being compared. To compare two reduced splits, A|B and X|Y, we first 
compute the size of the set-theoretic symmetric difference between the clades A and X, i.e., the 
number of samples that are in A but not in X (denoted by |A\X|), plus the number of samples 
that are in X but not in A (denoted by |X\A|).  This number is denoted by s(A|B,X|Y) and is called 
the split distance  between the reduced splits A|B and X|Y. Symbolically 
  
s(A|B,X|Y) = |A\X| + |X\A| 
 
The same comparison of B with Y is not necessary as it will yield the same number as obtained 
by comparing A and X.  
  
Now, if b is a branch in tree T and A|B is its reduced split, the matching split distance  of the 
branch b in tree T’ is 
  
c(b,T,T’) = min s(A|B,X|Y) over all reduced splits X|Y in T’. 
  
Given the reduced split A|B for a branch b in a tree T and the set of all reduced splits in a 
second tree T’, i.e. {X|Y : X|Y is a reduced split in T’}, the set of best matching splits  for A|B is 
in T’ is defined as 
  
M(b,T’,T’) =  {X|Y: X|Y is a reduced split in T’ and s(A|B, X|Y) = c(b,T,T’)} 
  
That is, every reduced split in M(b,T,T’) has a split distance from A|B equal to the matching split 
distance of branch b in T’, which is the smallest distance possible. The branches corresponding 
to the best matching splits are called best matching branches. 
  
We can also define the (Shannon) entropy of the branch b  in the tree T as the entropy in units 
of bits of its reduced split A|B. Let p = |A|/(|A|+|B|) where |S| denotes the cardinality of the set S. 
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H(b) = - p log 2(p) - (1-p) log 2(1-p) 
  
The proportional entropy weight of the branch b in the tree T is the normalized entropy 
 
w(b) = H(b)/Z,  where Z = sum of H(b”) over all branches b” in T 
 
The  entropy-weighted matching split distance  to tree T’ of branch b in tree T is 
  
d(b,T,T’) =  w(b) c(b,T,T’) 
  
We define a distance measure, called entropy-weighted total distance, for two trees T and T’, 
as the sum of entropy-weighted matching split distance for all branches in T: 
  
D(T,T’) =   sum of d(b,T,T’) over every branch b in T 
 
As this distance measure is not symmetric, we also define a symmetric version of it as 
 
S(T,T’) = ½ (D(T,T’) + D(T’,T))  
  
Since the above metric scales with the size of trees being compared, we also define a 
normalized version using the expected distance [76], which is computed using trees Tp  and Tp’ 
that randomly permute the leaves of T and T’, respectively, while maintaining the tree structure, 
as 
 
Sp(T,T’) = (D(T,T’) + D(T’,T)) / (D(T,Tp’) + D(T’,Tp))  
 
Code for computing these distance measures can be found at 
https://github.com/yatisht/strain_phylogenetics. This code has additional features, such as the 
ability to replace the Shannon entropy - p log 2(p) - (1-p) log 2(1-p) with related weighting 
functions such as 2 min{p,1-p}.  We find that the method is robust to such replacements (data 
not shown).   
 
Clade Orientation for Tree Comparison 
While node rotation algorithms in the context of tanglegram visualization have been 
implemented in the cophylo and Dendroscope3 tools [67,68], we found these algorithms to be 
either too slow or inadequate for the large SARS-CoV-2 phylogenies that we compared. We 
implemented a simple node rotation heuristic, RotTrees, that works well and completes in 
reasonable time (~1 min) for SARS-CoV-2 trees with ~5K leaves. The algorithm RotTrees 
accepts two trees, T and T’, each pruned to only contain the shared set of leaves, as input. 
First, while maintaining the leaf order of T, RotTrees makes a breadth-first traversal in T’, 
rotating the children of each traversed node based on its average rank (i.e. child with a lower 
average rank appears higher), which is the average of the positions of the appearance of that 
child node's leaves in T. Second, RotTrees repeats the above to rotate the leaves of T while 
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maintaining the leaf order of T’. The previous two steps are repeated until convergence (no new 
rotations in that iteration) and the final tree rotations for T and T’ are returned. We made this 
routine available in https://github.com/yatisht/strain_phylogenetics. This may not be optimal for 
all tree co-visualization purposes, but here we find that this approach is sufficient to produce 
vastly improved tree visualizations than many available packages.  
 
Phylogenetic Trees 
We obtained the phylogenetic tree hosted by Nextstrain (accessed 4/19/2020) and used this in 
our comparisons of clades among trees and as our primary data object for examining apparently 
recurrent mutation on the tree. We did separately confirm that most apparently recurrent 
mutations are recovered on the trees produced on different days by Nextstrain. 
 
For comparison of clades among different tree-building approaches, we obtained variant 
datasets, and phylogenies from Nextstrain (https://nextstrain.org/ncov accessed 
4/19/2020-4/26/2020), and from COG-UK 
(https://cog-uk.s3.climb.ac.uk/20200424/cog_2020-04-24_tree.newick, accessed 4/24/2020) 
 
Phylogenetic Reconstruction 
From the 04/19 Nextstrain release, we created a “reference phylogeny“ using IQ-TREE-2 
[57,77] to build phylogenies from each of these alignments using the GTR+G nucleotide 
substitution model. For all other phylogenies, we altered the input by removing or “masking” 
individual sites, then produced phylogenies from these altered alignments using the same 
IQ-TREE-2 parameters. 
 
The likelihood of a tree given the alignment from which it was constructed was automatically 
calculated by the IQ-TREE command used above (iqtree -s <alignment.phy> -m GTR+G). 
However, to compute the likelihood of a particular alignment given a different tree, we used the 
command iqtree -s <alignment.phy> -te <phylogeny.nh> -m GTR+G.  
 
To generate our final tree having masked lab-associated and extremal mutations, we used the 
same command but also included the ultrafast bootstrapping option “-bb 1000” to assist with 
quantifying uncertainty in our final phylogeny [58]. We used the same command but included 
the full multiple alignment to compare the tree obtained to one obtained from the full dataset 
using identical methodology. Finally we collapsed all branches that were not supported by at 
least one mutation using parsimony to identify nodes that experienced a mutation. 
 
