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Abstract 26 

Single cell mass cytometry (SCMC) combines features of traditional flow cytometry 27 

(FACS) with mass spectrometry and allows the measurement of several parameters at 28 

the single cell level, thus permitting a complex analysis of biological regulatory 29 

mechanisms. We optimized this platform to analyze the cellular elements, the 30 

hemocytes, of the Drosophila innate immune system. We have metal-conjugated six 31 

antibodies against cell surface antigens (H2, H3, H18, L1, L4, P1), against two 32 

intracellular antigens (3A5, L2) and one anti-IgM for the detection of L6 surface 33 

antigen, as well as one anti-GFP for the detection of crystal cells in the immune 34 

induced samples. We investigated the antigen expression profile of single cells and 35 

hemocyte populations in naive, in immune induced states, in tumorous mutants 36 

(hopTum bearing a driver mutation and l(3)mbn1 carrying deficiency of a tumor 37 

suppressor) as well as in stem cell maintenance defective hdcΔ84 mutant larvae. 38 

Multidimensional analysis enabled the discrimination of the functionally different 39 

major hemocyte subsets, lamellocytes, plasmatocytes, crystal cell, and delineated the 40 

unique immunophenotype of the mutants. We have identified sub-populations of 41 

L2+/P1+ (l(3)mbn1), L2+/L4+/P1+ (hopTum) transitional phenotype cells in the 42 

tumorous strains and a sub-population of L4+/P1+ cells upon immune induction. Our 43 

results demonstrated for the first time, that mass cytometry, a recent single cell 44 

technology combined with multidimensional bioinformatic analysis represents a 45 

versatile and powerful tool to deeply analyze at protein level the regulation of cell 46 

mediated immunity of Drosophila. 47 
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Introduction 54 

In the animal kingdom, insects have multi-layered innate immune defence mechanisms 55 

against invading pathogens. Work on insects, including the fruit fly, Drosophila 56 

melanogaster which lacks an acquired immune response, plays an important role in our 57 

understanding of how innate immunity works [1, 2]. The conserved signaling pathways 58 

between insects and vertebrates, combined with the powerful genetic resources 59 

provided by Drosophila, make this organism an ideal system to model biological 60 

phenomena related to human biology and medicine. In Dorosphila, microbial infection 61 

induces a powerful humoral immune response, the release of antimicrobial peptides, 62 

the regulation of which is now well understood [3]. Infection by parasites, development 63 

of tumours or wounding induce a cellular immune response by blood cells, the 64 

hemocytes, which are capable of sophisticated functions, as recognition, encapsulation 65 

and killing of parasites and phagocytosis of microorganisms [4−6]. These functions are 66 

exerted by specialized blood cells the phagocytic plasmatocytes, the encapsulating 67 

lamellocytes and the melanizing crystal cells. For the identification and 68 

characterization of the mechanisms of cell mediated immunity through which the 69 

immune cells and tissues can be specifically studied and manipulated, quantitative 70 

methods are required. For the definition of the functional hemocyte subsets transgenic 71 

reporter constructs and monoclonal antibodies have been developed. These systems 72 

generally use fluorescent molecules in the form of in vivo markers and antibodies, the 73 

use of which significantly contributed to our understanding of innate immunity [7−9].  74 

Recently, single cell mass cytometry was developed to monitor the expression of 75 

marker molecules in haematological and other pathological conditions [10,11]. The 76 

antibodies against cell type specific antigens are applicable to monitor blood cell 77 

differentiation during ontogenesis or following immune induction. However, 78 

traditional antibody staining against only one or two of the cell type specific antigens 79 

is not sufficient to describe individual hemocyte populations with complex antigen 80 

expression patterns. Therefore, we adopted and optimized single cell mass cytometry 81 
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for Drosophila by multiplex analysis of antibodies to transmembrane proteins and 82 

intracellular antigens of IgG and IgM type, routinely used for detecting and 83 

discriminating hemocyte subsets of Drosophila melanogaster [7, 12−16].  84 

The circulating hemocytes of the Drosophila larva are classified into three categories, 85 

of which only two cell types are present in naive condition. These are the small round 86 

phagocytic plasmatocytes, which account for 95% of the circulating hemocytes, and 87 

the melanizing crystal cells, which are similar in size to plasmatocytes, but contain 88 

prophenoloxidase crystals in their cytoplasm. The third cell type, the large flattened 89 

lamellocytes differentiate only in tumorous larvae and in case of immune induction, 90 

such as wounding or parasitic wasp infestation [17]. Lamellocytes, together with 91 

