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ABSTRACT 42 

 43 

Analysis of the dynamics of adenosine triphosphate (ATP) is vital to quantitatively 44 

define the actual roles of ATP in biological activities. Here, we applied a genetically 45 

encoded Förster resonance energy transfer biosensor “GO-ATeam” and created a 46 

transgenic mouse model that allows systemic ATP levels to be quantitatively, 47 

sensitively, noninvasively, and spatiotemporally measured under physiological and 48 

pathological conditions. We used this model to readily conduct intravital imaging of 49 

ATP dynamics under three different conditions: during exercise, in all organs and cells; 50 

during myocardial infarction progression; and in response to the application of 51 

cardiotoxic drugs. These findings provide compelling evidence that the GO-ATeam 52 

mouse model is a powerful tool to investigate the multifarious functions of cellular ATP 53 

in vivo with unprecedented spatiotemporal resolution in real-time. This will inform 54 

predictions of molecular and morphological responses to perturbations of ATP levels, as 55 

well as the elucidation of physiological mechanisms that control ATP homeostasis. 56 

 57 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.10.143560doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.143560
http://creativecommons.org/licenses/by-nc/4.0/


One Sentence Summary: 58 

Intravital real-time imaging of ATP dynamics in multiple organs using GO-ATeam 59 

mice, can be used to quantitatively, sensitively, noninvasively, and spatiotemporally 60 

measure systemic ATP levels and provide a platform for preclinical pharmacological 61 

studies. 62 

 63 

 64 

Keywords: Mice, ATP, Cardiotoxicity, Dynamics, Energy metabolism, Muscle 65 
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MAIN TEXT 68 

 69 

INTRODUCTION 70 

 71 

Multiple recent technologies, including RNA-Seq, have driven considerable advances 72 

toward a complete understanding and reliable prediction of biological activities at scales 73 

ranging from single cells to whole organisms (Wang et al., 2009). However, much is yet 74 

to be discovered regarding the coordinated and fluctuating biological activities in 75 

multicellular organs under physiological and pathological conditions, as they impact 76 

individual cells, because biological activities are regulated not only by intracellular 77 

signals but also by extracellular signals and the environment. Biological activities such 78 

as signal transduction, mRNA expression, and chromatin structure, as well as the 79 

activities of the proteins that regulate these processes, are all affected by intracellular 80 

adenosine triphosphate (ATP) levels (Fantl et al., 1993; Lusser and Kadonaga, 2003). 81 

ATP is also fundamentally important for many vital cellular processes such as 82 

maintaining the membrane potential and organelle transport in energy conversion 83 
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(Dzeja et al., 2002) (Dzeja et al., 2003) (Kamerlin et al., 2013) (Magistretti and 84 

Allaman, 2015) (Zala et al., 2013). Thus, a quantitative analysis of in vivo ATP 85 

dynamics at the single-cell level can provide a means for investigating the dynamics of 86 

biological activities in multicellular tissues. Such an analysis could address the question 87 

of whether ATP levels may vary between different cell types within the same tissue, for 88 

example, or how much fluctuation is normal between individual cells of the same type.  89 

Historically, it was impossible to measure ATP levels of tissues with classical 90 

biochemical methods while preserving the integrity of organs with high spatiotemporal 91 

resolution (Khlyntseva, 2009). In recent years, methods for detecting ATP via 92 

UV−visible absorption (Jung et al., 2017), magnetic resonance spectroscopy (Befroy et 93 

al., 2012) (Chaumeil et al., 2009)or nuclear magnetic resonance (Guo et al., 2014) have 94 

been developed, but none of these can quantify ATP concentrations with high resolution 95 

at the single-cell level. In 2009 two genetically encoded fluorescent biosensors, called 96 

Perceval (Berg et al., 2009) and ATeam (Imamura et al., 2009), were invented and 97 

enabled imaging of the ATP/ADP ratio and ATP within living culture cells, 98 

respectively. Later, improved ATP biosensors and other types of ATP biosensors were 99 
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reported, which include PercevalHR (Tantama et al., 2013), QUEEN (Yaginuma et al., 100 

2014), MaLion (Arai et al., 2018), and GO-ATeam (Nakano et al., 2011). In this study, 101 

we chose a FRET-based ATP biosensor GO-ATeam, which employs green fluorescent 102 

protein as a donor and orange fluorescent protein as an acceptor, for studying ATP 103 

dynamics in living mammals. It is effective for these types of studies because of its 104 

minimal sensitivity to a broad pH range (6.3-8.3) and its ratiometric readout, which 105 

cancels fluctuation of fluorescent signals caused by movement of biological samples. 106 