Systematic Error Addition Experiments 
To investigate the effects of lab-specific alleles on phylogenetic topology, we also introduced 
artificial errors at control sites. We chose three sites at which to introduce these errors: 
A11991G, C22214G, and C10029U. To introduce an error, we manually changed a reference 
allele to an alternate allele for a given sample at a given site. For each of these sites, we chose 
10, 25, and 50 samples for which we introduced errors. To mimic the effects of a lab-specific 
allele, we ensured that each set of samples with artificial errors must come from the same 
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country. We chose Australia due to its high representation in the Nextstrain data, as 372 
samples in the 04/19 Nextstrain release came from Australia. To further mimic lab-specific 
behavior, we separately introduced errors at the same sites for 10, 25, and 50 randomly 
selected French samples collected between March 1 and March 17. After introducing these 
errors, we constructed phylogenies from the modified alignments using IQ-TREE 2 [57,77], as 
described above. In total, we produced 54 phylogenies in this experiment, introducing errors at 
three sets of random samples for each of the three sites, at 10, 25, and 50 samples each, for 
Australian and French samples. 
 
We also repeated this experiment, but introducing errors at pairs of sites simultaneously rather 
than at individual sites (i.e. A11991G and C22214G, A11991G and C10029U, and C10029U 
and C22214G). We used the same randomly chosen sets of French samples for this aspect of 
the experiment, and produced phylogenies by the same methods. In total, we produced 27 
phylogenies in this experiment, introducing errors at three sets of randomly chosen samples, at 
10, 25 and 50 samples each, for each of the three pairs of sites. 
 
Comparisons Across Nextstrain Trees 
To understand commonalities in tree structure over time, we used multidimensional scaling of a 
distance matrix of normalized entropy-weighted total distances among Nextstrain releases 
(pruned to 468 shared samples) spanning from March 23 to April 30. To do this, we used the 
cmdscale() function in base R (https://www.R-project.org/), and we retained the first six 
coordinates because they accounted for the vast majority of the total variance explained 
(approximately 80%). We computed the correlation between our distance matrix and the 
proportion of samples shared among topologies produced each day using a Mantel test 
implemented within the ade4 package in R.  
 
Producing a Nextstrain Consensus Tree 
To produce a Nextstrain consensus tree we first pruned all Nextstrain trees to a common set of 
samples included in each tree. We then used the sumtrees script within the dendropy package 
[69] to produce a majority rule consensus tree out of each tree requiring at least 50% of trees 
support a clade for inclusion in the final consensus tree. Specifically, we used the sumtrees 
function to perform this task. In our cases, that is equivalent to requiring at least 16 of 31 trees 
contain a given clade to include it.  
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Text S1. High Allele Frequency Variants Could Reveal Cross-Contamination 
Although much of this work is focused on detecting and characterizing the impacts of 
low-frequency highly recurrent and lab-associated alleles, cross-contamination among samples 
is also a potential source of widespread phylogenetically discordant sites that warrants 
mentioning. The majority of labs performing viral genome sequencing are processing multiple 
samples. There is therefore a significant possibility for contamination to drive the apparent 
recurrence of high frequency mutations.  
 
Unfortunately, contamination, short recombination tracts, and high frequency recurrent 
mutations create largely similar predictions about the distributions of recurrent alleles (Table 1). 
Yet there are some distinctions one might expect. Both recombination and contamination 
require a sample or lineage to encounter another of a different allele to be observable. 
Therefore, high frequency alleles should typically be involved in both recombination and 
contamination events. Additionally, all else being equal, we expect that we would observe equal 
numbers of forward and backward mutations across the tree for recombination and 
contamination, but not for recurrent mutation which can be quite biased (see above). Consistent 
with this idea, six out of eleven sites with alternate allele frequency above 10% show evidence 
of additional forward and backward mutation even after removing lab-associated mutations 
(Figure 2, Table S3). Hence, even if we could remove all systematic errors, contamination 
should be considered as a possible source of homoplasious mutation before confident 
conclusions are drawn about natural selection or the presence of viral recombination.  
 
Text S2. Potential for Correlated Error in Our Dataset 
To investigate the potential for highly correlated lab-associated mutations in the real data, we 
extracted the set of mutations with alternate allele counts of 10 or more and where at least 80% 
of samples containing alternate alleles were derived from a single lab (Table S4). This set of 
alleles shares many features with sites that we believe to be sites of real variation, suggesting 
that many are indeed true variants. In aggregate, these mutations are not enriched for proximity 
to ARTIC primer binding sites (P = 0.9502, permutation test), the C>U mutation fraction is 
similar to that observed in high frequency sites (P = 0.5307, Fisher’s exact test), they affect 
amino acids at similar rates to those of high frequency alleles (P = 0.7643), and they have low 
parsimony scores even relative to our “two-error” experiments (1-2, Table S4). Our results 
therefore suggest that highly correlated lab-associated mutations are relatively rare.  
 
It is noteworthy that there is overlap with some of the lab groups who contributed high 
parsimony lab-associated alleles (nine out of 24, Table S1). However, these are also groups 
who contributed the most genome sequences in our dataset and they are therefore the most 
likely to be associated with low frequency variation or lab-associated mutations for that matter. 
Most such mutations do not overlap in samples with other lab-associated mutation sites 
indicating that if they were independent mutations we would likely see their placement vary 
across the tree. Nonetheless, in one extreme case, G11417U, U14073C, and A23947G 
co-occur in a single clade across many samples suggesting that these sites could impact 
tree-building algorithms even more substantially than those in our two-error simulations. 
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However, samples containing these mutations are not unusually divergent relative to the clade 
size (the average pairwise nucleotide diversity is 1.18 sites/genome) as would be expected if 
they were incorrectly grouped. Moreover, we emphasize that real variants should be correlated 
on the viral phylogeny and that these do not constitute sequencing errors. We believe that our 
approach has likely identified the majority of lab-associated recurrent mutations in this dataset 
that occur in more than a handful of samples.  
 