plasmatocytes are capable of forming a multilayer capsule around the wasp egg, 92 

thereby killing the invader [18−20]. Plasmatocytes, crystal cells and lamellocytes can 93 

be distinguished with cell type specific monoclonal antibodies, and in vivo transgenic 94 

reporters [7−9, 12−15]. All plasmatocytes express the P1 antigen (coded by the 95 

nimC1 gene) [21], while lamellocytes show a characteristic expression of L1 (the 96 

product of the atilla gene), L2, L4, and L6 [14]. Following immune induction, a 97 

portion of plasmatocytes transdifferentiate into lamellocytes to fight the parasitic 98 

wasp egg [22−25]. This transdifferentiation is accompanied by a stepwise alteration 99 

of lamellocyte specific antigen expression. 100 

Understanding cancer, a devastating disease of multicellular organisms is a challenge 101 

for scientists. The conserved signal transduction pathways in Drosophila with 102 

mammals and the easy genetic manipulation made the fruit fly a frequently used 103 

model organism to study cancer [26]. Therefore, we investigated two different 104 

tumorous Drosophila strains, one bearing a driver mutation (hopTum) and one carrying 105 

deficiency of a tumor suppressor (l(3)mbn1). Constitutive activation of the Drosophila 106 

Janus kinase namely, the Hopscotch (Hop) causes melanotic tumors, lymph gland 107 

hypertrophy in the larvae and malignant neoplasia of hopTum Drosophila blood cells 108 

[27]. The homozygously mutated state of the tumor suppressor gene, called lethal (3) 109 
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malignant blood neoplasm causes malignant transformation, enhanced hemocyte 110 

proliferation and lamellocyte differentiation of l(3)mbn1 Drosophila blood cells [28]. 111 

We also investigated the immunophenotype of the mutation of the hdc gene (hdcΔ84), 112 

which encodes for the Drosophila homolog (Headcase) of the human tumor 113 

suppressor HECA and plays a role in hematopoietic stem cell maintenance [29, 30]. 114 

Wild type Oregon-R (Ore-R) and white mutant w
1118 

were used as reference strains 115 

because w
1118

was considered previously as wild type and used for the generation of 116 

mutants [31]. Immune activation was monitored successfully by infestation with the 117 

Leptopilina boulardi parasitoid wasp of Drosophila larvae in the lozenge>GFP strain 118 

(lz-Gal4, UAS-GFP; +; +), in which crystal cells were monitored by metal tag 119 

labeled anti- GFP antibody [32, 33]. 120 

We are the first to demonstrate that single cell mass cytometry is a powerful tool for 121 

the characterization of hemocytes in different mutants of Drosophila strains at protein 122 

level. Bioinformatic analysis revealed the characteristic protein expression pattern of 123 

hemocyte subsets at single cell resolution from the studied different genetic variants. 124 

These together suggest that single cell mass cytometry is a valuable tool for 125 

characterizing immune phenotypes in any model organism, in which antibodies 126 

against immune components are available. 127 

Results and Discussion  128 

Single cell mass cytometry revealed the transitional phenotypes of hemocytes in 129 

the tumorous hopTum and l(3)mbn1strains. 130 

We have built the metal tag labelled panel of discriminative antibodies recognizing 131 

Drosophila melanogaster hemocytes and hemocyte subsets for mass cytometry. We 132 

have conjugated six antibodies against cell surface antigens (H2, H3, H18, L1, L4, P1), 133 

against two intracellular antigens (3A5, L2) and one anti-IgM for the detection of L6 134 

surface antigen. List of the antibodies can be found in Table 1. The H18 and 3A5 135 

antibodies reported herein first were characterized and validated before the study by 136 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.10.144584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.144584


indirect immunofluorescence and Western-blot analysis (Figure S1 and S2). The 137 

analysis revealed that 3A5 molecule is expressed in plasmatocytes and lamellocytes in 138 

l(3)mbn1, but not expressed in lamellocytes of immune (L.b.) induced larvae (Figure 139 

S1), while H18 molecule as a pan-hemocyte marker is expressed in all tested samples 140 

(Figure S2). To test and optimize the reactions of the antibodies, a comparative 141 

analysis was carried out by correlating the fluorescence activated cell sorting (FACS) 142 

