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Abstract

The majority of genome-wide association studies (GWAS) loci are not annotated to
known genes in the human genome, which renders biological interpretations difficult.
Transcriptome-wide association studies (TWAS) associate complex traits with
genotype-based prediction of gene expression deriving from expression quantitative
loci(eQTL) studies, thus improving the interpretability of GWAS findings. However,
these results can sometimes suffer from a high false positive rate, because predicted
expression of different genes may be highly correlated due to linkage disequilibrium
between eQTL. We propose a novel statistical method, Gene Score Regression (GSR),
to detect causal gene sets for complex traits while accounting for gene-to-gene
correlations. We consider non-causal genes that are highly correlated with the causal
genes will also exhibit a high marginal association with the complex trait. Consequently,
by regressing on the marginal associations of complex traits with the sum of the
gene-to-gene correlations in each gene set, we can assess the amount of variance of the
complex traits explained by the predicted expression of the genes in each gene set and
identify plausible causal gene sets. GSR can operate either on GWAS summary
statistics or observed gene expression. Therefore, it may be widely applied to annotate
GWAS results and identify the underlying biological pathways. We demonstrate the
high accuracy and computational efficiency of GSR compared to state-of-the-art
methods through simulations and real data applications. GSR is openly available at
https://github.com/li-lab-mcgill/GSR.

Introduction 1

Genome-wide association studies (GWAS) have been broadly successful in associating 2

genetic variants with complex traits and estimating trait heritabilities in large 3

populations [1–4]. Over the past decade, GWAS have quantified the effects of individual 4

genetic variants on hundreds of polygenic phenotypes [5, 6]. GWAS summary statistics 5

have enabled various downstream analyses, including partitioning heritability [7], 6

inferring causal single nucleotide polymorphisms (SNPs) using epigenomic 7

annotations [8], and gene sets enrichment analysis for complex traits [9]. However, it 8

remains challenging to link these genetic associations with known biological mechanisms. 9

One main reason is that the majority of the GWAS loci are not located in known genic 10

regions of the human genome. 11

Transcriptome-wide association studies (TWAS) [10–12] offer a systematic way to 12

integrate GWAS and the reference genotype-gene expression datasets, such as the 13
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Genotype-Tissue Expression project (GTEx) [13], via expression quantitative loci 14

(eQTL). In TWAS, we could first quantify the impact of each genetic variant on 15

expression variability in a population and obtain predicted gene expression levels based 16

on new genotypes; Then, we could correlate the predicted gene expression with the 17

phenotype of interest in order to identify pivotal genes [10]. Moreover, when 18

individual-level genotypes and gene expression levels are not available, we could still 19

quantify gene-to-phenotype association (i.e. TWAS statistics) using only the marginal 20

effect sizes of SNPs on the phenotype and on gene expression respectively [11]. These 21

concepts and implementations have largely facilitated explanation of genetic association 22

findings in the gene or the pathway level. 23

However, as depicted in Figure 1, TWAS are often confounded by the gene-to-gene 24

correlation of the genetically predicted gene expression due to the SNP-to-SNP 25

correlation i.e., linkage disequilibrium (LD) [12]. Consequently, relying on the TWAS 26

statistics may lead to false positive discoveries of causal genes and pathways. One 27

approach to address this problem is to fine-map causal genes by inferring the posterior 28

probabilities of configurations of each gene being causal in a defined GWAS loci and 29

then test gene set enrichment using the credible gene sets of prioritized genes [14]. 30

However, this approach is computationally expensive, restricted to GWAS loci, and 31

sensitive to the arbitrary thresholds used for determining the credible gene set and the 32

maximum number of causal genes per locus. 33

Another method called PASCAL [9] projects SNP signals onto genes while correcting 34

for LD, and then performs pathway enrichments as the aggregated transformed gene 35

scores, which asymptotically follows a chi-squared distribution. However, PASCAL does 36

not leverage the eQTL information for each SNP thereby assuming that a priori all 37

