
1 

A comprehensive and centralized database for exploring 
omics data in Autoimmune Diseases 
Jordi Martorell-Marugán 1,2, Raúl López-Domínguez 1, Adrián García-Moreno 1, Daniel Toro-
Domínguez 1,3, Juan Antonio Villatoro-García 1, Guillermo Barturen 3, Adoración Martín-Gómez 4, 
Kevin Troule 5, Gonzalo Gómez-López 5, Fátima Al-Shahrour 5, María Peña-Chilet 6,7,8, Joaquín 
Dopazo6,7,8,9, Víctor González-Rumayor 2, Marta E. Alarcón-Riquelme 3,10 and Pedro Carmona-Sáez 1,11* 

  
1 Bioinformatics Unit. GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian 
Regional Government, PTS Granada, 18016, Granada, Spain. 
2 Atrys Health S.A., Barcelona, Spain. 
3 Genetics of Complex Diseases. GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / 
Andalusian Regional Government, PTS Granada, 18016, Granada, Spain. 
4 Nephrology Units. AADEA: Asociación Andaluza de Enfermedades Autoinmunes. Hospital de Poniente, 04700. Almería, 
Spain. 
5 Bioinformatics Unit. Spanish National Cancer Center, CNIO, Madrid, Spain. 
6 Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain. 
7 Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 
FPS, Hospital Virgen del Rocio. 41013. Sevilla, Spain. 
8 Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. 
Spain 
9 INB-ELIXIR-es, FPS, Hospital Virgen del Rocío, Sevilla, 42013, Spain. 
10 Unit of Chronic Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, 
Sweden. 
11 Department of Statistics. University of Granada, 18071, Granada, Spain. 
*Correspondence: pedro.carmona@genyo.es 

 
Summary 

Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic 

options. In the last decade, several omics studies have provided significant insights into the molecular 

mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored 

independently in public repositories and a unified resource is imperative to assist researchers in this 

field.  Here, we present ADEx (https://adex.genyo.es), a database that integrates 82 curated 

transcriptomics and methylation studies covering 5609 samples for some of the most common 

autoimmune diseases. The database provides, in an easy-to-use environment, advanced data analysis 

and statistical methods for exploring omics datasets, including meta-analysis, differential expression or 

pathway analysis. 
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Introduction 

Autoimmune diseases (ADs) are a group of complex and heterogeneous disorders characterized by 

immune responses to self-antigens leading to tissue damage and dysfunction in several organs. The 

pathogenesis of ADs is not fully understood, but both environmental and genetic factors have been 

linked to their development (Salaman, 2003). Although these disorders cause damage to different organs 

and their clinical outcomes vary between them, they share many risk factors and molecular mechanisms 

(Jörg et al., 2016). Some examples of ADs are systemic lupus erythematosus (SLE), rheumatoid arthritis 

(RA), Sjögren’s syndrome (SjS), systemic sclerosis (SSc), considered systemic autoimmune diseases 

(SADs) and type 1 diabetes (T1D), which is considered an organ-specific autoimmune disease. Most of 

these diseases are classified as rare given their prevalence, but altogether ADs affect up to 3 % of the 

population considering conservative estimates (Cooper and Stroehla, 2003). 

In ADs patients, the pathology is developed during several years but it is only detected when tissue 

damage is significant. For that reason, early diagnosis is important and complicated. Additionally, some 

ADs often show a non-linear outcome that alternates between active and remission stages thus making 

their study even more difficult. Despite huge efforts have been made to develop ADs biomarkers and 

therapies, these do not fit for every patient and their clinical responses differ greatly (Barturen et al., 

2018). 

During the past decade, the use of omics technologies has provided new insights into the molecular 

mechanisms associated with the development of ADs, opening new scenarios for biomarkers and 

treatments discovery (Kim et al., 2014). In this context, it is remarkable the characterization of the type 

I interferon (IFN) gene expression signature as a key factor in the pathology of some SADs, especially 

in SLE and SjS (Thorlacius et al., 2018), which has improved our knowledge of the underlying 

molecular mechanisms and has opened new therapeutic strategies based on blocking the pathways 

related to this signature. 