(Figure S3A) and the mass cytometry histograms (Figure S3B). The comparison 143 

showed similar reactivity patterns. Hemese (H2) pan-hemocyte marker positive single 144 

live cells were gated for mass cytometry analysis (Figure S4). All metal-tag labelled 145 

antibodies were titrated for mass cytometry as shown in Figure S5. Next, we 146 

compared the expansion of the hemocyte populations in the mutants in relation to the 147 

two wild type Ore-R and w1118. The proportion of hemocytes expressing the 148 

investigated markers were similar in wild type (wt) Ore-R and w1118. However, we 149 

detected a significant proliferation of hemocytes expressing the L1, L2, and L4 150 

markers in l(3)mbn1 and hopTum mutant larvae, reflecting an extensive differentiation 151 

of lamellocytes, a phenotypic characteristic to the blood cell malignancy. A slight 152 

elevation in the proportion of L6 expressing hemocytes was also detected (Figure S6 153 

and Figure 1A). The explanation for this moderate change may be the fact that L6 is 154 

only expressed by a subset of lamellocytes in tumorous larvae [14]. All lamellocyte 155 

markers showed a higher expression level in the tumorous hopTum mutant compared to 156 

the control (Figure S7 and Figure 1B). In the hdc∆84 mutant larvae, we detected a 157 

moderate elevation in the expression level of L2, and a decrease in the expression 158 

level of P1 (Figure 1B), however, the number of hemocytes expressing lamellocyte 159 

markers did not show a significant increase compared to the controls (Figure 1A). 160 

This is in line with the finding that in the hdc∆84 mutant larvae, lamellocytes 161 

differentiate in low numbers, while the number of plasmatocytes are reduced [30]. 162 

This reduction of plasmatocyte number is also observable in Figure 1A. 163 
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Multidimensional analysis by the algorithm of t-distributed stochastic neighbor 164 

embedding (tSNE) and the visualization of stochastic neighbor embedding (viSNE) 165 

was carried out within the H2 (Hemese) positive live singlets based on H3, H18, L1, 166 

L2, L4, L6, P1, and 3A5 marker expression in order to map high parametric single 167 

cell data on biaxial plots [34]. The viSNE patterns of hemocyte marker expression 168 

correlated to the data shown in Figure 1 (Figure 2). The viSNE bioinformatic analysis 169 

revealed the characteristic protein expression pattern of hemocyte subsets at single 170 

cell resolution from the studied genetic variants. We observed a dramatic difference in 171 

the viSNE patterns between hemocytes isolated from the tumorous l(3)mbn1 and 172 

hopTum larvae as compared to either control Ore-R or w1118  larvae (Figure 2). Control 173 

Ore-R or w1118 hemocytes were not discriminated on the viSNE plots showing their 174 

minimal genetic distance but tumorous l(3)mbn1 and hopTum larvae delineated viSNE 175 

maps with the expansion of lamellocytes (Figure 2). In the hdc∆84 larvae, we detected 176 

a subset of hemocytes that express the 3A5 marker at a high level. This subset was 177 

detected neither in the control, nor in the tumorous larvae, and may represent a cell 178 

type that differentiate as a precursor for lamellocytes as a consequence of the defect in 179 

the maintenance of the hematopoietic niche [30].  180 

The Uniform Manifold Approximation and Projection (UMAP) analysis was 181 

performed by the hemocyte subset specific, discriminating markers: L1, L2, L4, L6 182 

for lamellocytes and P1 for plasmatocytes on the 5 studied genetic variants of 183 

Drosophila melanogaster. The UMAP analysis resulted in the same conclusion as 184 

tSNE, namely, that lamellocyte expansion occurs in in tumorous strains l(3)mbn1 and 185 

hopTum (Figure S8). Both the viSNE and UMAP analysis demonstrate transitional 186 

phenotypes of certain lamellocytes and plasmatocytes by the transitional coloration of 187 

marker expression (partially overlapping L2+ or L4+ with some P1+ cells) at protein 188 

level in l(3)mbn1 and hopTum. Merging viSNE graphs outlined characteristic maps of 189 

each strain based on high parametric mass cytometry data (Figure 3A-C). The Ore-R 190 

and w1118 controls showed overlapping patterns on the viSNE diagram (Figure 3A-C), 191 
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with a somewhat lower expression of all markers observed in case of the w1118, which 192 

may be due to uncontrollable genetic background variations. The dots representing to 193 

hdc∆84 hemocytes, mutant of the hdc regulator of hematopoietic stem cell maintenance 194 

[30], were detected as a zone in between the control and the tumorous patterns (Figure 195 

3C). The most likely explanation to this phenomenon is that hdc∆84 homozygous 196 

larvae produce lamellocytes, but in a much lower proportion than tumorous larvae, the 197 

l(3)mbn1 and hopTum [30]. Tumorous hemocytes l(3)mbn1 and hopTum were closely 198 

mapped and partially overlapping, giving a population clearly separated from the 199 

cloud of the controls, due to the lamellocye-expansive malignant phenotype (Figure 200 