SNPs have the same effect on the gene. Stratified LD score regression (LDSC) offers a 38

principle way to partition the SNP heritability into functional categories, defined based 39

on tissue or cell-type specific epigenomic regions [7] or eQTL regions of the genes 40

exhibiting a strong tissue specificity [15]. Although LDSC is able to obtain biologically 41

meaningful tissue-specific enrichments, it operates at the SNP level, rendering it 42

difficult to assess enrichment of gene sets. Moreover, neither PASCAL nor LDSC is able 43

to integrate the observed gene expression data measured in a disease cohort (rather 44

than the reference cohort) that are broadly available across diverse studies of diseases 45

including cancers such as The Cancer Genome Atlas (TCGA) [16]. 46

Although expression-based methods, such as gene set enrichment analysis (GSEA), 47

are often adopted in combination with the observed gene expression and phenotypes [17], 48

they generally do not account for the gene-to-gene correlation. While this type of 49

correlation is usually caused by shared transcriptional regulatory mechanisms across 50

genes, GSEA still likely produces false positives in identifying causal pathways. 51

In this study, we present a novel and powerful gene-based heritability partitioning 52

method that jointly accounts for gene-to-gene correlation and integrates information 53

captured at either the SNP-to-phenotype or the SNP-to-gene level. We utilize this 54

method to identify plausible causal gene sets or pathways for complex traits. We 55

showcase its high accuracy and computational efficiency in various simulated and real 56

scenarios. 57

Methods 58

Partitioning gene-based variance of complex traits 59

We assume gene expression has linearly additive effects on a continuous polygenic trait 60

y: 61
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Fig 1. Overview of confounding effects on pathway analysis. (a) A hypothetical
example illustrates the confounding issue when using the genetically predicted
transcriptome to assess the pathway enrichments for a target phenotype. The causal
gene set includes a causal gene 1, which is linked to non-causal gene 2 via their
respective causal SNPs 1 and 3, which are in strong linkage disequilibrium. (b) A
GWAS locus. SNP associations with the target phenotype are summarized. The causal
SNP for the causal gene is in red. The SNPs that drive non-causal genes are in blue.
The rest of the SNPs are in green. SNPs exhibit correlated signals due to the linkage
disequilibrium (LD) as displayed by the upper triangle of the SNP-SNP Pearson
correlation matrix; (c) A TWAS locus. The gene-to-gene correlation is partly induced
by the SNP-to-SNP correlation and partly due to intrinsic co-regulatory expression
program. (d) Pathway associations based on averaged gene associations.
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yi =
∑
j

Aijαj + εi (1)

where Aij denotes the expression of the j-th gene in the i-th individual for 62

i ∈ {1, ..., N} individuals and j ∈ {1, ..., G} genes; αj denotes the true effect size of the 63

j-th gene on the trait and αj ∼ N(0, σ2
j ); εi denotes the residual for the i-th individual 64

in this linear model and εi ∼ N(0, σ2
ε ). 65

Here we further assume that both y and A are standardized such that 1
N

∑
i yi = 0, 66

1
N y
>y = 1, 1

N

∑
iAij = 0 and 1

NA
>
j Aj = 1, for j ∈ {1, ..., G}. 67

We define the estimated marginal effect size of the j-th gene on the trait as α̂j : 68

α̂j =
1

N
A>j y (2)

=
1

N
A>j (

∑
k

Akαk + ε) (3)

=
∑
k

1

N
A>j Akαk +

1

N
A>j ε (4)

=
∑
k

r̂jkαk + ε′ (5)

where ε′ = 1
NA
>
j ε with

V ar(ε′) =
1

N2
A>j V ar(ε)Aj =

1

N
σ2
ε

and r̂jk = 1
NA
>
j Ak is the estimated Pearson correlation in gene expression between the 69

j-th gene and the k-th gene. 70

We define χ2
j = Nα̂2

j . Then, if we further assume α, r and ε′ are independent, we
have

E[χ2
j ] = E[Nα̂2

j ] (6)

= NE[(
∑
k

r̂jkαk + ε′)2] (7)

= N
∑
k

E[r̂2
jk]E[α2

k] + σ2
ε (8)