Regardless of the large amount of omics studies describing new biomarkers and therapeutic strategies 

in ADs (Arriens and Mohan, 2013; Ferreira et al., 2014; Teruel et al., 2017; Xie et al., 2018), in most 
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cases these biomarkers are not consistent across different studies or have not fully accomplished their 

diagnostic goals. Indeed, the widely studied IFN signature is highly variable between patients 

(Rönnblom and Eloranta, 2013) and it is associated to differences in response to treatments which target 

it, as has been reported for example in the phase-II results of Sifalimumab clinical trial for SLE patients 

(Khamashta et al., 2016). In addition, in most of the cases, biomarkers are defined from the analysis of 

a single type of omic data (commonly gene expression), but multi-omics data integration can provide a 

more complete understanding of molecular mechanisms and more robust and biologically relevant 

biomarkers. 

Most of the omics datasets generated from different cohorts and studies in ADs published to date have 

been deposited and are available in public repositories such as Gene Expression Omnibus (GEO) (Edgar 

et al., 2002) or ArrayExpress (Kolesnikov et al., 2015). Although all these valuable data can be used in 

retrospective analyses in order to generate new knowledge and accelerate drug discovery and diagnosis, 

it is not easy to compare neither to integrate available data because they are generated from different 

platforms and/or processed with different analytic pipelines. In this context, there are great efforts from 

the bioinformatics community to develop standardized data analysis workflows and resources that 

facilitate data integration and reproducible analysis. For example, Lachmann et al. (Lachmann et al., 

2018) have recently reprocessed a large collection of raw human and mouse RNA-Seq data from GEO 

and Sequence Read Archive (SRA) using a unified pipeline and they have developed the ARCHS4 as 

a resource to provide direct access to these data through a web-based user interface. Other singular 

projects such as The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) or the Genotype-Tissue 

Expression project (GTEx) (Lonsdale et al., 2013) provide also large and homogeneously processed 

datasets for tumor samples and human tissues respectively. These unprecedented resources motivate 

the development of applications and data portals to help researchers gather information with the aim of 

improving diagnosis and treatment in multiple diseases, most notably in cancer research, where such 

information is actually being used in the clinical practice (Jang et al., 2018). 

Despite such enormous potential, in the context of ADs there is a lack of a centralized and dedicated 

resource that facilitates the exploration, comparison and integration of available omics datasets. This is 
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indeed an area in which this type of application would be tremendously beneficial, given that the low 

prevalence of each individual disease makes difficult the recruitment of large patients cohorts (Barturen 

et al., 2018). 

To bridge this gap, in this work we have compiled and curated most of the publicly available gene 

expression and methylation datasets for five ADs: SLE, RA, SjS, SSc and T1D. To this end, we have 

developed and applied homogeneous pipelines from raw data and we developed ADEx (Autoimmune 

Disease Explorer), a data portal where these processed data can be downloaded and exploited through 

multiple exploratory and statistical analyses. ADEx facilitates data integration and analysis to 

potentially improve diagnosis and treatment of ADs.  

Results 

Data collection and processing 

ADEx contains data from 5609 samples. We have processed 82 expression and methylation datasets 

from case-control studies for SLE, RA, SjS, SSc and T1D diseases (see Table 1 for a summary and 

Supplementary Table 1 for complete information about all included datasets). We have manually 

curated all metadata in order to standardize the nomenclature of phenotypes, cell types, etc. from 

different studies and discard samples or datasets that do not meet the selection criteria (see Methods  

Table 1. Summary of accessible studies and samples by disease and data type in ADEx. 

 Expression Methylation Total 

Disease Datasets - 
Samples 

Datasets - 
Samples 

Datasets - 
Samples 

SLE 20 - 2053 13 - 628 33 - 2626 

RA 17 - 1122 3 - 835 20 - 1957 

SjS 9 - 400 1 - 29 10 - 429 

SSc 5 - 229 1 - 37 6 - 229 

T1D 11 - 176 2 - 100 13 - 276 
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Figure 1. Processing pipeline for ADEx data. Black arrows indicate intermediate processing steps. 
Red arrows indicate the inputs to ADEx application. 

section). In addition, we have prepared five different pipelines to process data for each platform (RNA-

Seq, Affymetrix and Illumina gene expression microarrays, and Illumina methylation arrays 27K and 

450K). 

All these workflows are written in R language and are publicly available in GENyO Bioinformatics 

Unit GitHub (https://github.com/GENyO-BioInformatics/public/tree/master/ADEx). The processed  

datasets are available from the Download Data section in the application. Figure 1 contains an overview 

of the different steps performed to prepare the data for ADEx application.  