3A-C). 201 

Single cell mass cytometry revealed the transitional phenotypes of hemocytes 202 

upon immune induction 203 

In order to monitor the changes in the composition of hemocyte subsets following 204 

immune induction, we used lz>GFP larvae and complemented the experiment with 205 

anti-GFP labeling, which enables the detection of crystal cells [32, 33]. The tSNE 206 

analysis of H3, H18, L1, L2, L4, L6, P1, 3A5 markers and anti-GFP (marking crystal 207 

cells in this particular system) was carried out within the population of pan-hemocyte 208 

H2 (Hemese) positive live singlets (Figure 4A). We observed a new subset of 209 

hemocytes appearing 72 h after infestation of the lz>GFP larvae with the parasitic 210 

wasp (Figure S9. and Figure 4A). This subset of cells accounts for the lamellocytes 211 

that differentiate as a result of the immune induction, since these cells fall into the 212 

high expression part of the viSNE for the L1, L2, L4, and L6 lamellocyte markers 213 

(Figure S9. and Figure 4A). This finding is in correlation with the increase of the 214 

number of hemocytes expressing the L1 (35.1% vs. 1.81%), L2 (32% vs. 1.6%), L4 215 

(34.36% vs. 1.39%) and L6 (13.82 vs. 0.935%) markers (Figure 4B), and the elevated 216 

expression levels of the lamellocyte markers detected in immune induced larvae 217 

compared to the naive control (Figure 4C). Interestingly, a new subset of crystal cells 218 

(anti-GFP + cells) also appeared in immune induced (lz>GFP i.i.) larvae compared to 219 
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the control (lz>GFP) (Figure 4A). The viSNE pattern of the 3A5 marker also changed 220 

significantly after the immune induction, which may be due to the newly 221 

differentiating hemocytes, similarly to that observed in the hdc∆84 larvae (Figure 4A). 222 

Taken together, we report herein the first panel of metal-conjugated anti-Drosophila 223 

antibodies to present the applicability of mass cytometry for that canonical model 224 

organism of genetics. Recent studies identified novel subpopulations of Drosophila 225 

hemocytes based on single cell RNA data [35−38]. These findings largely contributed 226 

to the definition of hemocyte clusters and to the characterization of intermediate cells 227 

in the transition from plasmatocyte to lamellocyte. In these experiments, clusters were 228 

defined by the gene expression patterns of individual hemocytes. The application of 229 

CyTOF (cytometry by time-of-flight) can complement these comprehensive 230 

transcriptomic studies and verify the existence of transitional phenotypes at protein 231 

level. The comparative analysis of Ore-R and white1118 with l(3)mbn1, HopTum, hdcΔ83 232 

revealed transitional phenotypes at protein level and the differences among reference 233 

stains: Ore-R and white1118. Both the viSNE and UMAP analysis demonstrated 234 

transitional phenotype of certain sub-populations of lamellocytes and plasmatocytes 235 

by the transitional coloration of common marker expression (partially overlapping 236 

L2+ or L4+ with P1+ cells) at protein level in l(3)mbn1, hopTum. This has been verified 237 

by a functional assay of immune induction (Figure 4). Our study demonstrates 238 

transitional phenotypes (Figure 2, Figure 4, Figure S8) from single cell data at protein 239 

level which places the innate immunity of Drosophila in a new biological insight. 240 

Additionally, we report herein two novel hemocyte markers, H18 located on the cell 241 

surface and 3A5 with intracellular localization. The simultaneous detection of several 242 

antigens provided by CyTOF could not be achieved earlier by traditional microscopy. 243 

The main advantage of CyTOF is the multidimensionality coupled with complex 244 

computational tools, therefore we propose the extension of the basic panel used in our 245 

study with antibodies recognizing signaling molecules (e.g. MAP kinases), enzymes 246 