Now, consider C gene sets Cc, where c ∈ {1, ..., C} and denote the proportion of 71

total trait variance explained by the c-th gene set as τc with τc =
∑
j∈Cc V ar(αj)

|Cc| . Here, 72

|Cc| denotes the number of genes in the c-th gene set. 73

Consequently,

E[α2
k] = V ar(αk) =

∑
c:k∈Cc

τc

By approximating E[r̂2
jk] with r̂2

jk + 1
N , we have that 74

E[χ2
j ] = N

∑
k

E[r̂2
jk]E[α2

k] + σ2
ε (9)

= N
∑
c

τc
∑
k∈Cc

r̂2
jk +

∑
c

τc + σ2
ε (10)

= N
∑
c

τcl(j, c) + 1 (11)
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where we define gene score as l(j, c) =
∑
k∈Cc r̂

2
jk and V ar(y) =

∑
c τc + σ2

ε = 1 75

since the continuous trait is normalized. 76

Therefore, if we are able to obtain estimates for χ2
j and C gene score l(j, c) for 77

j ∈ {1, ..., G} and c ∈ {1, ..., C}, we will be able to perform linear regression and derive 78

regression coefficient that is an estimate for each τc (c ∈ {1, ..., C}), respectively. 79

These are available from GWAS summary statistics of SNP-to-trait effect sizes, 80

eQTL summary statistics of SNP-to-gene expression effect sizes, and a reference LD 81

panel. Specifically, 82

1. Suppose we have estimated effect sizes (βp×1) of p SNPs based on a GWAS 83

including Ngwas samples, i.e. 84

β =
1

Ngwas
X>y

where XNgwas×p is the standardized genotype. Meanwhile, we have the eQTL 85

summary statistics W estimated using 86

AeQTL = XeQTLW

Therefore, the predicted gene expression in GWAS is given by 87

A = XW

Since

χ2
j = Nα̂2

j (12)

= N(
1

N
A>j y)2 (13)

= N(
1

N
W>j X

>y)2 (14)

= N(W>j β)2 (15)

the required χ2
j can be estimated without accessing any individual-level data. 88

2. Furthermore, a reference LD panel Σp×p summarizing SNP-to-SNP correlation in 89

the matched population with the GWAS study can provide estimates for rjk as 90

R = [rjk] (16)

=
1

N
A>A (17)

=
1

N
W>X>XW (18)

=
1

N
W>ΣW (19)

It is noteworthy that with individual-level gene expression data, we can also easily 91

obtain the required χ2
j and R = [rjk] by definition. 92

In practice, many gene sets are not disjoint and share common genes with each other. 93

Therefore, we regress one gene set at a time along with a ”dummy” gene set that 94

include the union of all of the other genes. The dummy gene set is used to account for 95

unbalanced gene sets and to stabilize estimates of τc. We also include an intercept in 96
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the regression model to alleviate non-gene-set biases, for example, positive correlation 97

between gene scores and true gene effect sizes that could lead to intercept greater than 1 98

and negative correlation between gene scores and true gene effect sizes could lead to 99

intercept smaller than 1. 100

Simulation design 101

To assess the accuracy of our GSR approach, we simulated causal SNPs for gene 102

expression as well as causal gene sets for a continuous trait based on real genotypes and 103

known gene sets from existing databases. Our simulation included two stages: At stage 104

1, we first simulated gene expression based on reference genotype panel. We then 105

estimated SNP-gene effects Ŵg for each gene g based on the simulated gene expression 106

and genotype, which were then used to predict gene expression; At stage 2, separately, 107

we simulated the a continuous trait using simulated gene expression based on genotype, 108

and estimated the marginal SNP-phenotype effects. 109

Simulation step 1: simulating gene expression: 110

1. To simulate individual genotype, we first partitioned genotype data for 489 111

individuals of European ancestry obtained from the 1000 Genomes Project [18] 112

into independent 1703 LD blocks as defined by LDetect [19]; 113

2. We then randomly sampled 100 LD blocks and used only those 100 LD blocks for 114

the subsequent simulation; We used 100 LD blocks as opposed to whole genome to 115