The ADEx application 

ADEx data portal can be used to download and analyze the processed data. ADEx is freely available at 

https://adex.genyo.es. The tool is divided in 6 different sections arranged in different tabs (Figure 2a). 
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Section 1: Data overview 

Information about the available datasets can be found in both table or pie plot formats in this section. 

In tables, information about the sample phenotype and their data origin is provided. In pie plots 

quantitative information is provided regarding the clinical and phenotype information. All this 

information has been extracted from GEO or from the associated published articles whenever supplied. 

This information can be presented individually for each dataset or grouped by disease. While a single 

dataset is being explored, the experiment summary is shown. Users can use this section to identify 

datasets of their interest to be analyzed in the following sections. 

Section 2: Gene Query 

This section was created in order to explore the expression and methylation of a specific gene, or the 

correlation between them, within a single dataset. Users can explore the different gene expression values 

for each dataset comparing case and control samples with a boxplot. Meanwhile, methylation data is 

presented at CpG level, so that users can select a region of the gene (e.g. promoter) and the mean 

methylation value for cases and controls is plotted for every CpG probe contained in the selected region. 

It has been demonstrated the strong relationship of gene expression and methylation levels (Suzuki and 

Bird, 2008). That is why, in this section, users can also integrate both expression and methylation values 

to search for direct or inverse correlations. Finally, gene expression correlation analysis can be 

performed in order to get insight into the relationship between different genes and to find groups of 

coexpressed genes. 

Section 3: Gene Set Query 

Here users can select several datasets and genes in order to explore the Fold-Change (FC) between 

patients and controls across studies. All datasets from a disease can be automatically selected by 

clicking the right buttons, or individual studies can be selected by clicking directly on the table. Users 

can introduce a list of genes to explore their expression, although there are several preloaded gene lists 

covering the coexpression modules reported by Chaussabel et al. (Chaussabel et al., 2008). These 

modules consist of sets of coexpressed genes among hundreds of samples from different diseases. Each 
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transcriptional module is associated to different pathways and cell types, most of them related to the 

immune system (Chaussabel et al., 2008). See Figures 2b and 2c for an example of this type of analysis. 

Section 4: Analyze Dataset 

In this section, we focus the analysis on whole datasets instead of individual genes. By default, a 

heatmap with the expression of the top 50 differentially expressed genes (DEGs) sorted by FDR is 

displayed. It is also possible to sort them by FC and FDR cutoffs can be applied to both statistics. 

Additionally, differential expression analysis results can be downloaded as an excel table.  

Furthermore, users can also study the KEGG (Kanehisa and Goto, 2000) enriched pathways associated 

to the dataset selected. These results are precomputed using all the DEGs that have an FDR value below 

0.05. A table gathers the significantly enriched KEGG pathways along with their associated 

hypergeometric test statistics and an interactive plot shows detailed information of the participant genes 

in the pathway colored according to their FC.  

Beyond conventional pathway enrichment methods, we have implemented more sophisticated 

mechanistic models of cell signaling activity which have demonstrated to be very sensitive in 

deciphering disease mechanisms (Cubuk et al., 2018; Hidalgo et al., 2017) as well as the mechanisms 

of action of drugs (Amadoz et al., 2015; Esteban-Medina et al., 2019). 

To offer this functionality we have applied HiPathia software (Hidalgo et al., 2017) to gene expression 

data. This method estimates changes in the activity of signaling circuits defined into different pathways. 

With this approach, it becomes possible to study in detail the specific signaling circuits altered in ADs 

within the different signaling pathways. We precomputed this analysis for each dataset and the results 

are available as tables and interactive reports. 

Section 5: Meta-Analysis 

ADEx also implements meta-analysis functionalities based on gene expression data to integrate and 

jointly analyze different and heterogeneous datasets. We implemented a meta-analysis approach to 

search for biomarkers and common gene signatures across different datasets from the same or different 

pathologies (Toro-Domínguez et al., 2014a) based on the FCs of each dataset and gene. Datasets have 

to be selected similarly to Section 3 to launch the meta-analysis. 
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Section 6: Download data 

In this section, users can select one or several datasets and download them. Curated data is obtained 

with the aim of performing additional analyses externally to ADEx application. 