(to follow metabolic pathways), cellular structural proteins (e.g. cytoskeletal, cargo 247 
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proteins) up to 42 markers in one single tube. Another advantage of the presented 248 

method is that CyTOF enables investigations at protein level (data of transcriptomics 249 

should be also verified at protein level) with single cell resolution. However, we may 250 

consider the limitations of the CyTOF which are a.) the availability of antibodies 251 

against the protein of interest (which is also a limitation for other antibody-based 252 

detection approaches). Moreover, anti-tag antibodies are available when the protein of 253 

interest is labelled with a fusion tag, or the cell of interest is labelled with the 254 

expression of a marker protein (we report herein the use of anti-GFP). Another 255 

limitations are b) the availability of the CyTOF technology (it is increasing and most 256 

of the research centres are supposed to own the technology, as there were 94 257 

instruments already installed in Europe in 2020 January), c) the relative high cost of 258 

the CyTOF technology (although the cost should be taken into account by the number 259 

of investigated markers at protein level and the number of single cells). 260 

We believe that our method serves as a rapid and cost-effective tool to monitor the 261 

alteration of hemocyte composition influenced by various agents or mutations. In 262 

those cases, it is less expensive and easier to perform than single-cell transcriptome 263 

analysis. Additionally, the CyTOF can complement transcriptomic studies verifying 264 

up to 42 simultaneous markers at protein level with single cell resolution. 265 

Conclusion 266 

The SCMC combines the features of traditional cytometry with mass spectrometry 267 

and enables the detection of several parameters at single cell resolution, thus 268 

permitting a complex analysis of biological regulatory mechanisms. We optimized 269 

this platform to analyze the cellular elements, the hemocytes of the Drosophila innate 270 

immune system. The SCMC analysis with 9 antibodies to all hemocytes and 271 

hemocyte subsets showed a good accordance of fluorescence flow cytometry results, 272 

in terms of positivity on hemocytes of the tumor suppressor mutant l(3)mbn1. Further, 273 

we investigated the antigen expression profile of single cells and hemocyte 274 

populations in Ore-R and w1118 controls, and tumorous (l(3)mbn1, hopTum) strains, as 275 
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well as in a stem cell maintenance defective mutant (hdcΔ84). The immunophenotype 276 

of immune activation upon infestation with a parasitoid wasp, the differentiation of 277 

lamellocytes was detected by 10 antibodies in the lz>GFP.  278 

Multidimensional analysis (viSNE) enabled the discrimination of the major 279 

hemocytes: lamellocytes, plasmatocytes, crystal cells and delineated the unique single 280 

cell immunophenotype of the mutant strains under investigation. Single cell mass 281 

cytometry identified sub-populations of L2+/P1+ (l(3)mbn1), L2+/L4+/P1+ (hopTum) 282 

transitional phenotype cells in the tumorous strains and a sub-population of L4+/P1+ 283 

cells upon immune induction. We demonstrated that mass cytometry, a recent single 284 

cell technology coupled with multidimensional bioinformatic analysis at protein level 285 

represents a powerful tool to deeply analyze Drosophila, a key multicellular model 286 

organism of genetic studies with a wide inventory of available mutants. 287 

Materials and methods 288 

Drosophila stocks  289 

The following Drosophila lines were used in the study: w1118 (BSC#9505), ORE-R 290 

(wild type), w; hdcΔ84/TM3, Kr>GFP [30], lz-Gal4, UAS-GFP; +; + (a gift from 291 

Bruno Lemaitre, Lausanne, Switzerland) [32], l(3)mbn1/TM6 Tb [28], a homozygous 292 

hopTum (BSC#8492) line generated by dr. Gábor Csordás (BRC, Szeged, Hungary). 293 

The flies were grown on a standard cornmeal-yeast substrate at 25 °C.  294 

Production of the H18 and 3A5 antibodies 295 

Monoclonal antibodies against Drosophila hemocytes were raised as described 296 

previously [14]. Briefly, BALB/c mice were immunized by i.p. injection of 106 297 

hemocytes from late third instar larvae of the lethal(3)malignant blood neoplasm 298 

[l(3)mbn1] mutant larvae in Drosophila Ringer’s solution (Sigma-Aldrich, St. Louis, 299 

MI, USA). Booster injections were given 4, 8, and 13 weeks later. Three days after 300 

the last immunization, spleen cells were collected and fused with SP2/O myeloma 301 

cells by using polyethylene glycol (PEG1450, P5402 Sigma-Aldrich). Hybridomas 302 

were selected in HAT medium (HAT = hypoxanthine-aminopterin-thymidine 303 
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Supplement, 21060017 Thermo Fischer Scientific Waltham, MA, USA) and 304 

maintained as described by Kohler and Milstein [14, 39]. Hybridoma culture 305 

supernatants were screened by indirect immunofluorescence on acetone fixed, 306 

permeabilized and on live hemocytes. The selected hybridomas were subcloned three 307 

times by limiting dilution. 308 

Isolation of hemocytes 309 

Hemocytes were isolated from late third stage larvae by dissecting the larvae in 310 