reduce computational burden required for multiple simulation runs; 116

3. To simulate genotype Xref for each of the Nref = 500 individuals as a reference 117

population, we randomly sampled with replacement from the 489 available 118

samples for each of the 100 LD blocks, and concatenated these sampled LD blocks 119

to create 500 mosaic genotypes; 120

4. We standardized the simulated genotype Xref; 121

5. We randomly sampled k in-cis causal SNPs per gene within ± 500 kb around the 122

gene, where k = 1 (default). We also experimented different number of causal 123

SNPs k ∈ {2, 3, all in-cis SNPs}; 124

6. We sampled SNP-gene weights Wg ∼ N (0, h2
g/k) where gene expression 125

heritability h2
g = 0.1 (default), which is the variance of gene expression explained 126

by genotype. We also experimented different gene heritability 127

h2
g = {0.2, 0.3, 0.4, 0.5}; 128

7. We then simulated gene expression Ag,ref = XrefWg + ε, where ε ∼ N (0, σ2
ε ) 129

and σ2
ε = 1

Nref
||XrefWg||2( 1

h2
g
− 1)INref

to match the desired heritability: 130

1−h2
g

h2
g

=
σ2
ε

||XrefWg||2/Nref
131

8. Finally, we applied LASSO regression Ag,ref ∼ X̄Wg to get Ŵg for each gene. 132

Simulation step 2: simulating phenotype: 133

1. We simulated another Ngwas=50,000 GWAS individuals by the 100 predefined LD 134

blocks among the 489 Europeans in 1000 Genome data, following the same 135

procedures as decribed above; 136

2. We then standardized the simulated genotype Xgwas; 137
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3. We then sampled a causal pathway Cc from MSigDB such that all of the Gc ≡ |Cc| 138

genes in Cc were causal genes for the phenotype; 139

4. For each non-causal pathway, we removed genes that were also present in the 140

causal pathway. We removed non-causal pathways containing fewer than five 141

genes afterwards (default); Alternatively, in more realistic scenarios, we allowed 142

for sharing genes with causal pathways by non-causal pathways; 143

5. We sampled gene-phenotype effect α ∼ N (0, σ2
α/GcIGc), where the phenotypic 144

variance explained by gene expression σ2
α = 0.1 (default). We also experimented 145

different σ2
α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}; 146

6. We simulated gene expression Ac as in step 1 for the Ngwas individuals, and 147

standardized it to obtain Āc 148

7. We simulated a continuous trait using causal gene expression: y = Ācα+ εy 149

where εy ∼ N (0, σ2
εy ). Here, σ2

εy = 1
Ngwas

||Ācα||2( 1
σ2
α
− 1)INgwas to match the 150

predefined proportion of variance explained:
1−σ2

α

σ2
α

=
σ2
εy

||Ācα||2/Ngwas
151

8. Lastly, we computed GWAS summary SNP-to-trait effect size: β = 1
NX>gwasy 152

We repeated these simulation procedures 100 times. Unless otherwise stated, while 153

we were experimenting various settings, we kept the other settings at their default 154

values: k = 1 causal SNP per gene; gene expression variance explained per causal SNP 155

h2
g = 0.1/k; phenotypic variance explained per gene σ2

α = 0.1; one causal pathway. 156

Using these obtained summary statistics, we were able to perform GSR, PASCAL, 157

LDSC and FOCUS in each simulated scenario. 158

Applying existing methods 159

PASCAL: PASCAL was downloaded from 160

https://www2.unil.ch/cbg/index.php?title=Pascal [9]. We executed the software 161

using default settings. LDSC: Stratified LD score regression software was downloaded 162

from https://github.com/bulik/ldsc [15]. Because LDSC operates on SNP level, we 163

considered SNPs located within ± 500 kb around genes in each pathway to be involved 164

in the corresponding pathway. Then, for each pathway, we computed the LD scores over 165

all chromosomes. We experimented the options of running LDSC with and without the 166