 Here, we report the generation of an ATP visualization animal, “GO-ATeam mice”, in 107 

which the reporter achieve ubiquitous expression. Here we report our proof-of-principle 108 

analyses of different tissues and different methods. The ratio of FRET to GFP 109 

fluorescence intensities in intact cells was highly correlated with cytosolic ATP 110 

concentration determined by a proven biochemical method. These results prompted us 111 

to conduct imaging of live mice, for which we established GO-ATeam models of 112 

diverse physiological and pathological conditions. These findings support our 113 

expectation that GO-ATeam mice will serve as a useful platform for studying the 114 

dynamics of ATP in vivo, with the potential for conducting assays to elucidate the 115 
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maintenance of energy homeostasis in physiology and possibly preclinical 116 

pharmacological studies. 117 

 118 

 119 

RESULTS 120 

 121 

Generation of Transgenic Mice to Determine ATP Dynamics In Vivo 122 

We chose to employ the GO-ATeam strategy (Nakano et al., 2011) to observe ATP 123 

dynamics in live mice. As noted above, this system employs GFP and OFP as the FRET 124 

pair, which can be readily detected and is minimally sensitive to pH, an important 125 

advantage because metabolic stress can cause a drop in intracellular pH. After several 126 

failed attempts to generate GO-ATeam transgenic mice, we obtained stable GO-ATeam 127 

knock-in mice with the FRET reporter cassette (Figs. 1A-1H). The knock-in mice 128 

yielded homozygous and heterozygous offspring consistent with Mendelian inheritance. 129 

Importantly, body weight, morphology and size, as well as the weights and functions of 130 
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the organs, were normal. Moreover, the mice were phenotypically normal throughout 131 

their expected lifespan of approximately three years (data not shown). 132 

The FRET/GFP Ratio Reliably Reflects Cytosolic ATP Concentrations in GO-133 

ATeam Mice 134 

To examine whether the GO-ATeam probe can effectively measure cytosolic ATP 135 

concentrations in GO-ATeam knock-in mice, we first investigated the fluorescence 136 

signals in mouse embryonic fibroblasts (MEFs) obtained from GO-ATeam knock-in 137 

mice. After permeabilization of the plasma membrane of MEFs (n = 37), we recorded 138 

FRET/GFP ratios in the cells with a two-photon microscope while stepwise increasing 139 

the ATP concentrations in the medium (Figs. 1A-1D).  The intracellular FRET/GFP 140 

ratio changed as a function of applied ATP concentration, ranging from 0.1 mM to 6 141 

mM. By fitting the dose-response plot with the Hill equation, we obtained a calibration 142 

curve for directly estimating ATP concentrations from the FRET/GFP ratios (Fig. 1I). 143 

To further validate the FRET/GFP ratio as a quantitative measure of ATP 144 

concentration, we treated two-cell-stage embryos from knock-in mice with 2-deoxy-D-145 

glucose to inhibit glycolysis, and antimycin A to inhibit OXPHOS, followed by 146 
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estimations of ATP concentrations at certain time points either with fluorescence-based 147 

FRET imaging (Figs. 1E-1H, n = 16) or with a proven cell lysate-based firefly 148 

luciferase method (n = 118). The time-course of ATP change estimated by FRET 149 

imaging was virtually superimposable with the time-course obtained by the luciferase 150 

method (R2 = 0.9846) (Fig. 1J). Thus, we concluded that cytosolic ATP concentrations 151 

in living cells from GO-ATeam mice can be reliably estimated by imaging with a two-152 

photon microscope. 153 

 We next examined whether the expression level of the GO-ATeam probe in the knock-154 

in mice is sufficient for the quantitative measurement of FRET signals. To assess the 155 

sensitivity and accuracy of GO-ATeam FRET/GFP ratio measurements, we generated 156 

embryos expressing different levels of GO-ATeam2 by electroporating wild-type 157 

single-cell embryos with GO-ATeam2 mRNA (n = 756), and compared the estimated 158 

ATP concentrations from FRET/GFP ratios of the embryos acquired at 16 bits with a 159 

two-photon microscope (Fig. S2, red dots). The total average autofluorescence 160 

intensities of the embryos were 1389 ± 1.65 (n = 36). As expected, the estimated ATP 161 

concentrations of embryos showing low average fluorescence intensities varied widely. 162 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.10.143560doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.143560
http://creativecommons.org/licenses/by-nc/4.0/


In contrast, those showing high average fluorescence intensities (>10,000 , at least 7-163 

fold higher than the autofluorescence intensities) were within a relatively narrow range 164 

(2.40 ± 0.01 mM), which were very close to the ATP concentration obtained from the 165 

luciferase assay (2.34 ± 0.06 mM, n = 49). The total average fluorescence intensities of 166 

all heterozygous and homozygous knock-in embryos were more than 10,000, and more 167 

than 7-fold higher than the autofluorescence intensities, indicating that the ATP level 168 

could be calculated accurately for these embryos. It should be added that the 169 

homozygous knock-in embryos had an average fluorescence intensity value of about 170 

twice that of the heterozygous knock-in embryos (n = 88 and n = 68, blue dots and 171 

green dots in Fig. S2, respectively). Therefore, as a rule, we accepted measurements 172 

with total average fluorescence intensities that were more than 7x the autofluorescence 173 

intensities in the analyses that follow. 174 

In addition to a two-photon microscope, we also employed a fluorescence stereo 175 