Figure 2. Overview of ADEx application and analysis of IFN signature across diseases. a) ADEx 
has six main sections. Section 1 provides information about available datasets. In section 2, users can 
explore expression and methylation for individual genes. Section 3 implements a module to explore 
data for a gene list, such as gene module or genes from a biological pathway, across several datasets. 
Section 4 allows researchers to perform analysis on individual datasets retrieving differential expression 
signatures and pathways and cell signaling enrichment analyses. Section 5 implements meta-analysis 
methods to integrate multiple datasets in order to define common biomarkers. Section 6 is for data 
download. b) Gene Set Query section screenshot. Datasets and gene set input is shown. Users select 
data there to plot a heatmap. c) IFN signature expression generally separates SLE and SjS from 
other ADs. Heatmap with the IFN genes generated in ADEx. Color represents the log2 FC of disease 
versus healthy samples (red for overexpression and blue for underexpression). 
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Methods 

Data collection 

Collection of the datasets included in ADEx was carried out by searching in GEO web page with ADs 

names as key terms. We filtered the results by study type (expression profiling by array, expression 

profiling by high throughput sequencing and methylation profiling by array), organism (Homo sapiens) 

and platform manufacturer (Affymetrix or Illumina). 

We downloaded the metadata for these initial datasets with GEOquery (Davis and Meltzer, 2007) R 

package in order to apply our inclusion criteria and exclude those studies and samples that do not meet 

them. We only included case-control studies from samples, which were not treated with drugs in vitro. 

Exclusively datasets with available raw data were considered. Studies whose controls and cases belong 

to different tissues were discarded. We only selected datasets with 10 samples at least. We divided the 

datasets containing samples from different diseases, platforms, tissues or cell types in subgroups so that 

these are constant and avoid possible batch effects. 

82 datasets containing 5609 samples passed our filtering criteria (see Table 1 for a summary and 

Supplementary Table 1 for complete information about all included datasets). Then we downloaded 

their raw data with GEOquery (Davis and Meltzer, 2007). For expression microarrays, we downloaded 

CEL files and raw text files for Affymetrix and Illumina platforms respectively. For RNA-Seq, we 

downloaded the fastq files from the European Nucleotide Archive. For methylation microarrays, we 

downloaded raw methylation tables if they were available and idat files otherwise. 

Metadata curation 

GEO does not require submitters to use either a fixed structure or standard vocabulary to describe the 

samples of an experiment. For that reason, it was necessary to manually homogenize the information 

provided within all the selected datasets using standardized terms. There are some methods for 

automatic curation of GEO metadata, but manual curation is still necessary to get high-quality metadata 

(Wang et al., 2019). This metadata curation was an essential step for the following analyses and permits 

an easy datasets information exploration. 
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Platforms curation 

We have used a total of 12 different gene expression platforms from microarray and RNA-Seq 

technologies. Microarray platforms quantify expression levels in probes. In order to match probe 

identifiers to gene names, platforms annotation files are available from GEO. However, we found that 

some of these annotation files match probes to inappropriate gene names. On the one hand, some 

platforms save gene names with errors due to the conversion of gene names such as MARCH1 or SEPT1 

into dates, a common error that has been reported previously (Ziemann et al., 2016).  In these cases, we 

fixed manually these genes in the annotation files. On the other hand, different platforms use obsolete 

or simply different synonyms or aliases to refer to the same genes. We used human genes’ information 

from NCBI repository in order to match aliases with actual official gene symbols and substituted them 

in the platform annotations. 

Data processing 

Raw data from Illumina expression microarrays were loaded by reading the plain text files. In order to 

remove background noise, we kept only the probes that had a Detection P-value lower than 0.05 in 10 

% of the samples. Then we performed a background correction and quantile normalization (Shi et al., 

2010) using neqc function from limma package (Ritchie et al., 2015). 

CEL files from Affymetrix expression microarrays platforms were loaded to R environment with affy 

package (Gautier et al., 2004). To filter low intensity probes, we removed all probes with an intensity 

lower than 100 in at least 10 % of the samples. Normalization was carried out computing Robust 

Multichip Average (RMA) normalization (Irizarry et al., 2003) with affy package (Gautier et al., 2004). 