Text S3. Entropy Weighted Distance is a Robust Tree-Distance Measure 
To confirm that our distance measure will be robust and consistent with expectations, we 
compared the set of all pairwise distances between trees produced by Nextstrain from March 23 
to April 30 across a range of tree distance statistics. In particular, we find that entropy-weighted 
total distance is strongly correlated with quartet, Robinson-Foulds and matching-split tree 
distance measures (P < 1e-5, in all cases, Mantel test). This strongly suggests that our 
approach yields robust and interpretable tree distances.  
 
Text S4. Step-by-step instructions for setting up a genome browser session with a 
custom tree and VCF 
We provide researchers the ability to upload their own set of aligned SARS-CoV-2 genomes 
and an accompanying phylogenetic tree. This allows the researcher to compare their tree to 
trees from Nextstrain and COG-UK, and to map alleles characteristic of particular clades to sites 
in the virus genome of functional, diagnostic or therapeutic significance. Alignment files built by 
most tools are too large to transfer when the number of viral samples gets large, so we require 
they be converted to the more compact VCF format with sample genotypes before upload (the 
Msa2Vcf tool produces VCF with sample genotypes).. Once the VCF file for the alignment is 
created, one does the following: 
 

1. Compress the VCF file with bgzip and index it with tabix following the instructions here: 
https://genome.ucsc.edu/goldenPath/help/vcf.html 
 
2. Place the .vcf.gz, .vcf.gz.tbi and a newick format file for the phylogenetic tree (or trees) on a 
web or ftp server accessible to genome.ucsc.edu .  As a hypothetical example, all relevant files 
could be available from the same server as shown: 
 
  https://my.lab.org/my.vcf.gz 
  https://my.lab.org/my.vcf.gz.tbi 
  https://my.lab.org/my.newick 
 
3. Replace the example URLs with actual URLs in the following custom track specification line 
(all one line, no line breaks), copy and paste into the input in 
https://genome.ucsc.edu/cgi-bin/hgCustom (making sure the SARS-CoV-2 genome is selected): 
 
track name=myTreeAndVcf type=vcfTabix visibility=pack 

hapClusterEnabled=on hapClusterHeight=500 
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bigDataUrl=https://my.lab.org/my.vcf.gz hapClusterMethod="treeFile 

https://my.lab.org/my.newick" 
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Figure S1. Alternate allele count versus parsimony score for the Nextstrain 4/20/2020 dataset 
and tree. Each point is labeled as in Figure 2A with additional extremal points annotated. The 
dashed line is fit to the extremal points and has log2-base slope 3.518.  
  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.141127doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.141127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure S2: Lab-associated mutations influence tree topology. Phylogenies created using 
the variants from 04/19 Nextstrain release without modification (left) and with lab-associated 
mutations completely masked (right) demonstrate movement of multiple samples between 
sub-clades. Those samples with the greatest changes in placement between the phylogenies 
are bolded. This includes many samples containing lab-associated mutations that we masked, 
which are colored in red. 
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Figure S3 : Comparisons between the reference phylogeny, built from the 04/19/2020 release of 
Nextstrain, to phylogenies built by entirely masking lab-associated mutations (blue), control sites 
(grey), and extremal sites (brown) are shown for Robinson-Foulds (A), Quartet (B), Path 
Difference (C), and Triples (D) scores as calculated by TreeCmp [61]. Horizontal lines indicate 
scores for phylogenies constructed after masking all lab-associated sites (blue), all control sites 
(grey), all extremal sites (brown), or using an unaltered Nextstrain 04/19/2020 dataset (black). 
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Figure S4:  The entropy-weighted total distance values between the reference phylogeny and 
phylogenies constructed after entirely masking all samples with an alternate allele at a given site 
are shown. The sites used here are the same sites corresponding to lab-specific shown in 
Figure 5.  
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Figure S5:  Tanglegrams for the two Nextstrain trees released on 04/19/2020 (left) and 
04/20/2020 (right). (A) Without tree rotation, the tanglegram has a large mesh of connecting 
lines, making it hard to see the tree correspondence. (B) With trees rotated using RotTrees, the 
tanglegram is more visually appealing and the tree correspondence is a lot clearer. 
 

 
Figure S6:  UCSC Genome Browser display of the trees from Figure 11C (COG-UK tree from 
4/24, restricted to 422 samples in common with consensus tree of Nextstrain trees 3/23-4/30, 
and Nextstrain consensus tree), colored by Nextstrain clade assigned to sample.  Interactive 
view: http://genome.ucsc.edu/s/SARS_CoV2/cogVsNsCladeColors 
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Table S1. Lab-associated mutations discovered in our dataset.  

SITE Annotation 

ARCTIC 
Primer w/in 
10bp 

Alt allele 
count 

Parsim
ony Explanation 

Alternat
e Allele 
Freque
ncy 

Automa
ted Bin 
Result 

Numb
er of 
Clade
s 

Number of 
lineages in 
each 
subclade (a, 
b, c...) 

G3564T 

AACHANGE=
ORF1a:G1100
V  14 7 

92.86% of alternate allele 
calls stem from 
Microbiological Diagnostic 
Unit Public Health 
Laboratory 

0.0030
82 

highly 
suspect 7 1,1,2,2,2,5,1 

G8790T 

AACHANGE=
ORF1a:G2842
V  4 4 

100.0% of alternate allele 
calls stem from 
Microbiological Diagnostic 
Unit Public Health 
Laboratory 

0.0008
81 

highly 
suspect 4 1,1,1,1 

G24933T 
AACHANGE=S
:G1124V  11 6 

100.0% of alternate allele 
calls stem from 
Microbiological Diagnostic 
Unit Public Health 
Laboratory 