microscope, which can capture low magnified features in the bodies. Fig. S1A-D shows 176 

the same images of liver slices from GO-ATeam mouse in normoxic and hypoxic 177 

conditions captured by a two-photon microscope and a fluorescence stereo microscope 178 
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(Figs. S1A–S1D). The FRET/GFP ratios of the low magnified images were closely 179 

correlated with those of the two-photon micrographs (R2 = 0.92, n = 139, Fig. S1E), 180 

indicating that a fluorescence stereo microscope can be used for quantitative estimation 181 

of ATP levels in GO-ATeam mice at a low magnified scale. 182 

 183 

Differences in ATP Concentrations in Multiple Organs and Cell Types 184 

In order to explore the heterogeneity in ATP concentrations within and between organs, 185 

we analyzed ATP levels in live neonatal (postnatal day 0) and adult (8 weeks of age) 186 

GO-ATeam mice. First, the animals underwent laparotomy after anesthesia, followed by 187 

imaging with a stereo microscope. The FRET/GFP images of the neonate (Figs. 2A,B) 188 

and those of the adult (Fig. S3A) revealed clear differences in ATP levels between 189 

organs. For example, brown adipose tissues, which were located between the shoulders, 190 

showed significantly lower FRET/GFP ratios compared with surrounding tissues (Fig. 191 

2A). ATP concentrations of heart, lung, liver, kidney, pancreas, stomach, small 192 

intestine, and large intestine, which were estimated from fluorescence images, ranged 193 

approximately from 1 to 6 mM (Fig.2C-J, right column). We also estimated ATP 194 
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concentrations of these organs using a firefly luciferase method (Fig. 2C-J, left 195 

column), and found that the values were roughly similar to those estimated from 196 

fluorescence images, except for the large intestine, although there was large variance in 197 

luciferase-based ATP concentrations. Because the penetration of the excitation light of 198 

the microscope into surface tissues steeply decreases, the stereo microscope only detects 199 

fluorescent signals from the surface of organs, while the luciferase method measures 200 

ATP in the whole organ. Thus, the large difference in estimated ATP concentrations of 201 

the large intestine observed between the two methods might suggest large variations in 202 

ATP concentrations within the organ; i.e., higher ATP in the muscle layer of the 203 

intestine, and lower ATP in the luminal tissues, such as villus. It is suggested that large 204 

variance is influenced by the time from organ harvest to luciferase assay and the 205 

efficiency of organ crushing. 206 

Next, we performed two-photon intravital FRET/GFP imaging to detect ATP in the 207 

deep tissues and cells of adult and neonatal GO-ATeam mice, which were anesthetized 208 

using intratracheal intubation. The analyses of adult (Figs. 2K–2Y) and neonatal (Figs. 209 

S3J–S3O) GO-ATeam mice included the following organs: liver (Figs. 2K, 2L, and 210 
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S3J); kidney (Figs. 2M, S3M, and S3N); small intestine (Figs. 2N, 2O, S3K, and 211 

S3L); large intestine (Figs. 2P and 2Q); spleen (Figs. 2R and 2S); pancreas (Figs. 2T, 212 

2U, and S3O; and skin (Figs. 2V–2Y). The images reveal striking differences in ATP 213 

concentrations among organs and cells. 214 

 215 

 216 

ATP Dynamics Associated with the Force Generated by Muscle Contraction 217 

The role of ATP in fueling muscle contraction has been intensively studied for decades, 218 

mainly through investigations of small animals and only a few muscle types (Barclay, 219 

2017) (Barclay, 2015). However, it still unknown to what extent these previous studies 220 

on tissues, isolated muscle, or muscle cells—reflect the ATP dynamics in additional 221 

muscle types and other mammalian species with varying energy needs, because live 222 

animal imaging has not been exploited (Barclay, 2015). In vivo analyses of ATP 223 

dynamics will likely enhance our understanding of the linkage between bioenergetics 224 

and muscle contraction. We began our in vivo approach by using GO-ATeam mice to 225 

study ATP dynamics associated with the force generated by muscle contraction. 226 
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For this purpose, we immobilized the legs of live mice and electrically stimulated the 227 

sciatic nerve to induce contractions of the tibialis anterior muscle (Fig. S4A). 228 

FRET/GFP ratios in the tibialis anterior muscle were recorded with the fluorescent 229 

stereo microscope (Figs. 3A-J), simultaneously with torques generated by the muscle 230 

contraction; a range of responses was generated by stimulating the sciatic nerve with 231 

various frequencies. The muscle underwent twitching constriction at 20 Hz stimulation, 232 

while tetanic constriction was observed at 100 Hz stimulation. After applying 233 

stimulation, immediate increases and decreases in torques (Fig. 3K) and FRET/GFP 234 

ratios (n = 4, Fig. 3L) were observed, respectively. Maximum torque was generated 235 

within 0.9 s upon 100 Hz stimulation (Fig. 3K). The usage of ATP expeditiously 236 

increased then decreased, even the peak torque was still being produced (Fig. S4B), 237 

implying that the production of force may become more efficient once muscle is 238 

maximally contracted. (Jones et al., 2009) reported that the ATP level present in all 239 

skeletal muscles before and after contractile motion is unchanged when examined by 240 

the firefly luciferase method. However, when the identical type of anterior cervical 241 

muscle was measured before and after contraction using the ATP visualization mouse 242 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.10.143560doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.143560
http://creativecommons.org/licenses/by-nc/4.0/


technique, the ATP level decreased with contraction (Fig. 3). The effect was subtle, as 243 

the ATP level decreased by only 0.6 mM even at 100 Hz exercise. These results suggest 244 

that the firefly luciferase method did not detect the decrease in ATP levels due to 245 

limitations of the experimental technique. The changes in both the torques and 246 

