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Abstract 

An important question in neuroscience is how local activity can be flexibly and selectively routed across the 

brain network. A proposed mechanism to flexibly route information is frequency division multiplexing: 

selective readout can be achieved by segregating the signal into non-overlapping frequency bands.  Here, in 

wild-type mice and in a transgenic model (3xTgAD) of Alzheimer’s Disease (AD), we use optogenetic 

activation of the entorhinal cortex, concurrent whole-brain fMRI, and hidden Markov modeling. We 

demonstrate how inducing neuronal spiking with different theta frequencies causes spatially distinct states of 

brain network dynamics to emerge and to preferentially respond to one frequency, showing how selective 

information streams can arise from a single neuronal source of activity. This theta modulation mechanism, 

however, is impaired in the AD model. This work demonstrates that neuronal multiplexing is a sufficient 

mechanism to enable flexible brain network communication, and provides insight into the aberrant 

mechanisms underlying cognitive decline.  
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Introduction 

The transient synchronization of neuronal spiking, a state in which the activity of a neuronal population is 

periodically synchronized either within or across brain regions, is an ubiquitous property in brain networks. 

Most importantly, the spatiotemporal features of these network oscillations are known to vary with cognitive 

tasks, suggesting a central role in neural coding 1–3.  A prominent hypothesis on the computational role of 

oscillatory brain network dynamics is that they function to control information flow through long-range 

anatomical pathways 4. Because distinct behavioral tasks require different combinations of highly 

specialised regions to work together, routing information via network oscillations would have a crucial role 

in supporting flexible and selective brain network communication and thus efficient behavior.  Recent work 

has shown evidence of phase-coupling frequency-specific signatures of organization in spontaneous human 

brain activity at rest measured via MEG, possibly reflecting the functional specialisation of distinct circuits 

at different intrinsic timescales 5. These spontaneous spatiotemporal patterns of network oscillations unfold 

dynamically across time, and may be referred to as the “communication dynamics” of the system 6. 

However, the mechanisms that would allow flexible communication dynamics to emerge in a networked 

system remain unknown. Although network dynamics may originate from multiple sources of oscillatory 

activity, it is still unclear whether single-area neuronal spiking can also give rise to multiple states of 

network dynamics. And furthermore, it remains unclear what role brain topology plays in shaping network 

dynamics. 

Here, we analyzed blood oxygen level dependent (BOLD) fMRI fluctuations of the mouse whole brain, both 

at rest and during optogenetic stimulation of the EC. We used hidden Markov models (HMM) that, in a 

completely data-driven fashion, characterize a discrete set of HMM states: transient, repeating patterns of 

BOLD brain signal amplitude and functional connectivity (Fig. 1). In other words, each state represents a 

unique brain network state of distinct activity and functional connectivity that recurs at different points in 

time during the scan 7. Using HMM, we find that spontaneous BOLD fMRI brain activity in mice is 

organized in a hierarchical fashion that is similar to humans. We then combine fMRI with optogenetic 

activation of the EC to demonstrate that localized neuronal spiking is sufficient to cause distinct network 
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states, with different short-scale and long-scale temporal trajectories. Crucially, these network states exhibit 

preferential responses to different frequencies in neuronal spiking, and this frequency-specific response is 

impaired in a transgenic model of Alzheimer’s disease. Together, our results demonstrate the biological 

validity and reproducibility of our fMRI-HMM approach in mice and highlight the relevance of this 

approach to study the cell-type specific mechanisms underlying neuronal coding in brain network 

communication. 

 

 

Figure 1 Hidden Markov modeling brain network dynamics during optogenetic stimulation of excitatory 
neurons in the EC. a) Lightly-anesthetized mice under mechanical ventilation underwent high-field functional MRI 
acquisition runs, concurrently with 10 optogenetics photostimulation blocks of 10 s interleaved with 50 s inter-stimuli 
intervals per run. Photostimulation was conducted in the left lateral entorhinal cortex (EC) with frequency range 5 to 
20 Hz pseudo-randomized between runs. b)  Photostimulation of EC neurons elicited a faithful response to both 5 and 
20 Hz stimulation pulses, here shown in wild-type mice, as confirmed in ex-vivo slice preparation (c) .  d) Whole-brain 
fMRI BOLD fluctuations in response to optogenetic stimulation were modelled through Hidden Markov models 
(HMMs), characterizing a discrete number of dynamic brain networks, or states. Temporally, they are represented by a 
specific state time course that, for each subject, indicates when each state is active (activation probability). Showing 
WT-ChR2 group average HMM states activation probability time-locked to the optogenetic stimulation (shown by 
blue bar underneath). e ) Spatially, each state is characterized by BOLD mean activation (amplitude) and functional 
connectivity matrix (also represented as network degree). f) The effect of varying EC neuronal spiking rate 
on brain network dynamics was then assessed. 
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Results 

Oscillations result from the dynamic interaction between cellular and circuit properties. At microscopic 

scales, oscillatory synchronizations are constrained by axon conduction and synaptic delays; at macroscopic 

scales, oscillatory synchronizations are thought to be influenced by the architectural properties of the brain 

network (for review: 8). This complex interplay between oscillatory patterns and brain network topology 

may, therefore, allow neuronal signalling to selectively propagate along distinct subdivisions of anatomical 

projections or circuits 6, giving rise to multiple temporal and spatial scales 8 or information streams 4.  From a 

modeling perspective, it is possible to utilize the sequential nature of BOLD fMRI data in order to 

characterize transient network states in brain hemodynamic activity. HMMs are well-suited because they 

provide a time-point-by-time-point description of network activity at the single-trial level, facilitating the 

characterisation of how such responses may evolve across time 7 or in response to perturbations such as 

stimulation. 

While HMMs provide a novel way of interrogating information within fMRI data, their use has not been 

previously applied to species other than humans. Here, using HMMs, we show that spontaneous 

hemodynamic fluctuations in the mouse brain at rest are temporally organized in a series of states that mirror 

well-established resting-state networks 9–11  ( Fig. S1-3, see Supplementary results). Furthermore, we show 

that these states are organized in a hierarchical fashion, similar to what has been previously observed in 

humans 7. Together, these results show that spontaneous brain network activity in mice is characterized by 

similar principles of temporal organization as in humans, thus providing further evidence of how the mouse 

brain is a relevant model to causally study neuronal mechanisms of mammalian brain network dynamics. 

 

Single-area evoked neuronal spiking is sufficient to cause spatially distinct, fast brain network 

dynamics 
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What neural coding mechanism may support selective communication via oscillations?  Selective 

communication relies on widespread, long-range anatomical connections among both cortical and 

subcortical networks. In a divergent case, where a single population of neurons sends signals to different 

projection targets (as opposed to a convergent case where multiple inputs converge to a single target), 

selective communication may arise through independent control of the gain for each of the projections 

targets. This would require multiplexing 4: the same spatiotemporal pattern of spiking in the projecting 

network contains separate information streams (or channels) that can be accessed by the different projection 

targets. In other words, different projection targets would be able to read out different signals from the same 

pattern of activity.  If the multiplexing hypothesis in a divergent scenario were correct, one would predict 

that inducing activity with different neuronal spiking rates on top of a single-brain area basal activity would 

cause multiple patterns of circuit dynamics to emerge and to preferentially respond at different modulations. 

However, the hypothesis of multiplexing in a divergent scenario has not yet been causally tested.  

Given its brain-wide projections and preferential modulation via the theta frequency band (5-10 Hz) 12,13, the 

entorhinal (EC)-hippocampal circuit represents a unique system to causally test the multiplexing hypothesis 

and thus understand brain network communication. Functionally, theta rhythms are proposed to have a key 

role in memory 12,14: it has been proposed that encoding the representation of novel memories, that relies on 

strong theta spiking input from the EC to CA1, is followed by a retrieval phase where strong communication 

from CA3 to CA1 allows to recall previously stored associations 4.  However, it remains unknown whether 

selective information channels within the theta band allow the EC to access distinct downstream brain-wide 

projections, i.e. whether EC activity within the theta band employs multiplexing.  

Understanding how brain function emerges from the synchronized firing of neurons, and whether multiple, 

distinct network dynamics can emerge from it, remain some of the most challenging questions in modern 

neuroscience. Answering these questions is fundamental to shed new light on circuit-specific mechanisms of 

information communication. Here, we combined HMM with optogenetics-evoked fMRI (ofMRI) 15 in mice 

with channelrhodopsin-2  (ChR2)-transfected into excitatory neurons of the EC 16. Photostimulation was 

conducted with frequencies of 5, 10, and 20 Hz, pseudo-randomized between runs. Transfected EC neurons 

5 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.142695doi: bioRxiv preprint 

https://paperpile.com/c/KXMzZU/aVhb
https://paperpile.com/c/KXMzZU/J38u+jbRp
https://paperpile.com/c/KXMzZU/J38u+pjYJ
https://paperpile.com/c/KXMzZU/aVhb
https://paperpile.com/c/KXMzZU/1hlB
https://paperpile.com/c/KXMzZU/NbRF
https://doi.org/10.1101/2020.06.09.142695
http://creativecommons.org/licenses/by/4.0/


faithfully responded with frequency-locked action potentials to both extremes of the  frequency-range 

tested(Fig. S4 ) (see Supplementary methods). 

We asked whether localized excitatory neuronal induced-activity was sufficient to cause multiple, transient 

states of large-scale hemodynamic activity to emerge. Using data from N = 31 mice (NWT-mCherry = 9, N WT-ChR2 

= 10, N 3xTgAD-ChR2 = 12), n = 153 runs , we sought to describe brain hemodynamics as a collection of 14 

dynamic states (which yielded greater model similarity and lower free energy compared to other numbers of 

states; Fig. S5a ). Each state captures a unique pattern of both amplitude and functional connectivity across 

brain regions (Fig. S5, S6 ).  This 14-state HMM was then used to compare differences in brain network 

responses to optogenetic stimulation in the ChR2 and control groups (N WT-ChR2 = 10 mice; n = 54 runs; each 

animal underwent 6 runs acquired in 2 sessions; mCherry; N WT-mCherry = 9 mice, n = 27 runs; each animal 

underwent 3 runs acquired in 1 session; all stimulation frequencies combined). We observed that the HMM 

was able to characterize changes in fast brain dynamics in response to the optogenetic stimulation in ChR2 

animals ( Fig. 2a, and with different states numbers as shown in Fig. S7) that was time-locked to the 

stimulation (Fig. 2b ). Note that the HMM used here is an unsupervised method with no a-priori knowledge 

of the stimulation paradigm.  As a comparison, a standard approach relying on mass-univariate GLM testing 