53 baseline annotations using our simulated data. We found that LDSC running 167

without the 53 baseline worked better in our case. One possible reason is that the 168

baseline annotations cover genome-wide SNPs whereas there are much fewer SNPs in 169

the simulated pathways. FOCUS: We downloaded FOCUS [14] from 170

https://github.com/bogdanlab/focus. We used FOCUS to infer the posterior 171

probability of each gene being causal for the phenotype across all of the LD blocks. We 172

then took the 90% credible gene set as follows. We first summed all of the posteriors 173

over all of the genes. We then sorted the genes by the decreasing order of their 174

FOCUS-posteriors. We kept adding the top ranked the gene into the 90% credible gene 175

until the sum of their posteriors was greater than or equal to the 90% of the total sum of 176

posteriors. We used the 90% credible gene set for hypergeometric test for each pathway 177

to compute the p-values. We also tried other thresholds for credible sets ranging from 178

75% (including the fewest genes) to 99% (including the most genes). GSEA: GSEA 179

software was obtained from http://software.broadinstitute.org/gsea [17]. We 180

used the command-line version of GSEA to test for gene set enrichments using the 181

observed gene expression and phenotype data. 182
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Real data application 183

We applied our approach to investigate pathway enrichment for 27 complex traits 184

(Figure 2b) using publicly available summary statistics and genotype-expression weights 185

based on 1,264 GTEx whole blood samples. The GWAS summary statistics were 186

downloaded from public database 187

https://data.broadinstitute.org/alkesgroup/sumstats_formatted/ [7]. We 188

downloaded expression weights and reference LD structure estimated in 1000 Genomes 189

using 489 European individuals, from the TWAS/FUSION website 190

(http://gusevlab.org/projects/fusion/) [11,18]. Franke lab cell-type-specific gene 191

expression dataset were obtained from https: 192

//data.broadinstitute.org/mpg/depict/depict_download/tissue_expression. 193

In addition, we applied GSR to test for gene set enrichment in three well-powered 194

types of cancer: breast invasive carcinoma (BRCA, 982 cases and 199 controls), thyroid 195

carcinoma (THCA, 441 cases and 371 controls) and prostate adenocarcinoma (PRAD, 196

426 cases and 154 controls), using gene expression datasets from The Cancer Genome 197

Atlas (TCGA). Uniformly processed (normalized and batch-effect corrected) gene 198

expression datasets from TCGA and GTEx were obtained from 199

https://figshare.com/articles/Data_record_3/5330593 [20]. Gene expression 200

and phenotype were standardized before supplying to the GSR software. Standard 201

GSEA was also performed for comparison. 202

Gene sets were downloaded from the MSigDb website 203

http://software.broadinstitute.org/gsea/msigdb/index.jsp. Here we combined 204

BIOCARTA, KEGG and REACTOME to create a total of 1,050 gene sets. We also 205

downloaded the 4,436 GO biological process terms as additional gene sets as well as the 206

189 gene sets pertaining to oncogenic signatures for the TCGA data analysis. 207

Results 208

Gene scores were correlated with TWAS statistics in polygenic 209

complex traits 210

Our method GSR is built on the hypothesis that the marginal gene effect sizes on the 211

phenotype should be positively correlated with the sum of correlation with other genes, 212

which include causal genes. To validate this hypothesis, we defined gene score for each 213

gene as the sum of its squared Pearson correlation with all of the other genes, derived 214

from gene expression levels. We calculated TWAS marginal statistics as the product of 215

GWAS summary statistics (β) and eQTL weights (W ) derived from the GTEx whole 216

blood samples (Equation 15). To assess the impact of gene-to-gene correlation on 217

TWAS statistic, we correlated the gene scores with the TWAS marginal statistics for 27 218

complex traits. Overall, most traits had Pearson correlation between the gene score and 219

the marginal TWAS statistic above 0.4. For instance, the correlation in schizophrenia 220

was 0.76 (Inter-Quartile Range: 0.66 - 0.81 based on 1,000 permutations; Figure 2). 221