FRET/GFP ratio were highly dependent on the frequency of the applied stimulations. 247 

The simultaneous measurement of ATP levels and torque in real time showed that 248 

considerable amounts of ATP were consumed when generating torque, and that while 249 

maintaining torque the same amount of ATP was used regardless of the magnitude of 250 

the torque. These results demonstrate the utility of the GO-ATeam mouse for 251 

quantitative evaluations of energy efficiency in muscle strength (i.e. torque) of various 252 

muscles; in addition, it will help to clarify the differences between sarcomeres that 253 

occur unevenly in muscle cells, and which might vary with the distribution and timing 254 

of energy use. 255 

 256 

The GO-ATeam Reporter Facilitates Studies of the Local and Peripheral Effects of 257 

an Acute Pathological Insult 258 
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We next sought to determine whether GO-ATeam mice serve as an accurate and 259 

sensitive reporter of the local and global effects on ATP dynamics of an acute 260 

pathological insult of major medical significance. We were particularly interested in our 261 

ability to monitor ATP dynamics in organs and tissues peripheral to the primary site of 262 

pathology, because such information may aid in diagnosis at early stages of disease that 263 

are otherwise difficult to detect. In humans, the heart is the organ that consumes the 264 

most ATP, and ischemic heart disease is the leading cause of death worldwide (Opie, 265 

2003). We created a myocardial infarction model by ligating the left anterior descending 266 

artery (LAD) in GO-ATeam mice. We acquired intravital images of ATP dynamics in 267 

sham-operated (n = 8) (Figs. 4A, 4C, 4E, S5A, and S5C) and experimental mice (n = 268 

8) (Figs. 4B, 4D, 4F, S5B, and S5D) 5 days after the procedure. At this time, 269 

echocardiography revealed marked left ventricular dysfunction with focal hypokinesis 270 

and enlargement of the heart chamber, and histology revealed the infarction scar (data 271 

not shown) at the anterior wall. Intravital FRET/GFP imaging showed that ATP 272 

concentration was clearly diminished in the ischemic region of the LV, as well as in 273 

other organs such as the liver, large intestine, kidneys, and small intestine (Figs. 4B, 274 
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4D, 4F, S5B, D). On the other hand, ATP levels increased around the ischemic region 275 

of the LV. This increase in ATP levels within the “border zone” is consistent with the 276 

fact that energy charge rises around the infarct lesion which was previously shown in 277 

heart and brain ischemia models using imaging mass spectrometry(Hattori et al., 2010) 278 

(Sugiura et al., 2016). These results indicate that the use of GO-ATeam mice can be 279 

used to analyze the ATP dynamics throughout the body on a time scale up to several 280 

days. 281 

We next used the stereo microscope to perform time-lapse imaging of the whole 282 

body immediately after the LAD ligation to examine minute-scale changes in the whole 283 

body during acute heart failure induced by myocardial infarction. We found that the 284 

ATP levels in the liver (n = 6) (Figs. 4G–4G” and 4I) and kidney (n = 4) (Figs. S5E–285 

5E”) started to decrease (P < 0.05) after 31 min and 32 min after LAD ligation, 286 

respectively. ATP levels in the large intestine (n = 6) (Figs. 4H–4H” and 4J) and small 287 

intestine (n = 6) (Figs. S5F–5F” and S5I) started to decrease (P < 0.05) much earlier, 288 

13 min and 12 min minutes after LAD ligation, respectively. Blood flow in the liver 289 

decreased by approximately 60% after ligation of the LAD (data not shown). These 290 
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results indicate that GO-ATeam mice can be used to analyze global effects on ATP 291 

dynamics in response to acute pathological insults. 292 

Next, we used two-photon microscopy to investigate the LAD ligation-induced 293 

alterations in ATP dynamics of organs at the cellular level. We found that ATP levels 294 

after 10 min only decreased around the pericentral regions in the liver (Figs. 4K–K” 295 

and 4M; ROI 2, red), while ATP levels were maintained along the periphery of the 296 

interlobular region including periportal regions (Figs. 4K–K” and 4M; ROI 1, blue) , 297 

showing intralobular heterogeneity in ATP drop in response to hypovolemic hypoxia. 298 