yielded one, single pattern of spatial activity in response to the optogenetic stimulation Fig. S8).  
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Figure 2 Optogenetic stimulation of the EC causes distinct states of brain network dynamics. A 
14-state HMM was used to study brain network dynamics in response to EC stimulation at 5, 10, and 20 Hz 
in 3 groups of mice: N = 31 mice (NWT-mCherry = 9, N WT-ChR2 = 10, N 3xTgAD-ChR2 = 12) , n = 153 runs (see Fig. S5 
for details on HMM fit).  Here, however, only group comparison results in WT mice between mCherry 
controls and ChR2 groups is shown. a ) (Top row) Optogenetic stimulation blocks shown in blue over time. 
(Middle and bottom rows) Group averages of HMM states activation probability aligned with optogenetic 
stimulation blocks. Each color represents a different HMM state. Middle row: WT-mCherry control group 
( N WT-mCherry = 9 mice, n = 27 runs; each animal underwent 3 runs acquired in 1 session, all stimulation 
frequencies combined); bottom row: WT-ChR2 group (N WT-ChR2 = 10 mice; n = 54 runs; each animal 
underwent 6 runs acquired in 2 sessions, all stimulation frequencies combined). b) Area plot of group 
average responses for each state (colors as for a ) over 20 seconds, time-locked to the optogenetic stimulation 
(shown by blue bar underneath) for control (top) and ChR2 group (bottom). c) Showing -log10 family wise 
error (FWE)-corrected p-values (across time and states) of group difference in HMM states activation 
probability time-locked to optogenetic stimulation (shown by blue bar and grey background).  The threshold 
for statistical significance is indicated by the dotted line. d) HMM activation probability time-locked to 
stimulation shown in b) is here plotted as activation lines for ChR2 group only. e) Variability in HMM 
activation probability across subjects and runs (errors indicate standard deviation across subjects and runs in 
ChR2 group only; dotted line indicates the average activation level across all HMM states). f) brain maps of 
the 4 HMM states found to be significantly more active in the ChR2 group. 
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We then looked at the evoked brain network response to time-locked optogenetic stimulation. We focused 

on the HMM brain state activation probability at each time point, thus characterizing fast-transitions in brain 

network dynamics at a second-by-second resolution. Across blocks, for each time-point, we tested whether 

the probability of each HMM state being active was greater in the group expressing ChR2 compared to the 

mCherry controls (and vice versa). During stimulation, we found that 3 states (states 11, 10, and 6) were 

significantly more active in the ChR2 group, compared to controls (while correcting across time and states, 

Fig. 2c ). Notably the spatial pattern of activity of these 3 states was significantly associated with the pattern 

of monosynaptic projection of EC, suggesting that these spatial patterns are direct results of inducing 

activation in excitatory neurons in EC ( Fig. S9a).  We also report that 3 states were significantly more active 

during stimulation in the control (mCherry) group (Fig. S9b). Their spatial pattern of activity, however, was 

not significantly associated with the pattern of monosynaptic projection of EC. 

All these 3 states significantly respond to optogenetic stimulation showing (in the short-scale as opposed to 

the long-scale, see below) overlapping temporal responses (Fig. 2d, e). With a delayed onset, rise-time of 

around 5-7 seconds, and slower decay, the HMM-ofMRI evoked responses matched the dynamics of 

conventional stimulus-evoked BOLD fMRI 17,18.  

Our HMM approach allowed us to characterize brain network states as dynamics in both BOLD amplitude 

fluctuations and functional connectivity (Fig. S5, S6). State 11 (Fig. 2f ) shows greater BOLD amplitude 

(compared to the average across states) in the left EC (medial and lateral), subiculum, dentate gyrus, and 

CA1, and greater coupling bilaterally with the frontal cortex. State 10 shows a similar configuration of 

bilateral coupling but different BOLD amplitude: it shows greater activity in CA1, dentate gyrus, subiculum, 

orbital area, and in medial EC. State 6 shows greater activity in subiculum, dentate gyrus, medial EC, and 

CA1 and, of interest, left accumbens, pallidum, and thalamus, together with greater contralateral coupling in 

the frontal cortex. Together, these findings provide forward, causal evidence that inducing activation of 

excitatory neurons is sufficient to drive distinct brain network states of coordinated dynamics. 

Of interest, we were also able to show that, in ChR2-transfected animals, state 14 showed significantly 

greater activation after  the end of stimulation: this state was significantly present in ChR2-transfected 
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animals but not in controls. State 14 showed greater BOLD amplitude bilaterally in the median EC, CA1, 

subiculum and amygdalar nuclei and, of interest, greater coupling across the whole cortex. This result 

suggests that after activation of excitatory neurons via optogenetic stimulation the brain does not necessarily 

return to a baseline or default mode state. Previous work, studying the optogenetic activation of the motor 

cortex, reported robust, delayed hemodynamic (and electrical) responses in the thalamus, an area with 

known axonal projections from the motor cortex 18. The authors attributed such response to network delays 

and interpreted it as an example of downstream activity 18,19. Downstream, delayed non-local activity (i.e. 

thalamic activity), was inferred to more likely depend upon a cascade effect that involves neuronal as well as 

non-neuronal elements, giving rise to more complex contributions to the vascular response 20. It is possible 

that we here observed how induced-neuronal spiking in genetically-targeted cells is sufficient to trigger a 

series of cascade effects, resulting in brain network entrainment into a non-default state, represented by state 

14. 

 

Repetitive, single-area neuronal spiking is sufficient to cause long-scale causal interactions between 

brain network dynamics 

As well as highlighting short-scale, time-locked responses to inducing neuronal activity, combining HMM 

with ofMRI also allowed us to characterize long-scale variations in responses. In other words, while 

standard ofMRI modeling requires averaging across multiple blocks in order to derive a single time-locked 

response, HMM also provided insight into how brain state responses to individual stimulation blocks varied 

over the course of the entire session ( Fig. 3a ).  Here we compared ChR2 and control groups (N WT-ChR2 = 10 

mice; n = 54 runs; each animal underwent 6 runs acquired in 2 sessions; mCherry; N WT-mCherry = 9 mice, n = 

27 runs; each animal underwent 3 runs acquired in 1 session; all stimulation frequencies combined). We first 

observed that while the long-scale pattern of stimulation response of state 11 remained constant throughout 

the whole stimulation session ( Fig. 3b ), state 10 showed a “U pattern” of response, with an initial decrease 

followed by a later increase in responsiveness (assessed through statistical comparison with mCherry group, 

See Supplementary methods). Of interest, we then observed that state 6 started responding more 
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predominantly during the second half of the stimulation session, perhaps suggesting a long-scale process of 

circuit summation or amplification.  As neuronal assemblies dynamically bind together in response to 

oscillatory synchronization, it is possible that the same augmenting property of resonators-oscillators takes 

place at the network level, thus providing a network-mechanism for the amplification of weak signals 8,21. 

At the small scale level (across and within cortical layers), strong axon collaterals, interacting in a recurrent 

excitatory feedback loop 22, are controlled by a variety of GABAergic interneurons 23, giving rise to a 

recurrent ensemble of excitation and inhibition. It is possible that this complex, small-scale interplay of 

feedback and feedforward effects, can give rise to large scale circuit amplification and inhibition that unfold 

dynamically over time. 

 

 

Figure 3 Optogenetic stimulation of EC causes long-scale interactions in brain network dynamics. 
HMM allows to characterize fast-scale (or time-locked) as well as long-scale responses (or slow variations 
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across fMRI run) in whole brain hemodynamic activity. Results from analyzing ChR2 and control groups 
( N WT-ChR2 = 10 mice; n = 54 runs; each animal underwent 6 runs acquired in 2 sessions; mCherry; N WT-mCherry 
= 9 mice, n = 27 runs; each animal underwent 3 runs acquired in 1 session; all stimulation frequencies 
combined). a) For WT-ChR2 group only, showing group average HMM states activation probability 
time-locked to stimulation (left) and variations across stimulation blocks (right). Dotted line indicates the 
average activation level across all HMM states. b) Showing -log10 FWE-corrected p-values of group 
difference (WT-ChR2 > WT-mCherry) in HMM states activation probability across time. Dotted line 
indicates statistical threshold.  Then, across animals in WT-ChR2 group only, time-series of HMM states 
responding to optogenetic stimulation (state 6, 10, 11, and 14) were concatenated and modelled as a directed 
acyclic graph (DAG) (see Supplementary methods). c) Showing graph representation of inferred optimal 
DAG: arrows indicated Bayesian directed causality between optogenetic stimulation and state activity. 
 

Feedforward and feedback mechanisms modulating the unfolding of brain network dynamics over time may 

further imply directed interactions between states of activity. In order to formally test this prediction, across 

all WT-ChR2 mice, we modelled on/off optogenetic stimulation together with HMM states’ activation 

probability as a directed acyclic graph (DAG) (See Supplementary methods).  We looked for the optimal 

Bayesian network allowing us to establish statistical conditional dependencies (edges) between variables 

(nodes; here on/off stimulation and HMM time courses for states 6, 10, 11, and 14) in order to estimate 

direct causal connections between stimulation and HMM states. In other words, this approach allowed us to 

determine causality between states’ time courses. The optimal causal Bayesian network analysis (See 

Supplementary methods) (BIC = 684,159) indicates the following chain of events (Fig. 3c): optogenetic 

stimulation directly drives activation of state 11, state 10, and state 6; state 10 however, is also influenced by 

onset of state 11; and state 6 is also influenced by onset of states 11 and 10. Crucially, the same Bayesian 

network also showed that activation of state 14 is not directly caused by optogenetic stimulation; however 

the stimulation effect is mediated through the activation of states 11, 10, and 6. This DAG provides causal, 

directional evidence that single-area neuronal spiking is sufficient to drive multiple brain network dynamics 

and their non-trivial interactions, further showing how inducing neuronal excitation may result in an activity 

propagation or cascade effect, possibly modulated by the interplay of circuit-level feedforward and feedback 

interactions unfolding over time. 

Monitoring the effects of brain stimulation is of crucial importance not only for basic research, but also for 

translational research aiming to predict patient responses to brain stimulation. Here, we show that dynamic 
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states might be an effective, data-driven metric for such monitoring. In particular, differential effects 

between short-scale and long-scale brain stimulation protocols have been widely reported, not only for 

invasive techniques in rodents, like chemogenetics 24,25, but also for non-invasive brain stimulation 

techniques such as TMS 26 and tDCS 27 in humans. These differential effects are often visible not only in 

physiology 28, but also in behavioural effects 24,25, and understanding them is key for further translation into 

clinical populations. Here, imaging temporal dynamics together with brain stimulation uncovers one 

potential mechanism underlying such timescale-driven effects: changes in network dynamics. These effects 

may provide a parsimonious explanation for the constellation of previously reported timescale-driven effects 

of brain stimulation, and a mechanism for future studies to consider when designing and testing 

non-invasive brain stimulation paradigms. Given the ubiquity of timescale-dependent phenomena in brain 

stimulation, these results generate hypotheses that will be easily testable in a number of different 

non-invasive brain stimulation paradigms across basic and clinical contexts. 

 
Distinct brain network dynamics preferentially respond to different stimulation frequencies within 

the theta frequency band 

A large body of literature indicates how human brain functional specialization relies on the transient 

synchronization of oscillations 5,29. As oscillatory dynamics emerge from the interplay between cellular and 

circuit mechanisms, these same resonant-oscillatory features are thought to allow neuronal networks to 

select inputs based on their frequency characteristics (for a review: 8). Because of this resonant-oscillatory 

property, the hypothesis of oscillatory multiplexing for selective communication would predict that neuronal 

assemblies (or dynamic brain networks) have developed an input frequency preference (or gain-response 

function) 4, thus allowing for flexible responses to input frequency changes. 