This implies a pervasive confounding impact on the downstream analysis, including gene 222

set or pathway enrichment analysis, causal gene identification, etc., using the TWAS 223

summary statistics while assuming independence of genes (Figure 1). 224

GSR improved pathway enrichment power 225

In simulated scenarios with default settings (Methods), compared to PASCAL and 226

LDSC, GSR demonstrated hugely improved computational efficiency (Table 1), superior 227

sensitivity in detecting causal pathways with an improved statistical power as well as 228

competitive specificity in controlling for false positives (Figure 3). Specifically, in 100 229
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Fig 2. Gene scores correlated with marginal TWAS summary statistics. (a) Gene
scores were correlated with marginal TWAS chi-square statistics of Schizophrenia. We
grouped genes into 100 bins by their gene scores to reduce noise. For each bin, we
calculated the average gene scores and chi-square statistics (χ2). An unbinned version is
supplied in Supplementary Figure 1. (b) Summary of Pearson correlation between
marginal TWAS summary statistics and gene scores for 27 traits.

Table 1. Comparison of existing methods with GSR. ∗ Summary statistics; † For
custom gene sets, the main computation time for LDSC is calculating the LD score for
all of the 1000 Genome SNPs.

Method GWAS TWAS Measured expression Running time
PASCAL [9] sum. stat.∗ 10 m
LDSC [15] sum. stat. >24 h†

FOCUS [14] sum. stat. sum. stat. >24 h
GSEA [17] individual expression 10 m
GSR sum. stat. individual expression 3 min

simulations, GSR achieved an overall area under the precision-recall curve (AUPRC) of 230

0.925, and identified the true causal pathway as the most significant one 93 times, 231

compared to 56 times by PASCAL, which only achieved an overall AUPRC of 0.260. 232

Notably, the FOCUS-predicted 75%, 90%, 99% credible gene sets were also significantly 233

enriched for causal pathways (Figure 3). 234

We then varied four different settings: (a) the number of causal SNP per gene; (2) 235

SNP-gene heritabilities; (3) gene-phenotype variance explained; (4) overlapping causal 236

pathway. We focused our comparison with PASCAL because it directly tested for 237

pathway enrichment and has been demonstrated to outperform other relevant 238

enrichment methods [9]. In all simulation settings, GSR demonstrated an improved 239

power in detecting the causal pathways (Supplementary Figure 2), as it was able to 240

detect causal pathways when multiple SNPs influenced gene expression, when the 241

proportion of variance explained by the gene expression was low, or when the causal 242

and non-causal pathways were allowed to overlap. In contrast, a lot of causal pathways 243

were not deemed significant by PASCAL based on a p-value threshold of 0.001, which 244

was equivalent to a Bonferroni-corrected p-value threshold of 0.1 after correcting for 245

multiple testing on approximately 100 pathways tested per simulation. 246
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Fig 3. Evaluation of power and robustness of GSR in detecting causal pathways. (a)
Precision-recall curves for GSR and PASCAL summarizing results from 100 simulations.
(b) Summary of p-values obtained by running GSR along with PASCAL, LDSC and
FOCUS 10 times. For each method, the enrichment significance for causal pathways
and non-causal pathways are displayed. We experimented FOCUS with 75%, 90%, and
99% credible sets for the pathway enrichments. For the ease of comparison, we plotted
the y-axis on a square-root negative logarithmic scale.Red line denotes p-value threshold
of 0.001; Blue line denotes p-value threshold of 0.1.

Improved power in pathway enrichment leveraging observed 247

gene expression 248

One unique feature of GSR is the ability to run not on only the summary statistics but 249

also on observed gene expression, where the gene-gene expression correlation is directly 250

estimated from the in-sample gene expression. To evaluate the accuracy of this 251

application, we simulated gene expression and phenotype for 1,000 individuals, which 252

were provided as input to GSR for pathway enrichment analysis. As a comparison, we 253

applied GSR to the summary statistics generated from the same dataset. 254

As in the simulation above, the SNP-expression weights were estimated from a 255

separate set of 500 reference individuals whereas the SNP-phenotype associations were 256

estimated from only 1,000 individuals. Notably, the sample size for the GWAS cohort is 257

much smaller than the previous application to mimic the real data where usually fewer 258

than 1000 individuals have both the RNA-seq and phenotype available (e.g., TCGA). 259