This observation is consistent with the previous report showing greater susceptibility of 299 

pericentral regions to hypoxia (Suematsu et al., 1992a; Suematsu et al., 1992b). In the 300 

large intestine, ATP levels gradually decreased in the large intestinal glands and lamina 301 

propria (Figs. 4L–L” and 4N; ROIs 1, 2 and 3, blue, red and orange). Glands tended to 302 

maintain ATP levels compared with the lamina propria. These results demonstrate that 303 

there is a large intercellular heterogeneity in the reduction of ATP during hypoperfusion 304 

and hypoxia, even within the same organ, in real-time analysis. Clinically, for example, 305 

hepatocyte necrosis is observed near the central vein on a time scale of days after 306 
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myocardial infarction. Therefore, although the time scales are different, these data show 307 

the order and area of ATP reduction in each of these organs correlates with clinical 308 

information on organ abnormalities and necrosis during myocardial infarction 309 

(Sherlock, 1951). 310 

We also detected a decrease in the amount of ATP within a limited region near a 311 

central vein in the liver by mass spectrometry imaging 20 min after LAD ligation (Figs. 312 

4P), consistent with the above FRET observation. In contrast, metabolome analysis of a 313 

whole liver did not detect the ATP decrease at the same time point (Fig. 4O). Thus, 314 

ATP imaging using GO-ATeam mice can detect local bioenergetic changes in real time 315 

with high sensitivity. 316 

 317 

Assessment of Drug-Induced Cardiotoxicity in GO-ATeam2 Mice 318 

Drug-induced cardiotoxicity is a significant safety issue in drug development 319 

because it can be fatal (Watkins, 2011). However, cardiotoxicity may become apparent 320 

after clinical trials and marketing, and risk assessment in nonclinical trials has been 321 

difficult. 322 
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The mouse heart contracts and relaxes about seven times per second using a large 323 

amount of ATP. This exquisite balance between supply and consumption keeps the 324 

amount of ATP in the cytoplasm of cardiomyocyte constant. However, if the balance is 325 

slightly disturbed due to the toxicity of a drug to the heart, ATP concentrations will 326 

change within a short time. Thus, we hypothesized that cardiotoxicity of a drug may be 327 

detected as a change in the ATP dynamics of the heart before a change appears on the 328 

electrocardiogram, etc.(Fig. 5A). To test this, we examined anticancer drugs with 329 

reported cardiotoxicity, antiarrhythmic drugs and antibiotics that induce torsade point 330 

(TdP).  331 

Cardiac ATP levels were observed for 1 hour using a fluorescence stereo 332 

microscope while the drug was continuously administered via the jugular vein at 333 

concentrations that did not elicit an abnormal electrocardiogram (Figs. 5B, C). 334 

Examination of the time-course changes in the ATP level in the heart immediately 335 

before administration showed that there was almost no change in physiological saline 336 

(n= 10) and furosemide (n=9), a diuretic with no cardiotoxicity, with a rise of about 337 

0.05-0.1 mM, consistent with the data shown in Fig. 1 (Figs. 5D and E). In contrast, 338 
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administration of doxorubicin (an anthracycline anticancer drug, n=3) , 5-FU (an 339 

antimetabolite anticancer drug, n=6), and cyclophosphamide (an alkylating agent, n=4), 340 

rapidly reduced ATP levels, which then recovered (Figs. 5F, S6A and S6B). This is 341 

consistent with reports that doxorubicin accumulates in mitochondria in 342 

cardiomyocytes, causing increased oxidative stress and mitochondrial dysfunction 343 

(Ichikawa et al., 2014; Zhang et al., 2012). It is also consistent with clinical reports that 344 

5-FU causes transient coronary vasospasm and cardiac ischemia, and that 345 

cyclophosphamide causes myocardial damage (Schimmel et al., 2004). On the other 346 

hand, when the alkylating agent ifosfamide was administered, the ATP level decreased 347 

only moderately in the entire heart, but the ATP level decreased significantly only in the 348 

left ventricle (Fig. 5G, n=5). This is consistent with clinical reports of ifosfamide 349 

eliciting left ventricular dysfunction (Cardinale et al., 2000). These results suggest that 350 

the cardiotoxicity of each anticancer drug can be detected as a change in ATP dynamics, 351 

adding consistent molecular evidence to clinical reports. 352 

In addition to anticancer drugs, we evaluated the drug-induced TdP, a fatal ventricular 353 

arrhythmia as a measure of cardiotoxicity. TdP has been a significant safety issue in 354 
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drug development; current predictions of TdP in non-clinical trials are not fully 355 

consistent with clinical TdP inducibility (Laverty et al., 2011). 356 

We hypothesized that energy abnormalities might be related to myocardial electrical 357 

instability. Therefore, GO-ATeam2 mice were used to determine whether the results of 358 

the comprehensive in vitro proarrhythmia assay CiPA (Strauss et al., 2019) could be 359 

improved. First, the antiarrhythmic drugs disopyramide, procainamide, nifekalant, 360 

verapamil, and vanoxerine were examined (Figs. 5H-J, 5M and S6C). Disopyramide 361 

has been reported to reduce myocardial contractility by blocking Na+ channels (Mathur, 362 