Neuronal oscillations based on theta modulation represent the basis of EC-hippocampal circuit 

communication and are thought to support memory encoding and recall 12,13. Here, we first asked whether 

distinct, optogenetically-driven brain network dynamics show preferential activation as a function of 

neuronal firing rate. To answer this question, in the WT-ChR2 group (N WT-ChR2 = 10 mice; n = 54 runs; each 
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animal underwent 2 sessions of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)), we focussed on 

the HMM states which showed time-locked increases in response to stimulation (states 6, 10, 11, and 14), 

and assessed their response to stimulation at 5 Hz (compared to 10 and 20 Hz) and at 10 Hz (compared to 5 

and 20 Hz). Using a repeated measure ANOVA (see Supplementary methods), we tested the effect of 

frequency on HMM state probability onset. We found a significant overall (F-test) effect of inducing 

neuronal firing with theta frequency band stimulation on state 10 and state 11 (Fig. 4a). Crucially, the 

post-hoc analyses (T-tests) showed that while state 10 responded significantly more at 10 Hz stimulation 

(compared to 5 and 20 Hz), state 11 responded more at 5 Hz stimulation (compared to 10 and 20 Hz) (Fig. 

4b, S10b, c ).  To test whether these frequency-specific effects were the result of a greater EC responsivity as 

a function of increasing stimulation frequency (5 Hz < 10 Hz < 20 Hz), using a repeated measure ANOVA 

we tested for a monotonic (either linear or nonlinear) increase in HMM states’ response. No significant 

result was found. As a further, post hoc control test, we tested for a specific response to 20 Hz stimulation 

(compared to 5 and 10 Hz). No significant result was found.  These results provide forward evidence for 

multiplexing as a mechanism for flexible communication in brain networks, causally linking theta 

modulation in excitatory neurons with distinct spatiotemporal patterns of brain network dynamics. 
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Figure 4  Varying frequency of EC neuronal spiking entrains the brain into distinct states of network dynamics. 
Results from analyzing only the WT-ChR2 group (NWT-ChR2 = 10 mice; n = 54 runs; each animal underwent 2 sessions 
of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)). Stimulation frequencies were explicitly modelled in the 
statistical tests. The multiplexing hypothesis predicts that in a divergent scenario multiple target regions would 
respond differently to the same stimulation input. A repeated measure ANOVA was used in order to test the effect of 
varying stimulation frequency on HMM states activation probability. a ) Showing -log10 FWE-corrected p-values for an 
overall effect of frequency on HMM states activation probability (F-test results). Dotted line indicates statistical 
threshold. b ) HMM activation probability for states 10 and 11 during stimulation at 5, 10, and 20 Hz (See Fig. S8  for 
results from T-test). c ) Showing EC monosynaptic projections as well as predicted anatomical circuits underlying the 
activity pattern of states 10 and 11(See Fig. S10, S11  for details).  The effect of varying stimulation frequency on 
long-scale brain network dynamics was then tested. For each stimulation frequency (5, 10, 20 Hz), HMM states 
time-series across animals were concatenated and a DAG was inferred. D) Respectively for each stimulation 
frequency, showing short-scale (left), long-scale (middle) HMM states dynamics, and DAGs of directed causal 
interactions between stimulation and HMM states (right). 
 

If inducing activation with given firing rates on top of basal activity in a single population of neurons results 

in distinct brain network dynamics, it follows that the same signal must rely on independent gain control at 

the level of the target regions 4. As one previous study has shown that different patterns of (static) activity 
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may rely on different sets of anatomical connections 30, one hypothesis could be that gain control in response 

to varying stimulation frequency is implemented in the form of different anatomical circuits. If this were the 

case, it would provide an anatomical basis for distinct information channels. We therefore tested the 

hypothesis that states preferentially responding at different frequencies do rely on specific anatomical 

circuits.  To test this hypothesis we performed structural-to-functional mapping (see Supplementary 

methods, Fig. S11  for explanatory cartoon), characterizing the underlying patterns of white-matter 

anatomical projections (or circuit) best predicting functional activity in brain network dynamics.  Using the 

connectivity matrix of directed tracing projections publicly available from the Allen Brain Institute 31, we 

entered all areas’ patterns of outgoing anatomical projections (each column is a brain area, for a single 

column each row represents the amount of outgoing projections to a target area) in a leave-one-out 

cross-validated Ridge regression in order to predict the activity pattern of states 10 and 11 (rows are BOLD 

amplitude values of, respectively, HMM state 10 and, independently, 11). This yields significant predictions 

of HMM states activity patterns of HMM states 10 and 11 (Fig. S10c: state 10: predicted rho = 0.82 (R2 = 

0.67), cross-validated deviance = 29.66, p-value = 0.001 ; Fig. S10h: state 11: predicted rho = 0.77 (R2 = 

0.60), cross-validated deviance = 35.72, p-value = 0.001; significance assessed with 1,000 permutations). 

We then extracted the average regression coefficients across folds, and multiplied these values by the 

outgoing pattern of projections in order to show the anatomical circuits underlying activity states 10 and 11 

( Fig. S10e, l ).  We then assessed the specificity of these anatomical circuits in predicting the opposite state 

of activity (i.e. regression betas estimated in prediction of state 11, now used to predict state 10 activity, and 

vice versa). We found that using the regression coefficients of state 11 to predict state 10 activity yielded a 

statistically significantly worse prediction (n = 90 brain parcels; see Table S1; comparing correlations from 

dependent samples using Fisher’s Z transformation for correlation coefficients: Z = 2.472, p-value = 0.007) 

and, vice versa, using regression coefficient of state 10 to predict state 11 activity also let to a significantly 

worse prediction (n = 90; see Table S2 ; comparing correlations from dependent samples: Z = 2.296, p-value 

= 0.011). Together, these results show that the two directed structural circuits, despite sharing a portion of 

connections linked to the EC,  are indeed different and specifically relate to one but not the other state of 
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activity, suggesting a role for network topology in multiplexing: different anatomical circuits may provide 

an anatomical basis for distinct information channels. 

We next asked the question of whether inducing oscillations in a single area at different frequencies drives 

long-scale brain network dynamics into different trajectories of activity. For each frequency of stimulation 

(5, 10, and 20 Hz), we considered the long-scale time-series of the HMM states previously identified and 

built three, separate DAGs representing the directed causal influences between brain dynamics and 

optogenetic stimulation. We observed that although DAGs in the theta frequency band (5 and 10Hz) were 

highly overlapping, inducing neural firing in the beta band (20 Hz) drove the system into a distinct 

configuration with far less interactions between brain dynamics (Fig. 4d) and where the downstream activity 

state (state 14) was not accessed (BIC values > 210,000 for all frequency conditions) (Fig. S12, see 

Supplementary results). These findings crucially show how inducing activity in the EC at different 

frequency bands is causally sufficient to drive the brain network into trajectories that unfold differently over 

time, thus probing different long-scale, complex configurations of interactions between brain areas: a 

necessary condition for flexible computation. 

 
Impaired multiplexing in brain network dynamics in a transgenic model of Alzheimer’s disease 

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder affecting the entorhinal cortex and 

the hippocampus. AD is caused by neuronal degeneration, leading to brain-wide dysfunction and cognitive 

deficits 32,33, but both the cell-level mechanisms and network-level mechanisms 34 that unfold during AD are 

poorly understood. A step forward has been the identification of familial, early onset forms of the disease, 

which allowed the generation of animal models, and thus  the exploration of the potential pathophysiological 

mechanisms behind the disorder 35,36. 

Here, we used a well-established model of familial AD to recapitulate behavior-relevant 37, naturalistic 

dysfunction of EC circuits, and probe how such dysfunction may affect network dynamics and multiplexing 

in the nervous system. Using ofMRI, we found that 3xTgAD mice are characterized by an altered 

configuration of baseline brain activity (state 4) (Fig. 5a-d ), and that theta-rhythms stimulation resulted in a 

16 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.142695doi: bioRxiv preprint 

https://paperpile.com/c/KXMzZU/ZKL9+4tvm
https://paperpile.com/c/KXMzZU/ocFQ
https://paperpile.com/c/KXMzZU/g1cG+Repf
https://paperpile.com/c/KXMzZU/jiKW
https://doi.org/10.1101/2020.06.09.142695
http://creativecommons.org/licenses/by/4.0/


reduction of its activation probability that outlasted the duration of stimulation (Fig. S13) (see 

Supplementary results). These results show that AD mice, despite showing aberrant brain dynamics (state 4) 

at baseline, may return to wild-type-like brain dynamics following theta rhythm optogenetic stimulation of 

EC. This complements previous evidence that EC stimulation may provide therapeutic benefit in AD 38, and 

provides causal evidence of a mechanism that might underpin clinical benefits of EC stimulation. 

Then, building on the fact that distinct states of brain network dynamics preferentially respond to different 

EC stimulation frequencies in wild-type mice, we tested whether this frequency-specific response was 

different between AD and WT mice. We found that there was a significant interaction effect of group by 

theta-frequencies on state 10 and 11 ( Fig. 5e, S14a, b ) (see Supplementary results). Specifically, while WT 

mice showed state 10 to preferentially respond at 10 Hz stimulation and state 11 at 5 Hz, in AD mice state 

10 did not show a preferential responding at both  5 and 10 Hz while state 11 did not show any significant 

effect of variation in neuronal spiking frequency ( Fig. 5f, S14c-f). These results provide causal evidence that 

3xTgAD mice lack differential brain network response to varying EC neuronal spiking rate, thus showing 

how neural coding for flexible brain network communication in AD mice is impaired. 
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Figure 5  Alzheimer’s disease impairs the preferential HMM states responses to varying spiking frequency in 
EC. Results of group comparison between WT-ChR2 group and 3xTgAD-ChR2 group. a ) Group average HMM 
activation probability aligned with optogenetic stimulation blocks, respectively for WT-ChR2 group and 
3xTgAD-ChR2 group (NWT-ChR2 = 10 mice; n = 54 run; each animal underwent 6 runs acquired in 2 sessions; 
N3xTgAD-ChR2 = 12 mice; n = 72 runs, each animal underwent 6 runs acquired in 2 sessions; all stimulation frequencies 
combined). b ) For 3xTgAD-ChR2 group only, average HMM response time-locked to stimulation and how it varies 
across mice and runs.  c ) Showing -log10 FWE-corrected p-values (across time and states) of group difference in HMM 
states activation probability. Dotted line indicates statistical threshold. d ) Brain map of “aberrant activity” (state 4) 
present in AD. Mean activity showed low absolute values in comparison to other HMM states.  We then studied 
whether multiplexing is impaired in AD. Here, stimulation frequencies were explicitly modelled in a mixed-design 
ANOVA (see Fig. S14a for design matrix). Statistical analyses were carried out on WT-ChR2 group and 
3xTgAD-ChR2 group (NWT-ChR2 = 10 mice; n = 54 run; N3xTgAD-ChR2 = 12 mice; n = 72 runs; for both groups, each 
animal underwent 2 sessions of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)). e ) Showing -log10 
FWE-corrected p-values for an overall interaction effect of group by  (theta-) frequency on HMM states activation 
probability (F-test results). f ) Showing -log10 FWE-corrected p-values for post-hoc T-tests of interaction analysis. 
Dotted line in c , e, f, indicates statistical threshold. 
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Discussion 

Brain network communication emerges as an organic property from the interactions between billions of cells 

linked together in interconnected circuits. Although oscillations in neuronal populations are thought to 

represent the medium for information transfer 8, the neural coding that allows for flexible, selective 

communication to emerge has been unknown.  