0.0024
22 

highly 
suspect 6 1,1,1,2,5,1 

G2198A 
AACHANGE=
ORF1a:G645S 8_left 5 4 

100.0% of alternate allele 
calls stem from Erasmus 
Medical Center 

0.0011
01 

highly 
suspect 4 2,1,1,1 

G3145T 
AACHANGE=
ORF1a:L960F 11_left 9 6 

100.0% of alternate allele 
calls stem from Erasmus 
Medical Center 

0.0019
82 

highly 
suspect 5 1,1,1,1,5 

A3778G  13_left 7 6 

85.71% of alternate allele 
calls stem from Erasmus 
Medical Center 

0.0015
41 

highly 
suspect 6 1,2,1,1,1,1 

C6255T 

AACHANGE=
ORF1a:A1997
V 20_right 12 9 

83.33% of alternate allele 
calls stem from Erasmus 
Medical Center 

0.0026
42 

highly 
suspect 8 

1,1,5,1,1,1,1
,1 

A4050C 

AACHANGE=
ORF1a:N1262
T 

14_left_alt
4 18 11 

100.0% of alternate allele 
calls stem from KU Leuven, 
Clinical and Epidemiological 
Virology 

0.0039
63 

highly 
suspect 10 

1,1,1,1,1,1,1
,1,1,9 

T8022G 

AACHANGE=
ORF1a:V2586
G 26_right 5 5 

100.0% of alternate allele 
calls stem from KU Leuven, 
Clinical and Epidemiological 
Virology 

0.0011
01 

highly 
suspect 5 1,1,1,1,1 
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T13402G 
AACHANGE=
ORF1a:Y4379* 44_right 53 16 

92.45% of alternate allele 
calls stem from KU Leuven, 
Clinical and Epidemiological 
Virology 

0.0116
69 

highly 
suspect 12 

1,5,1,24,2,1,
2,1,1,9,1,5 

A13947T  47_left 12 5 

83.33% of alternate allele 
calls stem from KU Leuven, 
Clinical and Epidemiological 
Virology 

0.0026
42 

highly 
suspect 6 1,2,5,2,1,1 

A24389C 
AACHANGE=S
:S943P 81_left 23 5 

95.65% of alternate allele 
calls stem from KU Leuven, 
Clinical and Epidemiological 
Virology 

0.0050
64 

highly 
suspect 5 1,19,1,1,1 

G24390C 
AACHANGE=S
:S943P 81_left 24 6 

95.83% of alternate allele 
calls stem from KU Leuven, 
Clinical and Epidemiological 
Virology 

0.0052
84 

highly 
suspect 6 1,1,19,1,1,1 

G1149T 
AACHANGE=
ORF1a:G295V  13 4 

92.31% of alternate allele 
calls stem from Department 
of Health Technology and 
Informatics, Faculty of 
Health and Social Science, 
The Hong Kong Polytechnic 
University 

0.0028
62 

highly 
suspect 4 1,1,10,1 

C22802G 
AACHANGE=S
:Q414E 

76_left, 
76_left_alt
3 8 6 

100.0% of alternate allele 
calls stem from TGen North 

0.0017
61 

highly 
suspect 6 1,1,1,1,1,3 

T153G   4 4 

100.0% of alternate allele 
calls stem from UW 
Virology Lab 

0.0008
81 

highly 
suspect 4 1,1,1,1 
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Table S2. Highly recurrent, low alternate allele frequency mutations.  
 

Site 
Annotat
ion 

Prime
r w/in 
10bp 

Alt allele 
count 

Parsi
mony 

Alternate 
Allele 
Frequen
cy 

Autom
ated 
Bin 
Result 

Number of 
clades 

Number of 
lineages in 
each 
subclade 
(a, b, c...) 

Supported 
by two or 
more 
sequencin
g 
technologi
es? Explanation 

G226
61T 

AACHA
NGE=S
:V367F  12 5 

0.002642
007926 

suspe
ct 5 3,1,3,2,3 1 

Alternate allele frequency 
is 0.002642007926023778 
and Department of 
Infectious and Tropical 
Diseases, Bichat Claude 
Bernard Hospital, Paris 
contributes 25.0% of 
alternate allele calls (p = 
5.630320441430002e-08) 

C264
61T,
C264
61G 

AACHA
NGE=E
:L73F,E
:L73V  6 4 

0.001321
003963 

suspe
ct 5 1,1,1,1,2 1 

Alternate allele frequency 
is 0.001321003963011889 
and Victorian Infectious 
Diseases Reference 
Laboratory (VIDRL) 
contributes 33.33% of 
alternate allele calls (p = 
0.018076990313619364) 

C243
81T 

AACHA
NGE=S
:S940F  5 4 

0.001100
836636 

suspe
ct 4 1,2,1,1 1 

Alternate allele frequency 
is 0.001100836635843241 
and Servicio Microbiologia, 
Hospital Clinico 
Universitario, Valencia 
contributes 20.0% of 
alternate allele calls (p = 
0.002200703585138652) 

C551
2T   5 5 

0.001100
836636 

suspe
ct 4 1,2,1,1 1 

Alternate allele frequency 
is 0.001100836635843241 
and Pathology 
Queensland contributes 
20.0% of alternate allele 
calls (p = 
0.012055975867603163) 

C110
74T  

36_RI
GHT 9 8 

0.001981
505945 

suspe
ct 8 

2,1,1,1,1,1,
1,1 1 

Alternate allele frequency 
is 
0.0019815059445178335 
and Laboratoriemedicin 
contributes 11.11% of 
alternate allele calls (p = 
0.03897295488893483) 

G196
84T 

AACHA
NGE=O
RF1b:V
2073L  23 4 

0.005063
848525 

suspe
ct 4 1,20,1,1 1 

Alternate allele frequency 
is 0.005063848524878908 
and Victorian Infectious 
Diseases Reference 
Laboratory (VIDRL) 
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contributes 39.13% of 
alternate allele calls (p = 
4.9352326156437875e-08
) 

C191
2T   9 6 

0.001981
505945 

suspe
ct 6 2,1,1,3,1,1 1 

Alternate allele frequency 
is 
0.0019815059445178335 
and Department of 
Virology III, National 
Institute of Infectious 
Diseases contributes 
11.11% of alternate allele 
calls (p = 
0.009872674795843901) 

C107
89T   7 4 

0.001541
17129 

suspe
ct 4 1,1,4,1 1 

Alternate allele frequency 
is 
0.0015411712901805372 
and National Institute for 
Viral Disease Control and 
Prevention, China CDC 
contributes 14.29% of 
alternate allele calls (p = 
0.009216527438923433) 