1972). The administration of TdP-inducing antiarrhythmic drugs disopyramide, 363 

procainamide and nifekalant all increased the ATP level in the heart by 0.25 mM or 364 

more by continuous administration for 60 minutes (Figs. 5H, I, S6C, n=6, 6, 5). On the 365 

other hand, verapamil, an antiarrhythmic drug that blocks hERG channels but 366 

suppresses TdP, showed little change in ATP levels (Fig. 5J, n=6) (Milberg et al., 2005 367 

124). Similarly, vanoxerine, which blocks hERG channels but does not affect QT 368 

prolongation in the heart, did not alter ATP levels (Fig. 5M, n=4) (Lacerda et al., 2010). 369 

Next, antibiotics and antifungals such as levofloxacin, erythromycin, amphotericin B, 370 
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azithromycin, ciprofloxacin, and metronidazole were examined (Figs. 5K, S6E-I, n=5, 371 

7, 4, 5, 5, 3). As with antiarrhythmic drugs, continuous administration for 60 minutes 372 

increased the intracardiac ATP level by 0.25 mM or more for all antibiotics and 373 

antifungals, despite having different actions and chemical structures (Figs. 5K, S6E-I, 374 

data not shown). Furthermore, continuous administration of alfuzosin (n=5), a prodrug 375 

for inducing TdP, and droperidol (n=9), an antipsychotic, increased intracardiac ATP 376 

levels by 0.25 mM or more by continuous administration for 60 minutes (Figs. 5L, S6). 377 

Of the approximately 60 TdP-inducing drugs registered with the FDA, all 11 that we 378 

tested raised ATP levels by 0.25 mM or more by continuous administration for 60 379 

minutes. These results indicate that the GO-ATeam mouse model can reliably identify 380 

drugs that induce TdP based on changes in the amount of cellular ATP. 381 

 382 

DISCUSSION 383 

 384 

Adaptable to Other Imaging Technologies 385 
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In the GO-ATeam2 mouse model, identification of cell types and observation of cell 386 

morphology can be observed by expressing far-red fluorescent proteins with different 387 

spectra, such as mCardinal (Chu et al., 2014) and mRaspberry (Wang et al., 2004), in 388 

the nucleus and cell membrane. A chemical dye can provide the fluorescent signal for a 389 

third color. Specific cell labeling using DiD and ER labeling using ER-Tracker Blue-390 

White DPX can also be performed. ATP levels can also can be monitored 391 

simultaneously with the fluctuation of mitochondrial mass using MitoTracker DeepRed. 392 

Since the GO-ATeam mouse model can be used for a simple allele knock-in of GO-393 

ATeam2, it can be similarly modified by crossing with other transgenic mice and 394 

various genetically modified mice. Examples include the GO-ATeam Amyotrophic 395 

lateral sclerosis model and the heart failure model. 396 

In the GO-ATeam mouse model, spatiotemporal information on ATP dynamics is 397 

obtained from the organ level to the cell level in the whole mouse within the same 398 

individual after the onset of the disease (myocardial infarction) or after drug 399 

administration.  It can be applied not only to intravital imaging but also to ATP 400 
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dynamic observation under various conditions such as ex vivo and primary cultured 401 

cells, such as organ slices. 402 

 403 

Indicator of ATP Levels 404 

Cellular ATP levels and ATP sensing are integral to an assortment of regulatory 405 

processes, including phosphorylation of signaling molecules, epigenetic factors, 406 

chromatin remodeling factors, and activation of ion pumps (Lusser and Kadonaga, 407 

2003) (Fantl et al., 1993) (Skou, 1965) (Becker and Horz, 2002). Feedback mechanisms 408 

can influence enzymatic activity in response to changes in ATP concentration. Thus, 409 

fluctuations in ATP levels are can indicate a change in an organ or cell function that is 410 

not simply correlated with the amount of these proteins. Turning this around, knowing 411 

how ATP concentrations affect biochemical enzymatic activities may allow the direct 412 

measurement of ATP levels to serve as a proxy for biochemical assays.  This implies 413 

that if ATP dynamics are quantified in real time, in vivo, spatiotemporal information 414 

related to functional changes can be obtained at the cellular level. For example, in 415 

cortical neurons, ATP levels are involved in the depth of the resting membrane potential 416 
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and control nerve firing, because ATP is required for ion pumps, and the ATP 417 

concentration correlates with ion pump activity (manuscript in preparation). It will be 418 

interesting to compare ATP levels with gene expression profiles obtained from 419 

comprehensive analyses such as RNA-Seq at the cell level, and correlate these with 420 

spatiotemporal information. We presume that the main cellular factors controlled by the 421 

ATP level differ depending on the organ in question, cell type, and the environment. 422 