For RNA-Seq datasets, fastq files were aligned to human transcriptome reference hg38 using STAR 2.4 

(Dobin et al., 2013) and raw counts were obtained with RSEM v1.2.31 (Li and Dewey, 2011) with 

default parameters. Raw counts were filtered using NOISeq R package (Tarazona et al., 2015), 

removing those features that have an average expression per condition lower than 0,5 counts per million 

(CPM) and a coefficient of variation (CV) higher than 100 in all conditions. Counts normalization was 

carried out with TMM method (Robinson and Oshlack, 2010). 
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We translated microarrays probes identifiers to gene symbols using our curated annotation tables. For 

those genes targeted by two or more microarray probes, we calculated the median expression values of 

all their targeting probes. For RNA-Seq, we translated ENSEMBL identifiers to gene symbols using 

biomaRt package (Durinck et al., 2005, 2009).  

Methylation raw data are available in GEO as idat or text files depending on the dataset. Idat files were 

read with minfi package (Aryee et al., 2014), while text files were read in the R environment. In both 

cases, poorly performing probes with a detection P-value above 0.05 in more than 10 % of samples 

were removed. Probes adjacent to SNPs, located in sexual chromosomes or reported to be cross-reactive 

(Chen et al., 2013) were also removed. We normalized the methylation signals using quantile 

normalization with lumi package (Du et al., 2008). Finally, for datasets generated with 450k platform, 

we applied BMIQ normalization (Teschendorff et al., 2013) using wateRmelon package (Pidsley et al., 

2013) in order to correct for the two types of probes contained in this platform. 

Differential expression analysis 

We performed a differential expression analysis in all datasets independently towards the identification 

of differential patterns among disease samples and healthy controls. These analyses were performed in 

different ways depending on the source of data. Gene expression profiles from microarray platforms 

were carried out by the standard pipeline of limma package (Ritchie et al., 2015). We used lmFit 

function to fit a linear model to the gene expression values followed by the execution of a t-test by the 

empirical Bayes method for differential activity (eBayes function). On the other hand, gene expression 

profiles from RNA-Seq platforms were analyzed by the standard pipeline of DESeq2 package (Love et 

al., 2014). In both cases, differential expression analysis provided P-values, adjusted P-values by FDR 

and log2 FC. 

Pathway analysis 

Pathway enrichment analysis was precomputed for each expression dataset using differential expression 

analysis results. We considered DEGs those genes with a FDR lower than 0.05 and we performed 

hypergeometric tests to check if each pathway contains more DEGs as expected by chance. We used 
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KEGGprofile 1.24.0 R package to perform this analysis but beforehand we manually updated its 

dependency, KEGG.db, the database used to perform the statistical test. The pathways were plotted 

using KEGG mapper tool, Search&Color Pathway, with the genes colored by their FC between case 

and control samples. 

Signaling network analysis 

We integrated signaling network analysis applying HiPathia software (Hidalgo et al., 2017) to gene 

expression data so that changes in the activity of the network from different pathways can be detected. 

We precomputed this analysis for each gene expression dataset. Firstly, we translated the gene 

expression matrix and scaled it. Then, we calculated the transduction signal and compared among 

conditions, cases and controls. Finally, the results were stored in interactive html reports. 

Database architecture 

Pursuing an optimal data organization and a quick access to all the data in ADEx, we have enabled an 

internal database with PostgreSQL. We chose this technology since it is open source and it is best suited 

to the huge dimensionality of omics datasets. 

Webtool 

ADEx user interface was designed with RStudio Shiny package. The application uses a set of external 

packages to perform analysis and graphics on demand. Most of the plots are generated with ggplot2 

(Wickham, 2009). All the computations in Meta-Analysis section are performed whenever users request 

them. Biomarkers analysis is performed with Rank Products algorithm integrated in RankProd R 

package (Del Carratore et al., 2017). The tool runs in our own server with CentOS 7.0 operating system, 

16 processors and 32 Gb of RAM memory. 

 

Discussion 

Despite that the heterogeneity of ADs is evident, there are common molecular mechanisms involved in 

the activation of immune responses. In this context, integrative analyses of multiple studies are crucial 
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to discover shared and differential molecular signatures (Toro-Domínguez et al., 2014b). Nowadays 

there are many ADs datasets publicly available, but a strong computational knowledge is necessary in 

order to analyze them properly. With the aim of filling this gap between experimental research and 

computational biology, interactive easy-to-use software are valuable tools to perform exploratory and 

statistical analysis without strong computational expertise. This type of tool has been developed for 

other diseases and has helped to reuse public data and generate new knowledge and hypotheses (Cerami 

et al., 2012; Díez-Villanueva et al., 2015; Toro-Domínguez et al., 2019). 