In this work, we considered the EC, a well-known hub in the EC-hippocampal memory system known to 

rely on theta rhythms to mediate memory encoding and recall 12. We used this structure and its anatomical 

projections to causally test the communication mechanism of multiplexing in a divergent networked 

scenario, in health and in AD. 

We provide sufficient causal evidence that, in healthy WT mice, driving theta oscillations in EC neuronal 

spiking causes distinct brain network dynamics to emerge (Fig. 2), with precise short- and long-scale 

dynamics (Fig. 3 ). Crucially, we then provide evidence that within the same theta band, spatially distinct but 

temporally overlapping networks preferentially respond to inducing oscillations at either 5 or 10 Hz (Fig. 4), 

revealing how multiple information streams within the same theta band originate from a common neural 

substrate using frequency-division multiplexing. Computationally this is achievable because the gain 

modulation reached at one specific frequency is independent from the average gain experienced at other 

frequencies 4. Furthermore, we show that these distinct functional information streams can rely on different 

anatomical circuits (Fig. 4, S10 ), thus providing evidence of a role for topology in network communication. 

As the EC-hippocampal memory system is known to rely on theta oscillations as a medium for neuronal 

communication 12, this work provides a causal forward test for oscillation multiplexing as a neural code 

sufficient for achieving flexible information routing in brain networks. 

Notably, we also show that in a transgenic model of AD, the EC mechanism of neuronal multiplexing is 

impaired: we observe the lack of distinct information streams within theta rhythms (Fig. 5, S14), thus 

impairing flexibility in brain network communication. This result provides mechanistic causal evidence of 

how the early stages of AD neurodegeneration may cause an alteration in the neural code used for flexible 
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communication in brain networks, thus providing novel insight into the aberrant mechanisms underlying 

cognitive decline. 

The EC has long been implicated in memory formation and spatial navigation 39 , with recent studies 

highlighting a potential role for cognitive maps in reconciling this apparent dichotomy in the function of EC 

40. Previous studies deploying optogenetics to EC have shown that inhibition of cells in the EC has 

downstream effects on the hippocampus, impairing memory formation in fear-conditioning paradigms 41,42. 

Future studies should establish the role of multiplexing in memory formation and in navigation of abstract 

spaces. 

Previous work has explored how optogenetic stimulation at different frequencies may also result in different 

magnitudes of regional activation and static functional connectivity 43–45. Furthermore, a recent study has 

also demonstrated how driving neuronal activity with optogenetics results in static patterns of effective 

connectivity as determined through dynamical causal modeling 46.  Here, we employ a novel computational 

approach and provide evidence that driving neuronal spiking through means of optogenetics results in 

network states of dynamic brain activation and dynamic functional connectivity, across short- and long-time 

scales, rather than exhibiting one single, static, pattern across time. Capturing spatio-temporal dynamics of 

brain activity also allows us to use ofMRI to pose more fundamental questions about neural coding. For 

example, building on previous evidence and known concepts of neuronal oscillatory synchronization 8, we 

also provide causal evidence that varying neuronal spiking rate in the same brain region entrains the brain 

into spatially and temporally distinct network states that show frequency response preferences, providing 

novel mechanistic understanding of how selective information streams may arise from multiplexed neuronal 

activity.  

As with any methodology, ofMRI also presents limitations. Here, we used optogenetics to probe excitatory 

neuronal spiking in the EC and observed short-scale and long-scale brain network dynamics through means 

of whole brain BOLD fMRI. However, despite using HMM in order to access fast transitions in BOLD 

fluctuations amplitude and coupling, brain imaging techniques have an intrinsic trade-off between a 

second-resolved temporal resolution and whole brain imaging. We cannot ignore therefore the fact that 
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perturbing genetically-targeted excitatory neurons inevitably also led to an immediate engagement of local 

perisynaptic activity in the form of the excitatory and inhibitory loops mentioned above 20. However, 

implementing HMMs 57  allows us to disentangle dynamics of spatially and frequency distinct networks 

otherwise temporally overlapping in the short-scale and not observable using standard analyses or invasive 

techniques like single-area electrophysiology. Furthermore, using HMMs, together with experimentally 

varying stimulation frequency, allowed us to characterize between network states with a long-scale response 

amplification and network states preferentially responding at specific theta frequencies – suggesting that 

different, underlying neural mechanisms are taking place. 

Our experimental and computational approaches, therefore, allowed us to establish the causal sufficiency 47 

of oscillatory synchrony as a mechanism for flexible communication in brain networks. Future research 

should leverage optogenetic inactivation  in order to test the causal necessity of cell-type-specific spiking, 

and to characterize the specific role of other neural populations. 

To truly understand how the brain functions, one must ultimately understand causal cell-type-specific 

mechanisms supporting selective brain network communication. Combining optogenetics with concurrent 

fMRI allows causal network neuroscience: causally interfering with neuronal dynamics to understand brain 

network design.  However, because within each brain circuit there is considerable sub-circuit specificity, 

intermingled neurons with different patterns of long-range projections can modulate circuit function in 

remarkably selective ways 47, thus probing distinct information streams in brain network function.  In this 

work, modulating the firing frequency of a single-area specific cell-type has allowed us to test the 

multiplexing hypothesis in a divergent networked scenario: differential oscillatory synchrony is a sufficient 

neural code to allow for selective and flexible communication in brain network dynamics. 
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Supplementary information 

 

 

Supplementary results 

Mouse brain states of spontaneous activity are hierarchically organized in time 

In the rs-fmri dataset, spontaneous whole-brain BOLD fMRI fluctuations from 29 anesthetized mice (NWT = 

10; N3xTgAD = 19; for a total of n = 52 runs) , were modelled through a 14-state HMM state ( Fig. S1). This 

number was chosen in order to be consistent with the primary analysis of concurrent ofMRI. We show that, 

as in humans, rodent brain states transitions are not completely at random, although in a stochastic fashion. 

This is represented by the state-to-state transition probability matrix (Fig. S1a) and results in spontaneous, 

fast transitioning on a second-to-second scale ( Fig. S1b). The mean amplitude and functional connectivity 

maps for all states are shown in Fig. S1c, d, S2 . We then studied whether, similarly to humans 48, the mouse 

brain displays a hierarchical organization of its temporal features. Across multiple HMMs with different 

numbers of states (10, 12, 14, 16 and 18) we calculated fractional occupancy (FO), the time an animal spent 

in one state over the course of the rs-fmri session. Across mice, we then created a meta-correlation matrix 

estimating similarities in FO across multiple HMMs (Fig. S3a).  In a data-driven fashion, we then estimated 

the best number of metastates. On the meta-correlation matrix, we used a multi-scale community detection 

algorithm to characterize sets of states (or modules) with similar FO distributions across mice, also defined 

as metastates. We found that, across a range of values in the resolution parameter, maximum mean partition 

similarity was achieved for γ = 1 ( Fig. S3b ), hinting at the presence of 3 well-defined metastates.  The 

resolution parameter (γ = 1) with higher partition similarity was then applied to the single resting-state fMRI 

HMM run with a fixed number of states (k = 14): this led to the same result of 3 well defined metastates 

( Fig. S3c, d ). This allowed us to characterize a hierarchical temporal structure of rodent brain states that is 

remarkably similar to that of the human brain. 
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Causal role of theta-band neuronal spiking in causing downstream activity 

We then studied the response of the downstream state of activity (state 14) involving greater activation 

bilaterally in the median EC, Ammon's horn, subiculum and amygdalar nuclei. Although the time-locked 

analysis averaging across blocks showed a robust and significant response starting after optogenetic 

stimulation, the long-scale analysis revealed that such response took place in a statistically significant and 

long-lasting manner only after the first block of stimulation (Fig. S12a ). This result would not otherwise 

have been observable with standard modeling approaches to ofMRI. 

Here, we tested the relevance of theta rhythms in causing downstream, delayed activity. We tested whether 

driving brain network dynamics with theta oscillation (but not beta) could temporally precede and 

quantitatively explain the magnitude of downstream state activity. Across animals, we found that, when 

driving theta oscillations (5 and 10 Hz), inter-individual differences in state 10 activation probability during 

optogenetic stimulation (51-60 seconds from beginning of ofMRI run) were positively associated with 

differences in downstream activation after  stimulation (61-110 seconds). Crucially, this was not the case 

when brain network dynamics were entrained with beta rhythms (20 Hz) (Fig. S12b, Spearman’s 

correlations were Bonferroni corrected across all active states and frequencies: Bonferroni corrected 

p-values were considered significant if < 0.0056).  

These results, together with the fact that the EC projection pattern alone can not explain the spatial pattern of 

the downstream state of activity (Fig. S9a ), argue in favour of a networked and frequency-band specific 

origin: the downstream, delayed activity state was the non-random result of previously driving theta 

oscillations and entraining a EC-hippocampal-orbitofrontal network (state 10), suggesting therefore a 

system-specific rebound mechanism. 

 

Altered baseline activity and impaired multiplexing in brain network dynamics in a transgenic model 

of Alzheimer’s disease 
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Using ofMRI, we first tested how HMM states of brain network hemodynamic activity are affected in the 

3xTgAD model of AD compared to wild-type mice (N WT-ChR2 = 10 mice; n = 54 runs; each animal underwent 

6 runs acquired in 2 sessions; 3xTgAD-ChR2, N 3xTgAD-ChR2 = 12 mice; n = 72 runs, each animal underwent 6 

runs acquired into 2 sessions; all stimulation frequencies combined). We first asked whether activation 

probability of HMM states was different between ChR2 and 3xTgAD mice. While many aspects of 

optogenetic stimulation-induced activity were comparable (Fig. 5a-d), we found a significant, overall 

increase in activation probability after  stimulation in 3xTgAD mice in a state characterized by greater 

connectivity in the right frontal cortex (state 4, Fig. 5d). However, we also observed in Fig. 5a that this 

higher level of activation is present throughout the entire ofMRI run, thus representing a baseline state. 

Optogenetic stimulation therefore does not result in an increase of state activation after stimulation but in a 

reduction activation probability during  stimulation, suggesting that even at early onset stages, AD may be 

characterized by an altered configuration of dynamic activity.  Furthermore, we also observed that the spatial 

pattern of functional activity of this aberrant state was positively associated with EC monosynaptic 

projections (Fig. S9c ), suggesting some complex interplay between EC connectivity and response to EC 

stimulation in AD mice. 