However, it is necessary for the near future to clarify these major factors by artificially 423 

increasing or decreasing ATP levels at the cellular level in vivo. 424 

 425 

A model for evaluating drug effects on ATP homeostasis in living animal 426 

In general, ATP levels in the cytoplasm are always kept constant by balancing between 427 

consumption and supply in living cells (Ingwall, 2004). On the other hand, if there is a 428 

spatiotemporal perturbation of the consumption/supply balance, the ATP levels in the 429 

cytoplasm are expected to change. Glycolysis and OXPHOS are responsible for the 430 

generation of ATP. However, OXPHOS is much more efficient at ATP production than 431 

glycolysis, so most ATP production in normal cells depends on OXPHOS. If the ATP 432 
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supply from OXPHOS decreases due to functional decline, such as mitochondrial 433 

injury, the supply is temporarily compensated for by using ATP reserves inside the cell, 434 

and ATP consumption is reduced. Subsequently, the body maintains homeostasis by 435 

activating the glycolysis system to restore the total supply of ATP and rebalance the 436 

energy homeostasis. (Ingwall, 2009). In the initial stage of heart disease, either 437 

metabolic stress (e.g., ischemia) or mechanical overload (e.g., pressure-overload) alters 438 

the ATP homeostasis (Kolwicz et al., 2013). Long-term metabolic stress to maintain an 439 

appropriate intracellular ATP level as above leads to cellular dysfunction, cell death, 440 

and heart failure (Kolwicz et al., 2013). To understand this progression, monitoring the 441 

spatiotemporal changes in ATP levels would be informative. In addition, for anti-cancer 442 

drug-induced cardiomyopathy, ATP homeostasis and mitochondrial function are key as 443 

well (Wallace et al., 2020). As a proof of principle, ATP visualization experiments with 444 

drug administration were performed here. All the drugs tested to induce cardiotoxicity 445 

also changed ATP levels in the heart in a short time, as observed with GO-ATeam 446 

FRET (Fig. 5, S6). We speculate that anti-cancer drugs appear to decrease cardiac ATP 447 

production due to mitochondrial damage. The mitochondrial damage and decreased 448 
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OXPHOS may increase myocardial oxidative stress and irreversible damage in late 449 

phases of anti-cancer treatment (Wallace et al., 2020). ATP changes elicited by 450 

antiarrhythmic drugs are qualitatively as well as quantitatively different from those 451 

produced by anticancer drugs. Antiarrhythmic drugs cause “negative inotropic effects” 452 

of contractile proteins, thereby reducing ATP consumption. Since ATP imaging reflects 453 

the difference between ATP production and consumption, ATP imaging in the beating 454 

heart showed that the intracellular ATP level increases in response to antiarrhythmic 455 

drug administration. Conceivably, ATP production from mitochondria might be 456 

increased by anti-arrhythmic drugs, although the hypothetical mechanism is unknown. 457 

In any case, the increase in the intracellular ATP level may lower the membrane 458 

potential and thereby cause an arrhythmogenic effect. 459 

Our data show that GO-ATeam mice can elucidate physiological phenomena by 460 

accurately measuring ATP levels over time in the cells and tissues in vivo. The GO-461 

ATeam system can potentially be extended to a wide range of applications, such as 462 

elucidating networks between organs throughout the body and assessing toxicity. 463 

 464 
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 668 

Fig. 1. Measurement of Cytosolic ATP Levels in GO-ATeam transgenic mouse 669 

embryos and embryonic fibroblasts 670 

(A-D) Images of FRET/GFP fluorescence emitted by a permeabilized mouse embryonic 671 

fibroblasts (MEF) derived from GO-ATeam2 knock-in mouse embryos incubated in 672 

calibration buffer. The ATP concentrations in the calibration buffer ranged from 0.8–4.8 673 

mM. There was a close positive correlation between the FRET/GFP ratios and ATP 674 
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concentrations from 0.1 mM to 6.0 mM (I) (n = 37). The plot was fitted with the Hill 675 

equation: R = (Rmax – Rmin) × [ATP]n / [ATP]n + Kdn) + Rmin, where Rmax and Rmin are the 676 

maximum and minimum fluorescence emission ratios, respectively, Kd is the apparent 677 

dissociation constant, and n is the Hill coefficient. (FRET/GFP) = (1.96 – 0.44) × 678 

[ATP]1.7 / ([ATP]1.7 + 1.61.7) + 0.44 . 679 

(E-H) FRET/GFP values calculated from images of two-cell embryos treated 680 

simultaneously with inhibitors of glycolysis and OXPHOS (2DG and antimycinA, 681 

respectively). The ATP concentrations estimated using the FRET/GFP ratio (n = 16) 682 

corresponded to those determined using the luciferase assay (J) (n = 118) (inset: R2 = 683 

0.9846). Intensity-modulated display (IMD) images of the FRET/EGFP ratios (0.4 to 684 

2.0) are shown. Scale bars indicate 50µm (A-D, I-J), or 25µm (E-H). 685 
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 686 

Fig. 2. ATP levels in GO-ATeam Live Mice and Intravital Imaging of Organs 687 

(A, B) FRET/GFP fluorescence ratios in postnatal day 0 ([A], dorsal; [B], ventral) GO-688 