A resource of this type is urged in the field of ADs to: 1) Compile available ADs’ public data in a single 

data portal, 2) Access to integrable data processed with uniform pipelines, and 3) Perform both 

individual and integrated analysis interactively. We developed ADEx database to accomplish all those 

objectives.  

As far as we know, ADEx is the first ADs omics database and we expect it to be a reference in this area. 

During the coming years, ADEx will be expanded including data from more ADs and other omics.  
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Supplementary Information 

Supplementary Table 1. Description of the datasets included in ADEx database. This table contains 

information about each study included in ADEx, with disease, platform, sample size and reference (if available). 

Dataset Studied 
disease 

Experimental 
strategy Platform Sample 

size Reference 

GSE10325 SLE Expression profiling 
by array 

[HG-U133A] Affymetrix 
Human Genome U133A Array 67 (Hutcheson et al., 2008) 

GSE104174 SSc 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2500 (Homo 
sapiens) 72 (Moreno-Moral et al., 2018) 

GSE108497 SLE Expression profiling 
by array 

Illumina HumanHT-12 V4.0 
expression beadchip 512 NA 

GSE110007 SjS Methylation profiling 
by array 

Illumina 
HumanMethylation450 

BeadChip 
(HumanMethylation450_1501

7482) 

31 (Cole et al., 2016) 

GSE110169 SLE, RA Expression profiling 
by array 

[HG-U219] Affymetrix 
Human Genome U219 Array 234 NA 

GSE110174 SLE Expression profiling 
by array 

[HT_HG-U133_Plus_PM] 
Affymetrix HT HG-U133+ 

PM Array Plate 
154 NA 

GSE110607 SLE 
Methylation profiling 

by genome tiling 
array 

Illumina 
HumanMethylation450 

BeadChip 
(HumanMethylation450_1501

7482) 

104 (Ulff-Møller et al., 2018) 
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Dataset Studied 
disease 

Experimental 
strategy Platform Sample 

size Reference 

GSE110914 T1D 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2500 (Homo 
sapiens) 42 (Vecchio et al., 2018) 

GSE112341 T1D 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2500 (Homo 
sapiens) 22 (Gao et al., 2019) 

GSE117931 SSc 

Expression profiling 
by array, Methylation 
profiling by genome 

tiling array 

llumina HumanHT-12 WG-
DASL V4.0 R2 expression 

beadchip, Illumina 
HumanMethylation450 

BeadChip 
(HumanMethylation450_1501

7482) 

74 NA 

GSE11907 SLE Expression profiling 
by array 

[HG-U133A] Affymetrix 
Human Genome U133A Array 

[HG-U133B] Affymetrix 
Human Genome U133B Array 

546 (Chaussabel et al., 2008) 

GSE12021 RA Expression profiling 
by array 

[HG-U133A] Affymetrix 
Human Genome U133A Array 

[HG-U133B] Affymetrix 
Human Genome U133B Array 

57 (Huber et al., 2008) 

GSE124073 SSc 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2000 (Homo 
sapiens) 73 (Mariotti et al., 2019) 

GSE124939 SLE 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 4000 (Homo 
sapiens) 72 (Tsoi et al., 2019) 

GSE13887 SLE Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
27 (Fernandez et al., 2009) 

GSE23117 SjS Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
15 (Greenwell-Wild et al., 

2011) 

GSE24706 SLE Expression profiling 
by array 

Illumina HumanWG-6 v3.0 
expression beadchip 48 (Li et al., 2011) 

GSE27895 SLE Methylation profiling 
by array 

Illumina HumanMethylation27 
BeadChip 

(HumanMethylation27_27059
6_v.1.2) 

23 (Jeffries et al., 2011) 

GSE30153 SLE Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
26 (Garaud et al., 2011) 

GSE38351 SLE,RA Expression profiling 
by array 

[HG-U133A] Affymetrix 
Human Genome U133A Array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 

74 (Smiljanovic et al., 2012) 

GSE40611 SjS Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
49 (Horvath et al., 2012) 

GSE42861 RA Methylation profiling 
by array 

Illumina 
HumanMethylation450 

BeadChip 
(HumanMethylation450_1501

7482) 

689 (Liu et al., 2013) 
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Dataset Studied 
disease 