Having found an altered state of AD brain dynamics (state 4) compared to WT mice, and that its activation 

probability was decreased during each instance of optogenetic stimulation, we then asked whether its 

response underwent a group by  theta-frequency reduction in AD mice (equivalent to group by 

beta-frequency increase in AD mice). Using a mixed-effect ANOVA (see Supplementary methods), we 

tested a group by  20 Hz interaction effect ( N WT-ChR2 = 10 mice; n = 54 runs; N 3xTgAD-ChR2 = 12 mice; n = 72 

runs; for both groups, each animal underwent 2 sessions of 3 runs, one run per stimulation frequency (5, 10, 

20 Hz)). We found that activation probability of the altered state was greater in AD compared to WT mice 

when stimulation was induced at 20 Hz compared to 5 and 10 Hz (Fig. S13a). In other words, theta rhythms 

(5 or 10 Hz) were more effective than beta rhythms (20 Hz) stimulation at reducing activation probability of 

the altered state of AD brain dynamics. Although state 4 had greater activation probability in AD-like mice 

compared to WT mice, it is still possible that in WT mice state 4 undergoes the same effect of theta 
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frequency. The result of this group by frequency interaction however shows that it is not the case: WT mice 

do not show the same effect of frequency for state 4, implying that this frequency-specific effect is present 

only when state 4 is pathologically over-active (Fig. S13a, S14b).  As we have shown that repetitive 

neuronal spiking is sufficient to induce long-scale dynamics (Fig. 3), we then asked whether reducing state 4 

activation probability through means of theta rhythms also resulted in a long-scale effect . For state 4, across 

stimulation blocks, we calculated the subject specific average in activation probability after stimulation 

ended (as each block lasted 60 seconds, and stimulation was on for 10 seconds, we considered the time 

interval between 11 and 60 sec). Using a repeated measure ANOVA (see Supplementary methods) only on 

AD mice (N 3xTgAD-ChR2 = 12 mice; n = 72 runs; each animal underwent 2 sessions of 3 runs, one run per 

stimulation frequency (5, 10, 20 Hz)), we tested the effect of varying neuronal spiking rate. We found an 

overall effect of theta frequencies on state 4 activation probability even after stimulation ended (F-test: p = 

0.0100), resulting in a significant reduction of state 4 probability when neuronal firing was driven at 5 and 

10 Hz compared to 20 Hz (post-hoc T-tests: respectively, 5 Hz stimulation compared to 10 and 20 Hz, p = 

0.0130; and 10 Hz stimulation compared to 5 and 20 Hz, p = 0.0020) (Fig. S13b), showing that reductions in 

state 4 activation through means of theta rhythms outlast the duration of optogenetic stimulation. Taken 

together, these results show that AD mice, despite showing aberrant brain dynamics (state 4) at baseline, 

may return to WT-like brain dynamics following theta rhythm optogenetic stimulation of EC.  

Then, building on the fact that distinct states of brain network dynamics preferentially respond to different 

EC stimulation frequencies in WT mice, we tested whether this frequency-specific response was different 

between AD and WT mice ( N WT-ChR2 = 10 mice; n = 54 runs; N 3xTgAD-ChR2 = 12 mice; n = 72 runs; for both 

groups, each animal underwent 2 sessions of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)). 

Using a mixed-effect ANOVA (see Supplementary methods), we tested a group by (theta) frequency 

interaction on HMM state probability onset. We found a significant overall interaction effect (F-test) of 

group by  neuronal firing frequency on state 10 and state 11 (Fig. 5e, S14a, b). The post-hoc interaction 

analyses (T-tests) showed that, while state 11 response at 5 Hz stimulation (compared to 10 and 20 Hz) was 

significantly greater in WT compared to AD mice, state 10 response was significantly greater in AD 
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compared to WT mice at both 5 and 10 Hz stimulation (compared to 20 Hz) (Fig. 5f). These results show 

that brain network response to varying stimulation frequency significantly differed between groups. 

Specifically, while WT mice show different dynamic brain networks to preferentially respond to varying 

stimulation frequency (state 10 to 10 Hz and state 11 to 5Hz), in AD mice state 10 showed a preferential 

response at both  5 and 10 Hz while state 11 did not show any significant effect of variation in neuronal 

spiking frequency. A further, separate repeated measure ANOVA only on AD mice confirmed this result 

(N 3xTgAD-ChR2 = 12 mice; n = 72 runs; each animal underwent 2 sessions of 3 runs, one run per stimulation 

frequency (5, 10, 20 Hz)) (Fig. S14c-f ). Together, these results provide causal evidence that 3xTgAD mice 

lack differential brain network response to varying EC neuronal spiking rate, thus showing how neural 

coding for flexible brain network communication is impaired in AD mice. 

 

 

 

Supplementary methods 

Sample 

All experiments performed in Singapore Bioimaging Consortium, A*STAR, Singapore, were in accordance 

with the ethical standards of the Institutional Animal Care and Use Committee (A*STAR Biological 

Resource Centre, Singapore, IACUC #171203). Male 3xTgAD and WT mice on the same background strain 

(129sv/c57bl6) were used for the rs-fmri and the ofMRI experiments. The colonies of both 3xTgAD and WT 

mice were maintained ‘in-house’ through the pairing of homozygous individuals. Mice were housed in cages 

of up to five, with same-sex and genotype cage-mates in a pathogen-free environment, kept at a 45-65% 

humidity, under a 12:12-hour light-dark cycle and room temperature, with ad-libitum access to food and 

water.  

Two datasets of animals have been used in this work: a rs-fmri dataset (Mouse_rest_3xTG, 

10.18112/openneuro.ds001890.v1.0.1 ) and an ofMRI dataset (Mouse_opto_3xTG, 

10.18112/openneuro.ds002134.v1.0.0 ). Wild-type and 3xTgAD mice underwent rs-fmri sessions at 3 and 6 
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months of age, longitudinally with the cryogenic coil setup. The second dataset included wild-type and 

3xTgAD mice that under firstly underwent optogenetic surgery for CaMKIIa-mCherry or 

CaMKIIa-ChR2-mCherry injection (without opsin and with opsin, respectively) and, 3 weeks post injection, 

underwent the ofMRI protocol with the single-loop coil, with 5/10/20 Hz stimulation paradigm. Specifically, 

one control group was injected with CaMKIIa-mCherry (NWT-mCherry = 9). One control group and one 

3xTgAD group were injected with CaMKIIa-ChR2-mCherry (NWT-ChR2 = 10; N3xTgAD-ChR2 = 12, respectively) 

and were longitudinally scanned also at 6 months of age (NWT-ChR2 = 8; N3xTgAD-ChR2 = 10). For the specific 

breakdown of the number of animals and runs per group, see Table S3. 

 
 

Viral injection 

Optogenetic surgery procedure is described in 49. Briefly, WT and 3xTgAD mice (~30 g, ofMRI dataset: N = 

31 mice (NWT-mCherry = 9, N WT-ChR2 = 10, N 3xTgAD-ChR2 = 12) were anaesthetised with a mixture of 

ketamine/xylazine (ketamine 75 mg/kg, xylazine 10 mg/kg). The head was shaved and cleaned with three 

wipes of Betadine® and ethanol (70%). Lidocaine was administered subcutaneously, in situ. To avoid 

hypothermia, animals were placed on a warm pad and the head fixated on the stereotaxic frame; protective 

ophthalmic gel was applied to avoid dryness. After removing the scalp, a craniotomy was performed in the 

left hemisphere, with a hand-held drill (burr tip 0.9 mm2) ; coordinates from bregma and midline: -2.8 from 

bregma, +4.2 from the midline. AAV injection into the EC was carried out through this craniotomy, at a 

depth of -2.8 to -2.7 mm from brain surface; the fiber-optic cannula positioning reached -2.6 mm from the 

surface. Coordinates were taken according to the Paxinos mouse brain atlas 50. The injection of 

adeno-associated virus (AAV) was performed in the target location using a precision pump (KD Scientific 

Inc., Harvard Bioscience) with a 10 μl NanoFil syringe with a 33-gauge beveled needle (NF33BV-2). The 

AAV used 51 (AAV5-CaMKIIa-hChR2(H134R)-mCherry (NWT = 10, N 3xTgAD = 12), 

AAV5-CaMKIIa-mCherry (N WT-mCherry = 9), titer 1-8x1012 vg/ml), were acquired from Vector Core at the 

University of North Carolina (USA). A total volume of 0.75 μl of the vector was injected in each mouse at a 

rate of 0.15 μl/min. To avoid backflow, the needle was kept in position for 10 minutes; after the needle 
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extraction, a fiber optic cannula (diameter 200 μm, 0.39 NA, length according to the injection site, diameter 

1.25 mm ceramic ferrule) was lowered to the targeted region (Laser 21 Pte Ltd, Singapore; Hangzhou 

Newdoon Technology Co. Ltd, China). The cannula was fixed in place with dental cement (Meliodent rapid 

repair, Kulzer). Buprenorphine was administered post-surgically to each animal. Animal recovery took place 

on a warm pad. 

 

Imaging: Animal preparation 

Animal preparation followed a previously established protocol 52. Anesthesia was induced with 4% 

isoflurane; subsequently, the animals were endotracheally intubated, placed on an MRI-compatible cradle 

and artificially ventilated (90 breaths/minute; Kent Scientific Corporation, Torrington, Connecticut, USA). 

A bolus with a mixture of Pancuronium Bromide (muscle relaxant, Sigma-Aldrich Pte Ltd, Singapore) and 

Medetomidine (Dormitor, Elanco, Greenfield, Indiana, USA) was provided subcutaneously (0.05 mg/kg). A 

maintenance infusion (0.1 mg/kg/hr) was administered 5 minutes later, with isoflurane reduced to 0.5%. 

Functional MRI was acquired 20 min following maintenance infusion onset to allow for the animal state to 

stabilize. Care was taken to maintain the temperature of the animals at 37 °C. 

 

Resting state functional-MRI 

Data were acquired on an 11.75 T (Bruker BioSpin MRI, Ettlingen, Germany) equipped with a BGA-S 

gradient system, a 72 mm linear volume resonator coil for transmission. A 2 × 2 phased-array cryogenic 

surface receiver coil was adopted for the rs-fmri experiment (N = 29, respectively NWT = 10; N3xTgAD = 19; 

for a total of n = 52 runs) and a 10 mm single-loop surface coil for ofMRI experiments (N = 31, see below 

for details). Images were acquired using Paravision 6.0.1 software.  

The parameters for the rs-fmri data acquisition are as follows: an anatomical reference scan was acquired 

using a spin-echo turboRARE sequence: field of view (FOV) = 17×9 mm2, FOV saturation slice masking 

non-brain regions, number of slices = 28, slice thickness = 0.35, slice gap = 0.05 mm, matrix dimension 

(MD) = 200×100, repetition time (TR) = 2750 ms, echo time (TE) = 30 ms, RARE factor = 8, number of 
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averages = 2. Functional scans were acquired using a gradient-echo echo-planar imaging (EPI) sequence 

with the same geometry as the anatomical: MD = 90×60, TR = 1000 ms, TE = 15 ms, flip angle = 50°, 

volumes = 600, bandwidth = 250 kHz.  