ATeam mice. 689 

(C–J) ATP concentrations measured using the luciferase assay (“Luc”) and FRET/GFP 690 

ratios (“ratio”) in heart (C), lung (D), liver (E), kidney (F), pancreas (G), stomach (H), 691 

small intestine (I), and large intestine (J) in neonatal GO-ATeam mice. 692 
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(K–Y) Intravital FRET/GFP imaging of an adult (aged 8 weeks) GO-ATeam mouse. 693 

Liver (K, L, arrow, central venule; arrowhead, portal venule), kidney (M, arrow, 694 

proximal tubule; arrowhead, distal tubule), small intestine (N, O, arrow, blood vessel; 695 

arrowhead, paneth cells), large intestine (P, Q, arrow, blood vessel; arrowhead, paneth 696 

cells), spleen (R, S), pancreas (T, U), and skin (V–Y, arrow, epidermis; arrowhead, 697 

dermis). ATP concentrations (range, approximately 0.1 mM–6.3 mM) are depicted by 698 

the spectrum. Scale bars indicate 10mm (A, B), or 100µm (K-Y). 699 
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 700 

Fig. 3. ATP Dynamics Correspond to the Force Generated by Muscles 701 

Intravital imaging of FRET/GFP ratios of the tibialis anterior muscle subjected to 702 

stimulation of the sciatic nerve (A–J). Stimulation frequencies ranged from 20 Hz (A–703 

E) to 100 Hz (F–J). The percentages of peak torque (K) (n = 4) and the percentages of 704 
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the peak FRET/GFP ratios (L) (n = 4) as a function of time after stimulating the sciatic 705 

nerve. The differences between frequency intervals differed significantly (L), except for 706 

10 Hz and 20 Hz (K). Numbers indicate seconds after the stimulation, scale bars 707 

indicate 100µm (A-J). 708 

 709 

 710 
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 711 

Fig. 4. Effects of Myocardial Infarction on ATP Concentrations in the Organs of 712 

GO-ATeam Mice 713 
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 714 

(A–F) Intravital low magnified imaging of FRET/GFP ratios 5 days after ligation of the 715 

left anterior descending artery (LAD) (myocardial infarction, MI) (B, D, F; n = 8 each) 716 

or sham-operated mice (sham) (A, C, E; n = 8 each). Intravital time-lapse imaging of 717 

ATP concentrations calculated from the FRET/GFP ratios in the liver and large intestine 718 

using the fluorescence stereo microscope (G–G”, H–H”; I [graph of G-G”]; J [graph of 719 

H-H”], sham-operated, and MI; n = 9 and n = 6, n = 9 and n = 6, respectively, after t = 720 

31 min; p<0.05, after t = 13 min, p<0.05) and respective cells using a two-photon 721 

microscope (K–K”, L–L”; M [graph of K-K”]; N [graph of L-L”]) after ligation of the 722 

LAD. 723 

(O-P’) Imaging Mass Spectrometry of ATP (m/z 506.0) in a sham-operated liver and a 724 

liver 20 min after ligation of the LAD (O, P, P’: arrow, central vein). In Figs. K and M, 725 

the regions of interest (ROIs) 1 to 3 show the periphery of the interlobular region, 726 

central vein, and total field of view, respectively. In Figs. L and N, ROIs 1 to 3 show 727 

the large intestinal glands, lamina propria, and total field of view, respectively.  728 

Scale bars indicate 2mm (A-F), 1mm (G-H”), or 100µm (K-L”, P, P’). 729 
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 730 

Fig. 5. Effects of Drug-Induced Cardiotoxicity on ATP Concentration in the Heart 731 

of GO-ATeam Mice 732 
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(A) Scheme: Cardiac ATP levels are balanced by supply (glycolysis, OXPHOS, etc.) 733 

and demand (contraction, ion pumps, etc.). Due to the drug, cardiotoxicity causes an 734 

imbalance between ATP supply and demand, and is expected to alter cardiac ATP 735 

levels in a short time. (B, C) electro-cardiogram. The identifier “before” refers to before 736 

administration, and “after” refers to 1 hour after administration of the drug, 0.9% NaCl 737 

(B) or disopyramide (C). (D-M) Intravital time-lapse imaging of ATP concentrations 738 

calculated from the FRET/GFP ratios in the heart using the fluorescence stereo 739 

microscope (upper left, before administration; upper right, 60 minutes after 740 

administration, with graphical representations shown below each set of panels). The 741 

graphs show the change volume in ATP level of whole heart (y-axis) after 742 

administration (blue line, 0.9% NaCl; red line, indicated drug; orange line, ifosfamide in 743 

left ventricle). Horizontal axis shows time [minutes] after administration. (D) 0.9% 744 

NaCl (n=10). (E) furosemide (n=9). (F) 5-FU (n=6). (G) ifosfamide (n=5). (H) 745 

disopyramide (n=6). (I) nifekalant (n=6). (J) verapamil (n=6). (K) levofloxacin (n=5). 746 

(L) alfuzosin (n=5). (M) vanoxerine (n=4). Scale bars indicate 2mm (D-M). 747 

 748 
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