C187
88T 

AACHA
NGE=O
RF1b:T
1774I  14 4 

0.003082
34258 

suspe
ct 4 3,1,9,1 1 

Alternate allele frequency 
is 
0.0030823425803610744 
and Dutch COVID-19 
response team contributes 
64.29% of alternate allele 
calls (p = 
1.7289501016092898e-07
) 

C293
53T,
C282
53A  

96_RI
GHT 26 7 

0.005724
350506 

suspe
ct 7 

1,1,1,2,2,1
8,1 0 

Alternate allele frequency 
is 0.005724350506384853 
and Microbiological 
Diagnostic Unit Public 
Health Laboratory 
contributes 57.69% of 
alternate allele calls (p = 
2.544045608113702e-27) 

C297
32T   6 4 

0.001321
003963 

suspe
ct 4 1,1,2,2 0 

Alternate allele frequency 
is 0.001321003963011889 
and NHC Key laboratory of 
Enteric Pathogenic 
Microbiology, Institute of 
Pathogenic Microbiology 
contributes 16.67% of 
alternate allele calls (p = 
0.003958649581154924) 

T273
84C 

AACHA
NGE=O
RF6:D6
1L  9 6 

0.001981
505945 

suspe
ct 6 2,2,2,1,1,1 1 

Alternate allele frequency 
is 
0.0019815059445178335 
and UW Virology Lab 
contributes 33.33% of 
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alternate allele calls (p = 
0.005640516346622187) 

C288
87T 

AACHA
NGE=N
:T205I  8 7 

0.001761
338617 

suspe
ct 7 

1,2,1,1,1,1,
1 1 

Alternate allele frequency 
is 
0.0017613386173491853 
and Division of 
Consolidated Laboratories 
contributes 12.5% of 
alternate allele calls (p = 
0.04830283963329964) 

G182
0A 

AACHA
NGE=O
RF1a:G
519S  7 4 

0.001541
17129 

suspe
ct 4 4,1,1,1 1 

Alternate allele frequency 
is 
0.0015411712901805372 
and Center of Medical 
Microbiology, Virology, and 
Hospital Hygiene, 
University of Duesseldorf 
contributes 28.57% of 
alternate allele calls (p = 
0.003121080763668102) 

G294
22T   8 5 

0.001761
338617 

suspe
ct 5 2,1,1,3,1 1 

Alternate allele frequency 
is 
0.0017613386173491853 
and Department of Internal 
Medicine, Triemli Hospital 
contributes 12.5% of 
alternate allele calls (p = 
0.0035199621123798834) 

C288
54T 

AACHA
NGE=N
:S194L  22 4 

0.004843
681198 

suspe
ct 4 14,1,1,6 1 

Alternate allele frequency 
is 
0.0048436811977102595 
and Shanghai Public 
Health Clinical Center, 
Shanghai Medical College, 
Fudan University 
contributes 13.64% of 
alternate allele calls (p = 
0.009941023964640442) 

C282
53T,
C282
53A 

AACHA
NGE=-,
ORF8:F
120L  6 4 

0.001321
003963 

suspe
ct 5 1,2,1,1,1 1 

Alternate allele frequency 
is 0.001321003963011889 
and National Influenza 
Center, Indian Council of 
Medical Research - 
National Institute of 
Virology contributes 
16.67% of alternate allele 
calls (p = 
0.00527529379848647) 

C209
4T 

AACHA
NGE=O
RF1a:S
610L  6 4 

0.001321
003963 

suspe
ct 4 1,1,1,3 1 

Alternate allele frequency 
is 0.001321003963011889 
and KU Leuven, Clinical 
and Epidemiological 
Virology contributes 
66.67% of alternate allele 
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calls (p = 
3.670315780321117e-05) 

C313
0T   4 4 

0.000880
6693087 

suspe
ct 4 1,1,1,1 1 

Alternate allele frequency 
is 
0.0008806693086745927 
and KU Leuven, Clinical 
and Epidemiological 
Virology contributes 75.0% 
of alternate allele calls (p = 
0.0002539562867897559) 

C201
48T   6 4 

0.001321
003963 

suspe
ct 4 2,2,1,1 1 

Alternate allele frequency 
is 0.001321003963011889 
and KU Leuven, Clinical 
and Epidemiological 
Virology contributes 
33.33% of alternate allele 
calls (p = 
0.02198558355701371) 

C288
26T 

AACHA
NGE=N
:R185C  7 5 

0.001541
17129 

suspe
ct 5 1,2,1,2,1 1 

Alternate allele frequency 
is 
0.0015411712901805372 
and UW Virology Lab 
contributes 28.57% of 
alternate allele calls (p = 
0.03435549930998014) 

C776
5T   30 4 

0.006605
019815 

suspe
ct 4 1,1,27,1 1 

Alternate allele frequency 
is 
0.0066050198150594455 
and Department of Clinical 
Microbiology contributes 
73.33% of alternate allele 
calls (p = 
3.759417117546013e-25) 

C943
8T 

AACHA
NGE=O
RF1a:T
3058I  9 5 

0.001981
505945 

suspe
ct 5 1,3,3,1,1 1 

Alternate allele frequency 
is 
0.0019815059445178335 
and Shanghai Public 
Health Clinical Center, 
Shanghai Medical College, 
Fudan University 
contributes 22.22% of 
alternate allele calls (p = 
0.013879039354082067) 

C119
62T   7 4 

0.001541
17129 

suspe
ct 3 1,1,1,4 1 

Alternate allele frequency 
is 
0.0015411712901805372 
and Gundersen Molecular 
Diagnostics Laboratory 
contributes 14.29% of 
alternate allele calls (p = 
0.02139190532104276) 

C168
87T   15 5 

0.003302
509908 

suspe
ct 4 1,1,12,1 1 

Alternate allele frequency 
is 
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0.0033025099075297227 
and Department of Clinical 
Microbiology contributes 
26.67% of alternate allele 
calls (p = 
0.00260530369850417) 