Additionally, we applied standard GSEA [17] to the same dataset with the observed 260

gene expression. We observed an improved power of GSR when using the observed gene 261

expression over GSR using the summary statistics (Figure 4), whereas GSEA had a 262

comparable performance as the latter. Specifically, all causal pathways in the simulated 263

replicates had a p-value below 0.001, with the largest p-value being 7.5× 10−6, as 264

determined by GSR using observed gene expression, while no causal pathway reached 265

this level of significance (with the smallest p-value being 1.4× 10−2) determined by 266

GSEA. We also compared the performances of GSR using observed gene expression to 267

GSEA in various simulation settings and obtained consistent conclusions 268

(Supplementary Figure 3). 269

Gene set enrichments in complex traits 270

Applying GSR to 27 complex traits, we revealed various pathways where the enriched 271

gene sets were biologically meaningful. For example, the enriched gene sets for high 272

density lipoprotein (HDL) predominantly involve lipid metabolism; In contrast, for 273
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Fig 4. Comparison of pathway enrichment determined by GSR using or not using
observed gene expression information, and by GSEA. Nominal (NOM) p-values yielded
by GSEA were summarized. Red line denotes p-value threshold of 0.001; Blue line
denotes p-value threshold of 0.1.
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Fig 5. Cell-type-specific enrichment of gene sets for representative complex traits. GSR
was applied to each complex trait in order to identify significantly enriched gene sets
among 205 pre-defined cell-type-specific gene sets, represented by nine different colors.
Gene sets were indicated by dots and were aligned in the same order on the x-axis. Red
lines indecate Bonferroni-corrected p-value threshold (0.05).

Lupus, gene sets were enriched in interferon signalling pathways, a known 274

immunological hallmark. We listed the top 10 enrichments over gene sets from MSigDB 275

and Gene Ontology terms for HDL and the autoimmune trait Lupus in 276

Supplementary Table 1. 277

Additionally, we applied GSR to test cell-type-specific enrichments using 205 cell 278

types, 48 of which were derived from GTEx and 157 cell types were derived from Franke 279

lab datasets [15]. We observed biologically meaningful cell type-specific enrichment for 280

the 27 complex traits (Figure 5). In particular, schizophrenia was highly enriched for 281

central neural system cells, lupus was enriched for immune cells, Crohn’s disease was 282

enriched for immune cells and cells in digestive tracts, and coronary artery disease was 283

enriched for cardiac cell types. Lastly, we correlated traits based on their gene set 284

enrichments and observed meaningful phenotypic clusters, suggesting shared biological 285

mechanisms by the related phenotypes (Supplementary Figure 4). For example, 286

Crohn’s disease and ulcerative colitis, two subtypes of inflammatory bowel disease 287

formed a cluster; Neurological diseases, schizophrenia and bipolar disorder formed a 288

cluster; Moreover, lipid traits including LDL, HDL, and Triglycerides formed their own 289

cluster. 290

Application on observed gene expression 291

Lastly, using expression profiles of BRCA, THCA and PRAD from TCGA and 292

GTEx [20], we tested the enrichments of 186 oncogenic gene sets as well as 1,050 gene 293
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sets from BIOCARTA, KEGG, and REACTOME in each type of tumor. Overall, we 294

observed a significantly stronger enrichments for the oncogenic signatures with higher p 295

values compared to the more general gene sets across all three tumour types (t-test 296

p-value = 6.4× 10−25, 9.0× 10−29 and 1.1× 10−23 for BRCA, PRAD and THCA 297

respectively; Supplementary Figure 5). As a comparison, we also ran standard 298

GSEA and observed qualitatively similar enrichments (Supplementary Figure 5). 299

Discussion 300

In this work, we describe GSR, an efficient method to test for gene set or pathway 301

enrichments using either GWAS summary statistics or observed gene expression and 302

phenotype information. We demonstrate robust and powerful detection of causal 303

pathways in extensive simulation using our proposed method compared to several 304

state-of-the-art methods. When applying to the real data, we also obtained biologically 305

meaningful enrichments of relevant gene sets and pathways. These features warrant 306