Drosophila Schneider’s solution (21720001 Thermo Fisher Scientific, Waltham, MA, 311 

USA)) supplemented with 5% fetal bovine serum albumin (FBS, F7524-500ML 312 

Sigma-Aldrich) plus 0.003% 1-phenyl-2-thiourea (P7629 Sigma-Aldrich). 313 

Immune induction 314 

lz-Gal4; UAS-GFP flies (lz>GFP) laid eggs for three days in bottles containing 315 

standard Drosophila medium. After 72 hours, larvae were infected with Leptopilina 316 

boulardi wasps for 6 hours. Larvae with visible melanotic nodules were selected 72 317 

hours after infestation for isolation of hemocytes. Age and size-matched larvae were 318 

used as control. 319 

Immunofluorescent staining 320 

Immunofluorescent staining was performed as described previously [23]. Briefly, 321 

hemocytes were attached to multispot slides (SM-011, Hendley-Essex, Loughton, 322 

UK) at 21 °C for 45 min. Fixation was performed with acetone for 6 min, rehydrated 323 

and subsequently blocked for 20 min in PBS supplemented with 0.1% BSA (PBS = 324 

phosphate buffered saline, P4417 Sigma-Aldrich; BSA = bovine serum albumin, 325 

A2058 Sigma-Aldrich), incubated with the indicated antibodies for 1 h at 21 °C, 326 

washed three times with PBS and incubated with CF-568 conjugated anti-mouse IgG 327 

(H+L), F(ab’)2 fragment (1:1000, SAB4600082 Sigma-Aldrich) for 45 min. Nuclei 328 

were labeled with DAPI (D9542 Sigma-Aldrich). The microscopic analysis was 329 

carried out using a Zeiss Axioskope 2MOT epifluorescent microscope and Axiovision 330 

2.4 software (Zeiss, Oberkochen, Germany). 331 
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Western blotting 332 

Western blotting was performed in order to test the specificity of the anti-3A5 and 333 

anti-H18 antibodies as described previously [12]. Briefly, proteins were differentiated 334 

by SDS-PAGE. Following the electrophoresis, the proteins were blotted onto 335 

nitrocellulose membrane (Hybond-C, 10564755 Amersham Pharmacia, 336 

Buckinghamshire, UK) in the transfer buffer (25 mM Tris pH 8.3, 192 mM glycine, 337 

20% (V/V) methanol). The nonspecific binding was blocked with PBS supplemented 338 

with 0.1% Tween 20 (PBST, P1379 Sigma-Aldrich) and 5% non-fat dry milk at 21 °C 339 

for 1 h. The blotted proteins were reacted to the indicated antibody (anti-3A5 in 340 

Figure S1, and anti-H18 in Figure S2) with rotation at 21 °C for 3 h. Washing was 341 

performed with PBST three times for 10 min and then incubated with 342 

HRPO-conjugated anti-mouse antibody (62-6520 Thermo Fisher Scientific). After 343 

three washes with PBST for 10 min, the proteins were detected by the ECL-Plus 344 

system (32132 Thermo Fisher Scientific) following the manufacturer’s 345 

recommendations.  346 

Flow cytometry 347 

Flow cytometry was executed as published previously [12]. Briefly, 20 µl of 107/ml 348 

hemocyte suspension was plated in insect Schneider’s medium (supplemented with 349 

10% FCS) into each well of a 96-well U-bottom microtiter plate (3635 Corning Life 350 

Sciences, Tewksbury, MA, USA). Samples for intracellular staining were treated by 351 

2% paraformaldehyde (158127 Sigma-Aldrich). Hybridoma supernatants (50 µl) were 352 

measured to each well, and reacted at 4 °C for 45 min. The negative control 353 

monoclonal antibody was a mouse IgG1 (clone T2/48, anti-human anti-CD45) [40]. 354 

After the incubation, cells were washed three times with ice-cold Schneider’s 355 

medium. The secondary antibody, Alexa Fluor 488-labeled anti-mouse IgG 356 

(AP124JA4 Sigma-Aldrich) was added (1:1000). After 45 min incubation at 4 °C, the 357 

cells were washed (three times) with ice-cold Schneider’s medium and acquired on 358 

FACSCalibur (Beckton Dickinson, Franklin Lakes, NJ, USA). 359 
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Mass cytometry 360 

Mass cytometry was performed as we published earlier with some modifications [10, 361 

41]. The affinity purified monoclonal antibodies were provided by Istvan Ando’s 362 

group (BRC, Szeged, Hungary) (Table 1) or purchased: anti-IgM, (406527 Biolegend, 363 