G247
94T 

AACHA
NGE=S
:A1078
S 

81_RI
GHT 10 4 

0.002201
673272 

suspe
ct 4 1,2,2,5 1 

Alternate allele frequency 
is 0.002201673271686482 
and Department of Clinical 
Microbiology contributes 
60.0% of alternate allele 
calls (p = 
7.976437801971219e-07) 

C194
84T 

AACHA
NGE=O
RF1b:A
2006V  8 6 

0.001761
338617 

suspe
ct 6 1,1,3,1,1,1 0 

Alternate allele frequency 
is 
0.0017613386173491853 
and Virology Department, 
Royal Infirmary of 
Edinburgh, NHS Lothian 
contributes 37.5% of 
alternate allele calls (p = 
0.00021057923808794968
) 

C234
22T   11 4 

0.002421
840599 

suspe
ct 4 1,4,5,1 0 

Alternate allele frequency 
is 
0.0024218405988551297 
and West of Scotland 
Specialist Virology Centre, 
NHSGGC contributes 
45.45% of alternate allele 
calls (p = 
7.821801403260028e-08) 

C270
05T   5 4 

0.001100
836636 

suspe
ct 4 1,1,1,2 0 

Alternate allele frequency 
is 0.001100836635843241 
and Department of Clinical 
Pathology, Pamela Youde 
Nethersole Eastern 
Hospital contributes 20.0% 
of alternate allele calls (p = 
0.03688827271730357) 

A865
1C,A
8651
G 

AACHA
NGE=O
RF1a:M
2796L,
ORF1a:
M2796
V 

28_RI
GHT 5 4 

0.001100
836636 

suspe
ct 4 2,1,1,1 0 

Alternate allele frequency 
is 0.001100836635843241 
and Viral Respiratory Lab, 
National Institute for 
Biomedical Research 
(INRB) contributes 60.0% 
of alternate allele calls (p = 
4.149559270859855e-06) 

C218
55T 

AACHA
NGE=S
:S98F  5 5 

0.001100
836636 

suspe
ct 5 1,1,1,1,1 0 

Alternate allele frequency 
is 0.001100836635843241 
and Servicio Microbiologia. 
Hospital Clinico 
Universitario. Valencia. 
contributes 20.0% of 
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alternate allele calls (p = 
0.03045897765600694) 

C147
86T 

AACHA
NGE=O
RF1b:A
440V  17 6 

0.003742
844562 

suspe
ct 6 1,1,4,2,2,7 1 

Alternate allele frequency 
is 0.003742844561867019 
and Wales Specialist 
Virology Centre 
contributes 17.65% of 
alternate allele calls (p = 
0.009544971439775318) 

C173
04T   8 4 

0.001761
338617 

suspe
ct 4 4,2,1,1 1 

Alternate allele frequency 
is 
0.0017613386173491853 
and Max von Pettenkofer 
Institute, Virology, National 
Reference Center for 
Retroviruses, LMU Munich 
contributes 12.5% of 
alternate allele calls (p = 
0.024412966694028277) 

G294
02T 

AACHA
NGE=N
:D377Y  7 4 

0.001541
17129 

suspe
ct 4 2,2,1,2 1 

Alternate allele frequency 
is 
0.0015411712901805372 
and NYU Langone Health 
contributes 28.57% of 
alternate allele calls (p = 
0.018384301496493748) 

C378
7T  

13_L
EFT 8 4 

0.001761
338617 

suspe
ct 4 2,4,1,1 1 

Alternate allele frequency 
is 
0.0017613386173491853 
and Shanghai Public 
Health Clinical Center, 
Shanghai Medical College, 
Fudan University 
contributes 25.0% of 
alternate allele calls (p = 
0.010941233801702165) 

C107
41T  

35_RI
GHT 7 5 

0.001541
17129 

suspe
ct 5 1,1,1,1,3 1 

Alternate allele frequency 
is 
0.0015411712901805372 
and Jiangxi province 
Center for Disease Control 
and Prevention contributes 
14.29% of alternate allele 
calls (p = 
0.040903394113103723) 

C290
95T   26 4 

0.005724
350506 

suspe
ct 4 1,23,1,1 1 

Alternate allele frequency 
is 0.005724350506384853 
and Shanghai Public 
Health Clinical Center, 
Shanghai Medical College, 
Fudan University 
contributes 15.38% of 
alternate allele calls (p = 
0.0018141849624051872) 
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C376
8T 

AACHA
NGE=O
RF1a:T
1168I 

13_L
EFT 6 4 

0.001321
003963 

suspe
ct 4 1,3,1,1 0 

Alternate allele frequency 
is 0.001321003963011889 
and NHC Key laboratory of 
Enteric Pathogenic 
Microbiology, Institute of 
Pathogenic Microbiology 
contributes 16.67% of 
alternate allele calls (p = 
0.003958649581154924) 

C103
19T 

AACHA
NGE=O
RF1a:L
3352F  7 4 

0.001541
17129 

suspe
ct 4 1,1,1,4 0 

Alternate allele frequency 
is 
0.0015411712901805372 
and Ochsner Health 
contributes 14.29% of 
alternate allele calls (p = 
0.0030803062386173577) 

C230
6T 

AACHA
NGE=O
RF1a:L
681F  5 4 

0.001100
836636 

suspe
ct 4 2,1,1,1 1 

Alternate allele frequency 
is 0.001100836635843241 
and NMIMR, Department 
of Virology contributes 
40.0% of alternate allele 
calls (p = 
8.777584704484416e-05) 

C943
0T,C
9430
A   5 4 

0.001100
836636 

suspe
ct 4 1,1,1,1 0 

Alternate allele frequency 
is 0.001100836635843241 
and Laboratory of 
Microbiology, Department 
of Medicine, National and 
Kapodistrian University of 
Athens, Greece 
contributes 20.0% of 
alternate allele calls (p = 
0.0032996014886914242) 

C217
11T 

AACHA
NGE=S
:S50L 

71_RI
GHT 15 7 

0.003302
509908 

suspe
ct 7 

1,2,2,1,7,1,
1 1 

Alternate allele frequency 
is 
0.0033025099075297227 
and Guangdong Provincial 
Institution of Public Health, 
Guangdong Provinical 
Center for Disease Control 
and Prevention contributes 
73.33% of alternate allele 
calls (p = 
1.0020005232509665e-20
) 