GSR a widely applicable method in various study settings with an aim to interpret 307

association test results and capture the underlying biological mechanisms. 308

Our approach has superior computational efficiency. In particular, GSR took only 309

3-5 minutes running on the full summary statistics and less than 5 minutes on the full 310

gene expression data with one million SNPs and 20,000 genes to test for enrichments of 311

over 4,000 gene sets. In our simulations, it is not surprising that FOCUS can accurately 312

fine-map causal genes as the simulation designs followed similar assumptions adopted by 313

FOCUS [14]. However, FOCUS is at least 20 times slower than GSR. For the simulated 314

data, FOCUS took 30 minutes to fine-map all of the genes in GWAS loci whereas GSR 315

took under three minutes to test for pathway enrichments on the same machine. 316

Additionally, the computational cost of FOCUS is exponential to the number of causal 317

genes considered within each locus whereas GSR is not affected by the number of causal 318

genes. Also, because GSR operates at genome-wide level, no threshold is needed to 319

decide which genes to be included whereas FOCUS needs user-defined threshold for 320

constructing the credible gene set for the subsequent hypergeometric enrichment test. 321

Given these advantages, we envision that GSR will be a valuable tool for the 322

bioinformatic community and statistical genetic community as a fast way to investigate 323

the functional implications of complex polygenic traits. 324

In different simulation settings, GSR exhibits improved pathway enrichment power 325

over PASCAL and LDSC, two popular methods for partitioning heritability and 326

identifying causal gene sets. Since GSR leverages SNP-to-gene association summaried 327

by eQTL weights while either PASCAL or LDSC operates on the SNP level, without 328

considering this intermediate association, such improvements are expected and beneficial. 329

Given that existing eQTL studies have yielded reliable estimates of SNP-to-gene effects 330

and are easily accessible, we consider GSR more promising in bridging the gap between 331

large GWAS and multi-faceted functional annotations on the genome. 332

One unique feature of our approach is that it could leverage the observed 333

individual-level gene expression that are broadly available to calculate more accurate 334

in-sample gene-gene correlation. Indeed, we observed more accurate detection of causal 335

pathway for modest sample size (1000 individuals) where the phenotype and gene 336

expression are available compared to GSR operating only on summary statistics. In real 337

data analysis, we demonstrate that GSR can achieve similar biologically meaningful 338

enrichments as GSEA when applied to the observed gene expression. On the other hand, 339

GSR has the advantage of working with summary statistics when the individual gene 340

expression and phenotype are not available where GSEA could hardly be performed. 341

It is noteworthy that p values generated by different methods in this study are not 342

directly comparable due to different model assumptions, statistical tests being used, 343
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sampling methods, etc. However, we posit that the p-values themselves are informative 344

in reality. When gene set enrichment analysis is performed in related studies, p-values 345

are usually directly adopted to identify specific signals as a common practice. Therefore, 346

GSR may be promising to refine interpretation and reveal under-identified biological 347

mechanisms in existing studies, as it is able to yield smaller p-values for the true 348

underlying pathways. 349

Our method has important limitations. First of all, our method relies on 350

pre-computed eQTL weights, which might absorb measurement uncertainty, 351

confounding effects as well as stochastic errors. Besides, it is usually unknown how 352

these weights vary across different populations, i.e. whether the effect of each SNP on 353

the corresponding gene expression is conserved, particularly when investigation is 354

carried out on a diseased population while using a non-diseased reference population. 355

Furthermore, our method is built on an important assumption that the effect sizes of 356

genes on the trait and the derived gene scores are independent. In practice, if this 357

assumption is violated, our method might suffer from the bias introduced. While no 358

method exists to examine the validity of these properties to our knowledge, since we 359

obtained consistent results in our real data analyses, we posit that our method should 360

be robust in identifying causal pathways. We propose our method could be widely 361

utilized various studies where further calibration of the exact estimates of effect sizes 362

should continuously improve its performance. 363
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