Experimental 
strategy Platform Sample 

size Reference 

GSE45291 SLE,RA Expression profiling 
by array 

[HT_HG-U133_Plus_PM] 
Affymetrix HT HG-U133+ 

PM Array Plate 
805 (Bienkowska et al., 2014) 

GSE50772 SLE Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
81 (Kennedy et al., 2015) 

GSE51092 SjS Expression profiling 
by array 

Illumina HumanWG-6 v3.0 
expression beadchip 222 (Lessard et al., 2013) 

GSE55098 T1D Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
22 (Yang et al., 2015) 

GSE55235 RA Expression profiling 
by array 

[HG-U133A] Affymetrix 
Human Genome U133A Array 30 (Woetzel et al., 2014) 

GSE55457 RA Expression profiling 
by array 

[HG-U133A] Affymetrix 
Human Genome U133A Array 33 (Woetzel et al., 2014) 

GSE56606 T1D Methylation profiling 
by array 

Illumina HumanMethylation27 
BeadChip 

(HumanMethylation27_27059
6_v.1.2) 

100 (Rakyan et al., 2011) 

GSE56649 RA Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
22 (Ye et al., 2015) 

GSE57383 RA Expression profiling 
by array 

[HT_HG-U133_Plus_PM] 
Affymetrix HT HG-U133+ 

PM Array Plate 
112 (Rosenberg et al., 2014) 

GSE57869 SLE Methylation profiling 
by array 

Illumina HumanMethylation27 
BeadChip 

(HumanMethylation27_27059
6_v.1.2) 

12 (Hong et al., 2017) 

GSE59250 SLE Methylation profiling 
by array 

Illumina 
HumanMethylation450 

BeadChip 
(HumanMethylation450_1501

7482) 

434 (Absher et al., 2013) 

GSE60424 T1D 
Expression profiling 
by high throughput 

sequencing 

Illumina HiScanSQ (Homo 
sapiens) 134 (Linsley et al., 2014) 

GSE61635 SLE Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
129 NA 

GSE63903 SSc Expression profiling 
by array 

Illumina HumanHT-12 V4.0 
expression beadchip 14 (Ayano et al., 2015) 

GSE65010 RA Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
48 (Walter et al., 2016) 

GSE65391 SLE Expression profiling 
by array 

Illumina HumanHT-12 V4.0 
expression beadchip 996 (Banchereau et al., 2016) 

GSE71841 RA Methylation profiling 
by array 

Illumina 
HumanMethylation450 

BeadChip 
(HumanMethylation450_1501

7482) 

24 NA 

GSE72509 SLE 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2500 (Homo 
sapiens) 117 (Hung et al., 2015) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.144972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.144972
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

Dataset Studied 
disease 

Experimental 
strategy Platform Sample 

size Reference 

GSE7451 SjS Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
20 (Hu et al., 2007) 

GSE77298 RA Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
23 (Broeren et al., 2016) 

GSE80183 SLE 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2000 (Homo 
sapiens) 16 (Rai et al., 2016) 

GSE82221 SLE 

Expression profiling 
by array, Methylation 
profiling by genome 

tiling array 

Illumina HumanHT-12 V4.0 
expression beadchip, Illumina 

HumanMethylation450 
BeadChip 

(HumanMethylation450_1501
7482) 

110 NA 

GSE84844 SjS Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
60 (Tasaki et al., 2017) 

GSE87095 RA Methylation profiling 
by array 

Illumina 
HumanMethylation450 

BeadChip 
(HumanMethylation450_1501

7482) 

122 (Julià et al., 2017) 

GSE89408 RA 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2000 (Homo 
sapiens) 218 (Guo et al., 2017) 

GSE90081 RA 
Expression profiling 
by high throughput 

sequencing 

Illumina HiSeq 2000 (Homo 
sapiens) 24 (Shchetynsky et al., 2017) 

GSE93683 SjS Expression profiling 
by array 

[HG-U133_Plus_2] 
Affymetrix Human Genome 

U133 Plus 2.0 Array 
48 (Tasaki et al., 2017) 

GSE95065 SSc Expression profiling 
by array 

[HG-U133A_2] Affymetrix 
Human Genome U133A 2.0 

Array (HGU133A2 Hs 
ENTREZG 19.0.0) 

33 NA 

GSE10325 SLE Expression profiling 
by array 

[HG-U133A] Affymetrix 
Human Genome U133A Array 67  
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