 

Optogenetics functional-MRI 

Parameters for the ofMRI data acquisition were adapted to the lower sensitivity of the room temperature 

receiver coil. The anatomical reference scan was acquired using FOV = 20 × 10 mm2, number of slices = 34, 

slice thickness = 0.35, slice gap = 0 mm, MD = 200 × 100, TR = 2000 ms, TE = 22.5 ms, RARE factor = 8, 

number of averages = 2. Functional scans were acquired using FOV = 17×9 mm2, FOV saturation slice 

masking non-brain regions, number of slices = 21, slice thickness = 0.45, slice gap = 0.05 mm, MD = 60 x 

30, TR = 1000 ms, TE = 11.7 ms, flip angle = 50°, volumes = 720, bandwidth = 119047 Hz. Field 

inhomogeneity was corrected using MAPSHIM protocol.  Light stimulation was provided through a blue 

light laser (473 nm, LaserCentury, Shanghai Laser & Optic Century Co., Ltd; ~12-15 mW output with 

continuous light at the tip of the fiber) controlled by in-house software (LabVIEW, National Instruments). 

After an initial 50 s of rest as a baseline, 10 ms light pulses were applied at 5, 10 or 20 Hz for 10 s followed 

by a 50 s rest period, in a 10-block design fashion. An additional 60 s of rest were recorded after the last 

block of stimulation. The experimental groups (3xTgAD and WT mice with ChR2-mCherry) and the 

negative control group (wild-type mice with mCherry alone) underwent the same imaging protocol, i.e., one 

resting-state scan, followed by 5 Hz, 10 Hz and 20 Hz evoked fMRI scans in randomized order. The 

negative control group was imaged with the same imaging protocol as the experimental groups to exclude 

potential heating and/or vascular photoreactivity artifacts 53,54. This resulted in a ofMRI dataset with N = 31 

mice (NWT-mCherry = 9, N WT-ChR2 = 10, N 3xTgAD-ChR2 = 12) , for a total of n = 147 runs.  Additionally, in order to 

exclude abnormal behavior induced by the photostimulation protocol, all animals underwent the three 

stimulation sessions (5 Hz, 10 Hz, and 20 Hz) again while awake and freely walking in a behavior-chamber.  

 

Imaging: fMRI analysis 
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Images were processed using a protocol optimized for the mouse and corrected for spikes (3dDespike, AFNI 

55, motion (FSL  mcflirt,  56; and B1 field inhomogeneity (FSL fast). Automatic brain masking was carried out 

on the EPI using FSL  bet, following smoothing with a 0.3 mm2 kernel (FSL  susan) and a 0.01 Hz high-pass 

filter (fslmaths ). Nuisance regression was performed using FIX. Separate classifiers were generated for 

rs-fmri and ofMRI based on 15 randomly-selected manually-classified runs from each study 57. The EPIs 

were registered to the Allen Institute for Brain Science (AIBS) reference template ccfv3 using SyN 

diffeomorphic image registration (antsIntroduction.sh, ANTS 58). The atlas resampled to 90 

regions-of-interest, nomenclature, and abbreviations for the brain regions are in accordance with 

https://atlas.brain-map.org/ .  

 

Whole-cell patch recording of acute brain slices 

Mouse brains were rapidly removed after decapitation and placed in high sucrose ice-cold oxygenated 

artificial cerebrospinal fluid (ACSF) containing the following (in mM): 230 sucrose, 2.5 KCl, 10 MgSO4, 

0.5 CaCl2, 26 NaHCO 3, 11 glucose, 1 kynurenic acid, pH 7.3, 95% O2 and 5% CO 2. Coronal brain slices 

were cut at a thickness of 250 mm using a vibratome (VT1200S; Leica Biosystems) and immediately 

transferred to an incubation chamber filled with ACSF containing the following (in mM): 119 NaCl, 2.5 

KCl, 1.3 MgCl2, 2.5 CaCl2, 1.2 NaH 2PO 4, 26 NaHCO 3, and 11 glucose, pH 7.3, equilibrated with 95% O2 

and 5% CO 2. Slices were allowed to recover at 32° C for 30 minutes and then maintained at room 

temperature. Experiments were performed at room temperature. Whole-cell patch-clamp recordings were 

performed on EC pyramidal cells expressing ChR2-mCherry and were visualized using a CCD camera and 

monitor. Pipettes used for recording were pulled from thin-walled borosilicate glass capillary tubes (length 

75 mm, outer Ø 1.5 mm, inner Ø 1.1 mm, WPI) using a DMZ Ziets-Puller (Zeitz). Patch pipettes (2–4 MW) 

were filled with internal solution containing (in mM): 105 K-gluconate, 30 KCl, 4 MgCl2, 10 HEPES, 0.3 

EGTA, 4 Na-ATP, 0.3 Na-GTP, and 10 Na 2-phosphocreatine (pH 7.3 with KOH; 295 mOsm), for both 

voltage- and current-clamp recordings. Photostimulation (460 nm) was delivered by an LED illumination 

system (pE-4000). Several trains of a square pulse of 20 ms duration with 5, 10, and 20 Hz, were delivered 
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respectively under current-clamp mode (I = 0) to examine whether the neurons were able to follow 

high-frequency photostimulation. After different frequencies of photostimulation were completed, neurons 

were shifted to voltage-clamp mode (at -60 mV), and a prolonged square pulse of 500 ms duration was 

delivered, to further confirm whether ChR2-induced current could be seen in the recorded neurons. The 

access resistance, membrane resistance, and membrane capacitance were consistently monitored during the 

experiment to ensure the stability and the health of the cell.  

 

Hidden Markov model of whole-brain BOLD fMRI fluctuations in response to optogenetic stimulation 

BOLD fMRI time series were modelled using hidden Markov Models (HMMs) as a finite set of transient, 

repeating states. Each state is represented by a multivariate Gaussian distribution, which is described by the 

mean and covariance (respectively, BOLD amplitude and functional connectivity) 48. BOLD ofMRI time 

series were extracted from the AIBS atlas resampled to 90 regions-of-interest (https://atlas.brain-map.org/). 

HMMs were fit on a reduced space of principal components accounting for 50% of the variance in these 

time series. 

For ofMRI data, we applied one single HMM on all concatenated subjects across experimental groups: 

healthy control group (N WT-mCherry = 9), healthy active group (NWT-ChR2 = 10), and AD-like pathology active 

group (N 3xTgAD-ChR2 = 12), thus a total of N = 31 mice, n = 153 runs. We applied the HMM with different 

states number (10, 12, 14, 16, and 18) and, for each number, we repeated the fitting 3 times, thus resulting in 

3 HMMs per state number. We then identified the best HMM configuration for this ofMRI dataset as the 

number of states that provided the highest similarity between repetitions with lowest average free energy 

(for each state number, this was calculated as the ratio between model similarity and average free energy 

across repetitions). This allowed us to identify a remarkably robust temporal organization for 14 states (see 

Fig. S5a ). Subsequent analyses were carried out on HMM with 14 states and lowest free energy value. We 

also show that HMMs with different states number were also capable of capturing brain dynamics induced 

by optogenetics (see Fig. S7). 
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Although the states were inferred at the group level, each animal has their own characteristic state time 

course representing the subject-specific probability of each HMM state being active at each instant (here, a 

fMRI volume). This is possible because we used variational Bayes in order to provide an analytical 

approximation of the model posterior distribution (see the original paper for more details 1).  Statistical 

testing for inferences across groups or across stimulation frequencies, were carried out on these states’ 

time-series depicting time-resolved probability of activation. Details are provided below. 

 

Hidden Markov model of spontaneous whole-brain BOLD fMRI fluctuations during rest 

For the rs-fmri dataset, BOLD time-series extraction and HMM fitting were performed as for the ofMRI 

dataset. As the primary aim of this work was to study the effect of optogenetic stimulation on brain network 

dynamics, for the analysis of rs-fmri data we fit a separate HMM now fixing the number of states to 14 in 

order to have the same order of dimensionality as for ofMRI data. Across mice, we then studied the 

spontaneous hierarchical organization in HMM states fractional occupancies (see below for details). We 

then also fit HMMs with different state numbers (10, 12, 14, 16, and 18) in order to study the robustness of 

the spontaneous hierarchical organization. HMMs on rs-fmri data were fit on N = 29 mice (NWT = 10; 

N 3xTgAD = 19; for a total of n = 53 runs). 

 

Inference testing on HMM activation probabilities 

All inference testing was carried out using Permutation Analysis of Linear Models (PALM: 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM, 59). The null distribution was characterized with 1,000 

permutations. Statistical significance was established based on family-wise-error (FWE)-corrected p-value.  

When testing inferences on HMM responses to optogenetic stimulation (i.e. group comparisons: WT-ChR2 

vs WT-mCherry), one-dimensional threshold-free cluster enhancement (TFCE) was applied, thus 

FWE-corrected p-values were fully corrected across time. Also, in exploratory analyses, statistical 

significance was further corrected across all states tested, thus p-values are FWE-corrected across time and 
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states. All statistical significance results are plotted as -log10 of FWE-corrected p-values. All statistical 

analyses were carried out in MATLAB 2018. 

 

HMM response time-locked to optogenetic stimulation (short-scale) 

Each ofMRI run comprised 10 stimulation blocks. In order to create HMM responses time-locked to 

stimulation, for each run, we considered the HMM activation probability 10 seconds from beginning of 

stimulation, plus 10 seconds after the end of stimulation, for a total of 20 seconds (10 on, 10 off). We then 

calculated the median across the 10 blocks - as this is less affected by outliers and skewed data and is 

usually the preferred measure when the distribution is not symmetrical. Short-scale HMM responses were 

studied by contrasting groups: WT-mCherry vs WT-ChR2, or WT-ChR2 vs 3xTgAD. Significance was 

assessed through permutation testing as explained above in “Inference testing on HMM time-series”. The 

results from this analysis can be found in Fig. 2c, 5c . 

 

Long-scale variation in short-scale HMM responses to optogenetic stimulation  

HMMs characterize time-series for each state across the whole ofMRI run: we can therefore assess how 

short-scale HMM responses vary across long-scales. In order to do this in an unbiased fashion, we used 

permutation-based statistical significance as a criteria to deem a HMM response to a single block significant 

or not. Long-scale HMM responses were studied by contrasting WT-mCherry group vs WT-ChR2 group. 

The results from this analysis can be found in Fig. 3b. 

 

Frequency effect on time-locked HMM responses 

Each subject underwent multiple ofMRI runs at different frequencies (5, 10, and 20 Hz). In order to study 

the effect of frequency on time-locked HMM responses, a repeated measure ANOVA was carried out (as 

implemented in FSL randomise: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise).  Given the key role of 

theta rhythms in the EC-hippocampal circuit, our hypotheses predicted specific responses to each theta 

rhythm (5 and 10 Hz). We therefore specifically contrasted 5 Hz to 10 and 20 Hz, and 10 Hz to 5 and 20 Hz, 

34 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.142695doi: bioRxiv preprint 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
https://doi.org/10.1101/2020.06.09.142695
http://creativecommons.org/licenses/by/4.0/


and carried out an overall F-test for the effect of stimulation frequency as well as post-hoc T-tests. Each set 

of three runs with frequencies at 5, 10, and 20 Hz (also referred in the manuscript as session), was 

considered as an independent block, and block-aware permutation testing was carried out (combination of 

within-block and whole-block) 60. Frequency effects on short-scale HMM responses were studied separately 

for WT-ChR2 group and for 3xTgAD group. The results from this analysis can be found (for WT-ChR2 

group) in Fig. 4a, S10b, g, S14c, e , and (for 3xTgAD group) in Fig. S13b, S14b, S14d, f . 