San Diego, CA, USA [42]), anti-GFP (A11122 Thermo Fisher Scientific [43]), 364 

anti-CD45 (3089003B Fluidigm, South San Francisco, CA, USA [44]) and conjugated 365 

in house according to the instructions of the manufacturer (Maxpar antibody labeling 366 

kit, Fluidigm). Optimal antibody concentrations were titrated prior use (Figure S5). 367 

The following antibody concentrations were used: H2: 5 µg/ml, H3: 5 µg/ml, H18: 5 368 

µg/ml, L1: 1 µg/ml, L2: 7.5 µg/ml, L4: 7.5 µg/ml, L6: 10 µg/ml, anti-IgM: 10 µg/ml, 369 

P1: 7.5 µg/ml, 3A5: 5 µg/ml, anti-GFP: 10 µg/ml. The negative control monoclonal 370 

antibody was a mouse IgG1 (clone Hl30, anti-human 89Y labeled anti-CD45) in 371 

1:100 dilution. The isotypes of anti-Drosophila antibodies were determined by the 372 

IsoStrip™ Antibody Isotyping Kit (11493027001 Roche, Basel, Switzerland) 373 

according to the instructions of the manufacturer. 374 

Single cell suspensions were centrifugated at 1100 g at 6 °C for 4 min and incubated 375 

with viability marker (5 µM cisplatin, 195 Pt, 201064 Fluidigm) on ice in 40 µl PBS 376 

for 3 min. Cells were washed twice with 200 µl Maxpar Cell Staining Buffer (MCSB, 377 

201068 Fluidigm) and centrifugated at 1100 g at 6°C for 4 min. Cells were 378 

resuspended in 50 µl MCSB and 50 µl surface antibody cocktail (2 ×) was added, 379 

incubated on ice for 30 min. Cells were washed with 200 µl MCSB and stained with 380 

anti-IgM antibody (volumes were the same as in the surface staining), incubated on 381 

ice for 30 min. Cells were washed with 200 µl MCSB and suspended in 100 µl 1 × 382 

Maxpar Fix I buffer (201065 Fluidigm), incubated on ice for 20 min. Cells were 383 

washed twice with 200 µl PermS buffer (201066 Fluidigm) then stained with the 384 

intracellular antibody cocktail (L2, 3A5 and anti-GFP in Lz>GFP samples), left on 385 

ice for 30 min. Cells were washed once with MCSB then fixed with 200 µl 1.6% 386 

formaldehyde solution (freshly diluted from 16% Pierce formaldehyde in PBS, 28906 387 
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Thermo Fisher Scientific), incubated on ice for 10 minutes then centrifugated at 1300 388 

g at 6°C for 4 min. After fixation, cells were resuspended in 300 µl Maxpar Fix and 389 

Perm buffer (201067 Fluidigm) containing 125 nM Cell-ID DNA intercalator 390 

(191/193 Iridium, 201192A Fluidigm) and incubated at 4 °C overnight. Before the 391 

acquisition samples were washed in MCSB twice and in PBS once (without Mg2+ and 392 

Ca2+, 10010015 Thermo Fisher Scientific) by centrifugation at 1300 g at 6°C for 4 393 

min. Cells were counted using Bürker chamber. For the measurement on Helios, the 394 

concentration of cells was set to 0.5 × 106/ml in cell acquisition solution (CAS, 395 

201240 Fluidigm) supplemented with 10% EQ Calibration Beads (201078 Fluidigm). 396 

Cells were filtered (30 µm, 04-0042-2316 Celltrics, Sysmex Partec, Görlitz, 397 

Germany) prior to acquisition. Samples were run on CyTOF (cytometry by 398 

time-of-flight) Helios (Fluidigm). Bead based normalization of CyTOF cytofdata was 399 

performed. After randomization, normalization and FCS file generation the files were 400 

further analyzed in Cytobank (Beckman Coulter, Brea, CA, USA). Analysis of the 401 

cells was carried out on live singlets within the pan-hemocyte marker, H2 positive 402 

population. The viSNE (visualization of stochastic neighbour embedding) analysis 403 

was carried out on 3 × 104 cisplatin negative (live) singlets with the following 404 

settings: iterations = 1000, perplexity = 30, theta = 0.5). 405 
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 561 