C117
04T   10 4 

0.002201
673272 

suspe
ct 4 1,5,1,3 1 

Alternate allele frequency 
is 0.002201673271686482 
and Hospital Universitario 
La Paz contributes 40.0% 
of alternate allele calls (p = 
1.7319317662638956e-07
) 

T139
29C  

47_L
EFT 28 5 

0.006164
685161 

suspe
ct 4 1,6,9,12 1 

Alternate allele frequency 
is 0.006164685160722149 
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and Department of Clinical 
Pathology, Pamela Youde 
Nethersole Eastern 
Hospital contributes 
64.29% of alternate allele 
calls (p = 
2.7364835927414237e-34
) 

C147
24T   33 5 

0.007265
5217965
6539 a 

suspe
ct 4 1,2,11,19 1 

Alternate allele frequency 
is 0.00726552179656539 
and Department of Clinical 
Pathology, Pamela Youde 
Nethersole Eastern 
Hospital contributes 
72.73% of alternate allele 
calls (p = 
5.505571904880149e-49) 

A103
23G 

AACHA
NGE=O
RF1a:K
3353R  24 5 

0.005284
015852 

suspe
ct 5 2,1,2,1,18 1 

Alternate allele frequency 
is 0.005284015852047556 
and The National 
University Hospital of 
Iceland contributes 
66.67% of alternate allele 
calls (p = 
7.073713144784831e-21) 

C297
33T   4 4 

0.000880
6693087 

suspe
ct 4 1,1,1,1 0 

Alternate allele frequency 
is 
0.0008806693086745927 
and Division of 
Consolidated Laboratories 
contributes 25.0% of 
alternate allele calls (p = 
0.02443965423540143) 

C829
T   4 4 

0.000880
6693087 

suspe
ct 4 1,1,1,1 1 

Alternate allele frequency 
is 
0.0008806693086745927 
and Yale Clinical Virology 
Laboratory contributes 
25.0% of alternate allele 
calls (p = 
0.023574604050823296) 

C243
78T 

AACHA
NGE=S
:S939F  8 4 

0.001761
338617 

suspe
ct 4 1,1,1,5 1 

Alternate allele frequency 
is 
0.0017613386173491853 
and Department of Internal 
Medicine, Triemli Hospital 
contributes 12.5% of 
alternate allele calls (p = 
0.0035199621123798834) 

C266
81T   4 4 

0.000880
6693087 

suspe
ct 4 1,1,1,1 1 

Alternate allele frequency 
is 
0.0008806693086745927 
and Hospital Universitario 
La Paz contributes 50.0% 
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of alternate allele calls (p = 
0.00018775862134692858
) 

C216
48T 

AACHA
NGE=S
:T29I  5 4 

0.001100
836636 

suspe
ct 4 1,1,2,1 1 

Alternate allele frequency 
is 0.001100836635843241 
and AZ SPHL, Arizona 
Department of Health 
Services contributes 
40.0% of alternate allele 
calls (p = 
0.001162942669515215) 

C157
20T   5 4 

0.001100
836636 

suspe
ct 4 1,1,2,1 1 

Alternate allele frequency 
is 0.001100836635843241 
and UW Virology Lab 
contributes 40.0% of 
alternate allele calls (p = 
0.017330897503721538) 

C215
75T 

AACHA
NGE=S
:L5F  28 13 

0.006164
685161 

suspe
ct 11 

2,4,1,5,1,1,
5,3,3,2,1 1 

Alternate allele frequency 
is 0.006164685160722149 
and UW Virology Lab 
contributes 17.86% of 
alternate allele calls (p = 
0.006480683007929787) 

C335
T 

AACHA
NGE=O
RF1a:R
24C 

2_LE
FT 5 4 

0.001100
836636 

suspe
ct 4 1,1,1,2 1 

Alternate allele frequency 
is 0.001100836635843241 
and University of 
Wisconsin Madison, AIDS 
Vaccine Research 
Laboratories contributes 
40.0% of alternate allele 
calls (p = 
0.00988593345552269) 

A211
37G 

AACHA
NGE=O
RF1b:K
2557R 

69_RI
GHT 10 7 

0.002201
673272 no flag 7 

1,1,1,1,1,1,
4 1 no flag 
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Table  S3. High alternate allele frequency, highly recurrent sites.  

SITE Annotation 
ARTIC Primer 
w/in 10bp Alt allele count Parsimony 

Alternate Allele 
Frequency 

Automated Bin 
Result 

C241T   2793 7 0.6149273448 no flag 

C1059T 
AACHANGE=OR
F1a:T265I  834 7 0.1836195509 no flag 

C3037T,C3037A 
AACHANGE=-,O
RF1a:F924L  2793 7 0.6149273448 no flag 

C8782T   673 4 0.1481726112 no flag 

G11083T 
AACHANGE=OR
F1a:L3606F 36_RIGHT 504 26 0.1109643329 no flag 

C14408T 
AACHANGE=OR
F1b:P314L  2763 9 0.608322325 no flag 

C14805T   397 5 0.08740642889 no flag 

C15324T   238 12 0.05239982387 no flag 

C18060T  59_RIGHT 296 5 0.06516952884 no flag 

C18877T   133 4 0.02928225451 no flag 

A20268G   154 6 0.03390576838 no flag 

A23403G 
AACHANGE=S:
D614G  2792 7 0.6147071775 no flag 

C24034T   67 4 0.01475121092 no flag 

G25563T 
AACHANGE=OR
F3a:Q57H  1082 8 0.238221048 no flag 

G26144T 
AACHANGE=OR
F3a:G251V  391 4 0.08608542492 no flag 

C27046T 
AACHANGE=M:
T175M  136 7 0.02994275649 no flag 

C28311T 
AACHANGE=N:
P13L  59 4 0.0129898723 no flag 

A29700G  97_RIGHT 49 6 0.01078819903 no flag 
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Table S4. Lab-associated, low parsimony score sites.  
 