 

Interaction effect of group by frequency on HMM responses 

In order to study group by frequency interactions (theta rhythms) on time-locked HMM responses, a 

mixed-design ANOVA was carried out using FSL PALM ( 59, design matrix can be seen in Fig. S14a). 

Group (WT vs 3xTgAD) was a between-subjects factor (fixed), while frequency (5 Hz to 10 and 20 Hz, and 

10 Hz to 5 and 20 Hz) was a within-subject factor (random). An overall F-test of the interaction effect with 

both stimulation contrasts was carried out as well as post-hoc T-tests (for 5 Hz to 10 and 20 Hz: WT > 

3xTgAD and 3xTgAD > WT; and, for 10 Hz to 5 and 20 Hz: WT > 3xTgAD and 3xTgAD > WT). Each set 

of three runs with frequencies at 5, 10, and 20 Hz (also referred in the manuscript as session), was 

considered as an independent block, and block-aware permutation testing was carried out (combination of 

within-block and whole-block) 60. The results from this analysis can be found in Fig. 5e, f. 

We also tested a group by beta-frequency interaction on state 4 activation probability. Given we 

hypothesised greater activation probability for 3xTgAD compared to WT when driving stimulation at 20 Hz 

compared to 5 and 10 Hz, only one single T-test for the relevant interaction was tested. The results from this 

analysis can be found in  Fig. S13a . 

 

General linear model of whole-brain BOLD fMRI fluctuations in response to optogenetic stimulation 

Brain hemodynamic fluctuations during ofMRI were also examined using a traditional general linear model 

(GLM) framework (FSL fsl_glm ). The stimulation paradigm and its first derivative were convolved using 

the default gamma function and used as regressors in the analysis, with motion parameters as covariates. 
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Threshold free cluster enhanced (TFCE) FWE-corrected p-values were deemed significant when below 0.05 

after permutation testing. This analysis was carried out on WT-ChR2 group only. The results from this 

analysis can be found in Fig. S8. 

 

Multi-scale community detection 

In resting-state fMRI BOLD data, and across multiple HMMs with varying numbers of states, we sought to 

identify clusters of HMM states sharing similar variance in FO in spontaneous brain network dynamics 

across mice. Across mice, we concatenated FO for HMMs with 10, 12, 14, 16, and 18 states, thus resulting 

in a meta-correlation matrix of FO similarity across mice.  Then, a Louvain method for community detection 

was applied on this meta-correlation matrix. We performed a multi-scale community detection across a 

range of the structural resolution parameter γ 61. By maximizing the modularity quality function 62 using a 

Louvain-like 63 locally greedy algorithm (with 100 optimisations) for multiple values of γ, we quantitatively 

estimate consensus between partitions, calculating partitions similarity as z-score of the Rand coefficient 64. 

This analysis was carried out on the resting-state fMRI dataset only. The results from this analysis can be 

found in Fig. 3b . 

 

Directed acyclic graph 

We modelled the relationship between optogenetic stimulation on/off-set and HMM states time-series (5 

variables) as a directed acyclic graph (DAG). We characterized the optimal Bayesian network explaining 

these relationships using Greedy Equivalence Search (www.phil.cmu.edu/projects/tetrad/), which allowed us 

to establish statistical conditional dependencies (edges) between these variables—primarily to estimate 

direct causal connections between variables. The Linear, Non-Gaussian, Acyclic causal Models (LiNGAM) 

65 approach was then used to determine further the direction of the edges, i.e. the causality between the 

variables. Importantly, optogenetic stimulation on/off-set and HMM states time-series were treated equally 

with no further supervised labelling, thus the model was agnostic to what source generated the activity. 

Model comparison across all possible permutations was carried out using a Bayesian information criteria 
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(BIC). This analysis was carried out on WT-ChR2 group only. The results from this analysis can be found in 

Fig. 3c, 4d. 

 

Association with EC monosynaptic projection 

The pattern of EC monosynaptic tracing projection was derived from the publicly available data of the Allen 

Brain Institute 66. Magnitude values were normalized via rank-based inverse normal transformation. 

Statistical association between EC projection pattern and spatial activity pattern of HMM states of interest 

was carried out using PALM 59. The null distribution was characterized with 1,000 permutations. Statistical 

significance was established based on FWE-corrected p-value. The results from this analysis can be found in 

Fig. S7 . 

 

Structural-to-functional mapping 

Mapping of anatomical projections derived from connectivity tracing on functional activation patterns was 

carried out using cross-validated regularized Ridge regression implemented in FSLNets 

( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). A visualization of the method can be found in Fig. S11. For 

all the regions considered in the functional brain analysis, the monosynaptic projection patterns were derived 

from the publicly available data of the Allen Brain Institute 66 into a brain region by brain region matrix. 

Predictor variables, with columns being different brain regions and, for each column, each row value being 

the magnitude of tracing projection to a target region, were normalized via rank-based inverse normal 

transformation and used to predict HMM state amplitude levels across brain regions (response variable).  

We carried out leave-one region-out cross-validation. The lambda value (Lagrange multiplier) was estimated 

through an inner loop. Statistical significance was assessed with 1,000 permutations. Estimated regression 

coefficients were then extracted and averaged across folds. These values were then dot-multiplied by the 

whole-brain directed connectivity matrix in order to characterize a directed connectivity matrix underlying a 
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specific state of activity. To aid interpretation, only positive connections were considered and visualized as a 

circle graph. The results from this analysis can be found in Fig. 4c, S10c-e, h-l. 
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Supplementary figures 