Figure legends 562 

Figure 1  Single cell mass cytometry revealed the expansion of hemocytes in 563 
hopTum and l(3)mbn1 564 
(A) The percentage of H3, H18, L1, L2, L4, L6, P1, and 3A5 cells were plotted on 565 
radar plots for Drosophila mutants on Ore-R or w1118 background. (B) Comparative 566 
heatmap of mass cytometry data (arcsinh-transformed median intensity values) 567 
regarding marker density at single cell resolution show increased expression of H18, 568 
L1, L2, L4 markers in the mutant hopTum and l(3)mbn1 in relation to control, the wild 569 
type Ore-R. Analysis was performed within the H2 (Hemese) positive live singlets. 570 
 571 
Figure 2  Multidimensional comparative analysis by the tSNE algorithm 572 
dissects the cell relatedness of 5 different Drosophila strains, namely Ore-R, w1118, 573 
l(3)mbn1, hopTum and hdcΔ84  574 
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The wild type Ore-R and white mutant w1118 (genetic backgrounds) are overlapping 575 
while both tumorous strains l(3)mbn1and hopTum represent H18, L1, L2, L4 expansion. 576 
The tSNE analysis of H3, H18, L1, L2, L4, L6, P1, and 3A5 markers was carried out 577 
within the population of pan-hemocyte H2 (Hemese) positive live singlets and 578 
visualised as viSNE plots. Subpopulations of cells with common marker expression 579 
patterns are grouped close in the multidimensional space, while cells with different 580 
marker expression are plotted separately. Coloration is proportional with the intensity 581 
of the expression of a given marker: the hotter the plot, the higher the level of 582 
expression (red plots). Red boxes mark transitional phenotypes expressing both 583 
lamellocyte (L2 or L4) and plasmatocyte (P1) markers.  584 
 585 
Figure 3  Merging viSNE graphs (based on H3, H18, L1, L2, L4, L6, P1, and 586 
3A5 marker expression within the pan-hemocyte H2 (Hemese) positive live 587 
singlets) outlines characteristic maps of each strain (green = Ore-R, blue = w1118, 588 
red = l(3)mbn1, lilac = hopTum, yellow = hdcΔ84) based on high parametric mass 589 
cytometry data  590 
(A) The viSNE comparison of l(3)mbn1 and its wt counterpart, the Ore-R. (B) The 591 
viSNE comparison of w1118, hopTum, and hdcΔ84. (C) The viSNE islands of the control 592 
cells (Ore-R and w1118) localize separately from the tumorous l(3)mbn1 and hopTum 593 
hemocytes while hdcΔ84 represents a transition phenotype.  594 

 595 

Figure 4  Immune activation was monitored successfully by infestation with the 596 
Leptopilina boulardi parasitoid wasp of the lozenge>GFP strain 597 
(A) viSNE analysis of naive (lz>GFP) and immune induced (lz>GFP i.i.) Drosophila 598 
larvae. The tSNE analysis of H3, H18, L1, L2, L4, L6, P1, 3A5 markers and anti-GFP 599 
(marking crystal cells in this particular system) was carried out within the population 600 
of pan-hemocyte H2 (Hemese) positive live singlets. Red boxes mark a 601 
subpopulation, the transitional phenotype of hemocytes expressing both lamellocyte 602 
(L4+) and plasmatocyte (P1) markers upon immune induction. (B) The percentage of 603 
H3, H18, L1, L2, L4, L6, P1, anti-GFP (crystal cells), and 3A5 positive cells. (C) The 604 
heatmap of the (arcsinh-transformed) median values shows the expression changes of 605 
the hemocyte marker expression upon immune induction. Analysis was performed 606 
within the pan-hemocyte marker H2 (Hemese) positive live singlets. 607 

 608 

 609 
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Table 1 List of the antibodies used for mass cytometry 
 
Marker Clone Isotype Metal tag References 

H2 (Hemese) 1.2 mouse IgG2a 147 Sm 12, 14 

H3 4A12 mouse IgG1 155 Gd 14 

H18 (Tetraspannin42Ed) H18 mouse IgG1 164 Dy - 

L1 (Atilla)   H10 mouse IgG1 149 Sm 14, 15, 23 

L2    31A4 mouse IgG2a 158 Gd 14, 23 

L4 (Integrin beta-PS)  1F12 mouse IgG1 159 Tb 14, 23 

L6 (IgM)   H3 mouse IgM – 14, 23 

anti-IgM   RMM-1 rat IgG2a 172 Yb 42 

P1 (NimC1)   N47 mouse IgG1 154 Sm 13, 14, 21 

3A5    3A5 mouse IgG2b 169 Tm - 

anti-GFP  

   

– rabbit 

polyclonal IgG

175 Lu 43 

anti-CD45   HI30 mouse IgG1 89 Y 44 
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