SITE 
Annotatio
n 

ARTIC 
Primer w/in 
10bp 

Alt allele 
count Parsimony Explanation 

Alternate 
Allele 
Frequency 

Number 
of 
Clades 

Number of 
lineages in 
each 
subclade (a, 
b, c...) 

T743
8C 

AACHAN
GE=ORF
1a:Y4379
*  18 1 

100.0% of alternate allele calls 
stem from Microbiological 
Diagnostic Unit Public Health 
Laboratory 0.0039630 1 18 

A268
64G  

89_LEFT,89_
LEFT_alt2 13 1 

100.0% of alternate allele calls 
stem from Microbiological 
Diagnostic Unit Public Health 
Laboratory 0.0299428 1 13 

T157
0C  6_LEFT 13 1 

100.0% of alternate allele calls 
stem from Erasmus Medical 
Center 0.0028622 1 13 

A114
38G 

AACHAN
GE=ORF
1a:N3725
D  10 1 

100.0% of alternate allele calls 
stem from Erasmus Medical 
Center 0.0022017 1 10 

G125
50A   10 1 

100.0% of alternate allele calls 
stem from Erasmus Medical 
Center 0.0022017 1 10 

C167
62T 

AACHAN
GE=ORF
1b:L1099
F 56_LEFT 16 2 

81.25% of alternate allele calls 
stem from Erasmus Medical 
Center 0.0035227 2 3,13 

C207
40A 

AACHAN
GE=ORF
1b:Q2425
K  10 1 

100.0% of alternate allele calls 
stem from Erasmus Medical 
Center 0.0030823 1 10 

C215
90T   14 1 

85.71% of alternate allele calls 
stem from GIGA Medical 
Genomics 0.0030823 1 14 

C996
2T 

AACHAN
GE=ORF
1a:H3233
Y  33 2 

87.88% of alternate allele calls 
stem from Department of Health 
Technology and Informatics, 
Faculty of Health and Social 
Science, The Hong Kong 
Polytechnic University 0.0072655 2 1,32 
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T215
84G 

AACHAN
GE=S:L8
V  31 2 

87.1% of alternate allele calls 
stem from Department of Health 
Technology and Informatics, 
Faculty of Health and Social 
Science, The Hong Kong 
Polytechnic University 0.0068252 2 13,18 

C514
2T 

AACHAN
GE=ORF
1a:T1626I  13 1 

100.0% of alternate allele calls 
stem from deCODE genetics 0.0028622 1 13 

C240
54T 

AACHAN
GE=S:A8
31V  11 2 

90.91% of alternate allele calls 
stem from deCODE genetics 0.0024218 2 1,10 

A259
58G   10 1 

100.0% of alternate allele calls 
stem from deCODE genetics 0.0022017 1 10 

C256
69T 

AACHAN
GE=ORF
3a:H93Y 84_RIGHT 15 1 

100.0% of alternate allele calls 
stem from Public Health Wales 
Microbiology Cardiff 0.0033025 1 15 

G288
51T 

AACHAN
GE=N:S1
93I  34 2 

97.06% of alternate allele calls 
stem from Public Health Wales 
Microbiology Cardiff 0.0074857 2 1,33 

C267
50T   17 1 

100.0% of alternate allele calls 
stem from WHO National 
Influenza Centre Russian 
Federation 0.0037428 1 17 

T833
C 

AACHAN
GE=ORF
1a:F190L  34 1 

82.35% of alternate allele calls 
stem from UW Virology Lab 0.0074857 1 34 

G295
53A   22 1 

95.45% of alternate allele calls 
stem from UW Virology Lab 0.0048437 1 22 

G387
1T 

AACHAN
GE=ORF
1a:K1202
N  16 2 

93.75% of alternate allele calls 
stem from University of 
Wisconsin Madison, AIDS 
Vaccine Research Laboratories 0.0035227 2 1,15 

G114
17T 

AACHAN
GE=ORF
1a:V3718
F  31 1 

93.55% of alternate allele calls 
stem from University of 
Wisconsin Madison, AIDS 
Vaccine Research Laboratories 0.0068252 1 31 

T140
73C   28 1 

100.0% of alternate allele calls 
stem from University of 
Wisconsin Madison, AIDS 
Vaccine Research Laboratories 0.0061647 1 28 
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G157
60A 

AACHAN
GE=ORF
1b:G765S  11 2 

81.82% of alternate allele calls 
stem from University of 
Wisconsin Madison, AIDS 
Vaccine Research Laboratories 0.0024218 2 1,10 

T178
77C   23 1 

100.0% of alternate allele calls 
stem from University of 
Wisconsin Madison, AIDS 
Vaccine Research Laboratories 0.0050638 1 23 

C203
16T   23 1 

100.0% of alternate allele calls 
stem from University of 
Wisconsin Madison, AIDS 
Vaccine Research Laboratories 0.0050638 1 23 

A239
47G   28 1 

100.0% of alternate allele calls 
stem from University of 
Wisconsin Madison, AIDS 
Vaccine Research Laboratories 0.0061647 1 28 

 
 
 

Table S5. Log-likelihood of outlier alignments based on entropy-weighted total distance.  
 

Alignment Log-likelihood using the 
tree made from all data 

Log-likelihood using the tree 
made from input alignment 

Removed 1149 -44953.302 -44958.177 

Removed 21590 -44970.692 -44988.337 

 
 

Table S6: GISAID IDs whose clade annotation changed in the Nextstrain tree from 
4/19/2020 to 3/30/2020, and from 4/19/2020 to 4/28/2020.  

Clade change GISAID IDs 

04/19 -> 03/30 04/19 -> 04/28 

A2 -> A2a 418278, 418281 418278, 418281, 420357, 
420358, 420359, 420365, 
420431, 420853, 421652, 
422426 

B -> B1 404895, 408478, 411060, 
413855, 413862, 415584, 

404895, 408478, 411060, 
413862, 415584, 415588, 
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415588, 415589, 416419, 
416473, 416886 

415589, 416473, 416886, 
418822, 418825, 418826, 
418829, 418830, 418840, 
418843, 418848, 418850, 
418852, 418854, 418993 
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