Figure S1 Spontaneous brain states of whole brain hemodynamic activity. HMM were used to study spontaneous 
brain network dynamics in the rs-fmri dataset (N = 29 mice (WT: N = 10; 3xTgAD, N = 19), n = 53 runs acquired 
over two sessions). Mice brain activity could be characterized by fast transitions between 14 different states of activity 
in a stochastic non-random pattern. a ) Directed matrix of state-to-state transition probability, where directed 
transitions from a state to the others is represented by a matrix row. b ) HMM states activation probability for some 
100 seconds in a representing animal; each color represents a state.  Brain network states are characterized as 
dynamics in both BOLD amplitude and functional connectivity. c ) HMM functional connectivity pattern for each of 
the 14 HMM states. d ) Showing HMM state maps as 3D brain images (for visualization and interpretation purpose, 
functional connectivity e ) was transformed into node degree). 
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Figure S2 Maps of spontaneous HMM states of brain activity. 2D visualization of the 14 HMM states mean 
activity maps estimated in the rs-fmri dataset. 
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Figure S3  Spontaneous hemodynamic activity in the mouse brain is spatially and temporally organized . In the 
rs-fmri dataset (N = 29 mice (WT: N = 10; 3xTgAD, N = 19), n = 53 runs acquired over two sessions), HMMs with 
varying states numbers (10, 12, 14, 16, and 18) were assessed. For each configuration, states fractional occupancy 
(FO) was estimated : the amount of time spent in a state. a ) Showing FO correlation matrix across mice for multiple 
HMMs with different numbers of states (10, 12, 14, 16, 18; concatenated together for a total of 70 states). In a 
data-driven fashion, multi-scale community detection was used in order to estimate the most robust number of 
communities of states or metastates across 100 repetitions. b ) Showing mean partition similarity across a range of 
values for the resolution parameter. Maximum mean partition similarity was achieved for γ = 1. c ) 3D representation 
of mean amplitude and node degree for metastates. d) 2D visualization of metastates mean amplitude. 
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Figure S4 Optogenetic stimulation of excitatory neurons in the EC. a)  Schematic illustrating 
CaMKII-ChR2-mCherry and CaMKII-mCherry transfection in the left EC. Coordinates relative to bregma and 
midline: -2.8 mm from bregma and  +4.2 mm from the midline; depth of the injection in loco: -2.8/-2.6 mm. b) 
Histological validation confirms ChR2-mCherry expression (red) in the EC, with counter-stain with DAPI (blue) for 
cell nucleus. c)  3D rendering of the optrode stimulation targets clustered within the EC in both 3xTgAD (pink dots) 
and wild-type control mice (cyan dots). d)  Transfected EC neurons, here shown in 3xTgAD, faithfully respond to 5 Hz 
and 20 Hz photostimulation pulses in ex-vivo slice recordings.  
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Figure S5 Brain states of whole brain hemodynamic activity in response to optogenetic stimulation. Hidden 
Markov models (HMMs) were used in order to characterize fast variations in whole brain BOLD fMRI fluctuations. 
Multiple HMM were fitted with different states numbers (10, 12, 14, 16, and 18 states) across all subjects and runs. 
Each separate HMM was fit on N = 31 mice, n = 153 runs (NWT-mCherry = 9 mice, n = 27 runs acquired in 1 session; 
NWT-ChR2 = 10 mice; n = 54 runs acquired into 2 sessions; N3xTgAD-ChR2 = 12 mice; n = 72 runs acquired in two session; 
total: N = 31 mice, n = 153 runs). Each HMM state number configuration was assessed 3 times in order to calculate 
model similarity. The best HMM state number was identified based on the ratio between model similarity and average 
free energy. Results are shown in a ): higher similarity would push the bar higher, as well as lower free energy. A state 
number of 14 led to models with greater similarity and lower free energy.  For HMM with 14 states and lowest free 
energy: b ) Showing matrix of transition probability between states. c ) Showing color coding for HMM states used 
across all main figures picturing results from ofMRI.  d ) HMM functional connectivity pattern for each of the 14 
HMM states. e) Showing HMM state maps as 3D brain images (for visualization and interpretation purpose, functional 
connectivity d) was transformed into node degree). 
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Figure S6 Maps of optogenetically-induced HMM states of brain activity. 2D visualization of the 14 HMM states 
mean activity maps estimated in the ofMRI dataset. 
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Figure S7 HMMs with different states number all show robust responses to optogenetic stimulation blocks. 
HMMs were fit with different state numbers. Although the HMM with 14 states showed greater similarity over model 
fitting repetitions and lower free energy, thus representing the best model, here HMM sensitivity to depicting BOLD 
changes to optogenetic stimulation across different state numbers is shown. Across all models, the HMMs were able to 
depict “bursts” in BOLD activity in response to stimulation, in both wild healthy mice and transgenic mice (both 
ChR2). Crucially these fast changes were not present in controls (mCherry). WT = wild-type. 3xTgAD = transgenic 
model of Alzheimer’s disease. Each separate HMM was fit on N = 31 mice, n = 153 runs (NWT-mCherry = 9 mice, n = 27 
runs acquired in 1 session; NWT-ChR2 = 10 mice; n = 54 runs acquired into 2 sessions; N3xTgAD-ChR2 = 12 mice; n = 72 runs 
acquired in 2 session; total: N = 31 mice, n = 153 runs).  
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Figure S8 GLM modeling of BOLD fMRI response to optogenetic stimulation. Results from analyzing only the 
WT-ChR2 group (NWT-ChR2 = 10 mice; n = 54 runs; each animal underwent 2 sessions of 3 runs, one run per 
stimulation frequency (5, 10, 20 Hz)). Here, stimulation frequencies were collapsed together as well as explicitly 
modelled.  Brain hemodynamic fluctuations during ofMRI were also examined using a traditional general linear model 
(GLM) framework. Here showing 2D brain maps depicting activation as Z-statistic level, thresholded at 
FWE-corrected p-values < 0.05. Showing, respectively, brain activation maps for stimulating EC at a ) 5 Hz, b) 10 Hz, 
c) 20 Hz, and d) for all frequencies combined. 
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Figure 9 Association between EC monosynaptic projection and spatial pattern of HMM states mean activity. 
Showing scatter plots of association between EC monosynaptic projection pattern and spatial pattern of HMM states 
mean activity. EC projection pattern was normalized via rank-based inverse normal transformation and the association 
with the spatial pattern of HMM states mean activity was tested through FSL PALM. Rho-value indicates Pearson’s 
correlation score; p-value indicates FWE-corrected significance. 
a) States found to be significantly more  active in WT-ChR2 group compared to WT-mCherry group. These states were 
tested for a positive association. b ) States found to be significantly less  active in WT-ChR2 group compared to 
WT-mCherry group. These states were tested for a negative association. c ) Single state found to be significantly more 
active in the 3xTgAD group compared to the WT-ChR2 group. For this state a two-tailed test was carried out. 
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Figure S10 Different anatomical circuits predict activity patterns in distinct HMM states. Results from analyzing 
only the WT-ChR2 group (NWT-ChR2 = 10 mice; n = 54 runs; each animal underwent 2 sessions of 3 runs, one run per 
stimulation frequency (5, 10, 20 Hz)). Stimulation frequencies were explicitly modelled in the statistical tests. a ) 
HMM mean activity map for state 10. b ) showing results of repeated measures ANOVA post-hoc T-tests (as -log10 
FWE-corrected p-values) comparing activation probability at 5 or 10 Hz with response at 20 Hz. Cross-validated 
Ridge regression (See Fig. S10 ) was then used together with publicly available tracing data (see Supplementary 
methods) to predict HMM mean activity map of state 10. c ) Scatter plot of real vs predicted values for state 10 mean 
activity values. Average regression coefficients across folds were then extracted d ) and plotted its positive values as a 
directed network (circular graph) e ). The same approach was carried out for HMM state 11. Panels f ), g), h), i), l) 
respectively mirror panels a ), b), c), d), e) for state 11 . 
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Figure S11 Structural to functional mapping. a ) Monosynaptic tracing projection patterns were derived from the 
publicly available data of the Allen Brain Institute in the form of a brain region x brain region matrix. Each row 
represents the outgoing projection magnitude for one single brain region (source) to all other regions (target 
projections). b ) Representation of A into a circular graph (thresholded only for visualization purpose). c ) Outgoing 
connection from the left lateral EC.  The matrix of directed anatomical projections (shown in A) was then transposed 
and normalized (see Supplementary methods) and used in a leave-one region-out cross-validation approach to predict 
functional maps of HMM activity amplitude. d ) Showing a schematic carton of the data used in the regularized 
regression model. e ) The estimated model, in terms of regression betas, were then averaged across cross-validation 
folds. Each beta represents the weight of one anatomical projection pattern in predicting function. These betas were 
then dot-multiplied by the directed anatomical projections matrix (shown in A) to provide a weighted anatomical 
circuit underlying the predicted HMM state. f ) Showing the estimated anatomical circuit in the form of a circular 
graph. 
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Figure S12 Downstream activity is caused by driving upstate brain network response with theta rhythms. 
Results from analyzing only the WT-ChR2 group (NWT-ChR2 = 10 mice; n = 54 runs; each animal underwent 2 sessions 
of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)). Here, stimulation frequencies were explicitly modelled in 
the statistical tests.  Optogenetic stimulation of EC also resulted in a downstream activity state (state 14). a ) For each 
stimulation frequency, showing activation probability of HMM state 14 across stimulation blocks.  As 1) theta 
oscillations are known to play a key role in the EC-hippocampal circuit, and 2) analyses shown in Fig. 4  show that 
activation of state 14 is mediated by other states, here we asked whether, across mice, activity level in state 14 after 
stimulation is predicted by optogenetically-driven states responses during  stimulation specifically within the theta 
rhythms. b ) Scatter plot X axis shows state (6, 10, or 11) activation probability during  stimulation; Y axis shows state 
14 activation probability after  stimulation. (Showing normalized values across subjects). Reported are Spearman’s 
correlation values (rho and p-value for a right tail test; Bonferroni corrected p-value = 0.0056; * significant after 
Bonferroni correction). Only state 10 activation level during stimulation with theta rhythms (5 and 10 Hz) showed to 
significantly correlate with state 14 activation level after stimulation. 
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Figure S13 Positive effect of theta rhythms in AD mice outlast stimulation duration. Showing results of group by 
beta-frequency interaction between the WT-ChR2 group and the 3xTgAD-ChR2 group (WT-ChR2 group and 
3xTgAD-ChR2 group (NWT-ChR2 = 10 mice; n = 54 run; N3xTgAD-ChR2 = 12 mice; n = 72 runs; for both groups, each 
animal underwent 2 sessions of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)). a ) Showing -log10 
FWE-corrected p-values of T-test testing for greater activation probability in 3xTgAD compared to WT when 
inducing stimulation at 20 Hz compared to 5 and 10 Hz. These results indicate that in AD-like mice theta rhythms 
decreased state 4 activation probability significantly more than in WT mice, compared to beta rhythms.  We then 
asked whether this effect outlasted stimulation duration, thus after  stimulation ended. A repeated measure ANOVA in 
AD mice only was used to test the effect of theta rhythms (N3xTgAD-ChR2 = 12 mice; n = 72 runs; each animal underwent 
2 sessions of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)). b ) Showing subject-specific difference in state 
4 activation probability after  stimulation. Each dot is a ofMRI run. Red cross indicates distribution mean. An overall 
effect (F-test) of frequency was found on state 4 activation probability after stimulation (F-test: p = 0.0100). 
Activation probability was found significantly reduced for both 5 and 10 Hz stimulation (post-hoc T-tests: 
respectively, 5 Hz stimulation, p = 0.0130; and 10 Hz stimulation, p = 0.0020; significance assessed with 1,000 
permutations). 
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Figure S14 Post-hoc tests showing a group by frequency interaction in HMM response. Showing results of group 
by beta-frequency interaction between the WT-ChR2 group and the 3xTgAD-ChR2 group (WT-ChR2 group and 
3xTgAD-ChR2 group (NWT-ChR2 = 10 mice; n = 54 run; N3xTgAD-ChR2 = 12 mice; n = 72 runs; for both groups, each 
animal underwent 2 sessions of 3 runs, one run per stimulation frequency (5, 10, 20 Hz)). a ) Design matrix used to 
carry out a mixed-design ANOVA testing for a group by  frequency interaction. b ) Average HMM activation 
probability time-locked to optogenetic stimulation and divided by group  (top row for the WT-ChR2 group, bottom for 
the 3xTgAD-ChR2 group) and frequency  (dotted line: 5Hz; dashed line: 10Hz; solid line: 20 Hz).  
To confirm the results of the interaction analysis showed in Fig. 5e, f , two separate repeated measure ANOVA were 
carried out independently in the WT-ChR2 group (NWT-ChR2 = 10 mice; n = 54 run) and in the 3xTgAD-ChR2 group 
(N3xTgAD-ChR2 = 12 mice; n = 72 runs). c ) Showing -log10 FWE-corrected p-values of F-test for effect of theta 
frequencies on in the WT-ChR2 group; results from post-hoc T-tests are shown in e ). Plot c) is also shown in Fig. 4a. 
Here is reported again for direct comparison with the 3xTgAD-ChR2 group. 
d) Showing -log10 FWE-corrected p-values of F-test for effect of theta frequencies on in the 3xTgAD-ChR2 group; 
results from post-hoc T-tests are shown in f ). Dotted line in c-f  indicates statistical threshold. 
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Supplementary tables 

 
Supplementary table 1 Comparing correlations in predicting activity pattern of HMM state 10.  Tracing 
projection data was used in a cross-validated fashion to predict the pattern of activity of state 10 and 11 and to estimate 
the respective regression betas representing the underlying anatomical circuits (respectively for state 10 and 11). 
Regression betas trained in state 11  prediction were then used to predict state 10 activity pattern. The table is showing 
the correlation values between the real pattern of state 10 activity and 1) predicted activity pattern based on state 10 
prediction betas, and 2) predicted activity pattern based on state 11 prediction betas. 
  

Variable X Variable Y Pearson’s 
rho 

Prediction betas state 10 to predict state 10 
functional pattern 

Activity pattern HMM state 10 0.82 

Prediction betas state 11 to predict state 10 
functional pattern 

Activity pattern HMM state 10 0.72 

Prediction betas state 10 to predict state 10 
functional pattern 

Prediction betas state 11 to predict state 10 
functional pattern 

0.79 

  
 
Supplementary table 2 Comparing correlations in predicting activity pattern of HMM state 11.  Tracing 
projection data was used in a cross-validated fashion to predict the pattern of activity of state 10 and 11 and to estimate 
the respective regression betas representing the underlying anatomical circuits (respectively for state 10 and 11). 
Regression betas trained in state 10  prediction were then used to predict state 11 activity pattern. The table is showing 
the correlation values between the real pattern of state 11 activity and 1) predicted activity pattern based on state 11 
prediction betas, and 2) predicted activity pattern based on state 10 prediction betas. 
  

Variable X Variable Y Pearson’s 
rho 

Prediction betas state 11 to predict state 11 
functional pattern 

Activity pattern HMM state 11 0.77 

Prediction betas state 10 to predict state 11 
functional pattern 

Activity pattern HMM state 11 0.66 

Prediction betas state 11 to predict state 11 
functional pattern 

Prediction betas state 10 to predict state 11 
functional pattern 

0.75 

  
 
Supplementary Table 3 Animal breakdown per experiment type. Animal breakdown per experimental setting. 
rs-fmri was conducted on WT and 3xTgAD mice at 3 and 6 months of age, 1 run per mouse per time-point. OfMRI 
experiments were performed with 5/10/20 Hz stimulations per each mouse (n = 3 runs per mouse per time-point). The 
stimulation frequencies were randomized across mice. 
  

 3 months 6 months 
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Mouse_rest_3xTG 
 
 

NWT = 10, n = 10 
N3xTgAD = 19, n = 19 

NWT = 10, n = 10 
N3xTgAD = 13, n = 13 

Mouse_opto_3xT
G 

NWT-ChR2 = 10, n = 30 
N3xTgAD-ChR2 = 12, n = 36 
NWT-mCherry = 9, n = 27 

NWT-ChR2 = 8; n = 24 
N3xTgAD-ChR2 = 10; n = 30 
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