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Abstract: 

The goal of the study was to identify genes whose aberrant expression can contribute to 
diabetic retinopathy. We determined differential gene expression in response to high 
glucose in lymphoblastoid cell lines derived from matched individuals with type 1 
diabetes (T1D) with and without retinopathy. Those genes exhibiting the largest 
difference in glucose response between individuals with diabetes with and without 
retinopathy were assessed for association to diabetic retinopathy utilizing genotype data 
from a genome-wide association study meta-analysis. All genetic variants associated 
with gene expression (expression Quantitative Trait Loci, eQTLs) of the glucose 
response genes were tested for association with diabetic retinopathy. We detected an 
enrichment of the eQTLs from the glucose response genes among small association p-
values and identified folliculin (FLCN) as a susceptibility gene for diabetic retinopathy. 
We show that expression of FLCN in response to glucose was greater in individuals with 
diabetic retinopathy compared to individuals with diabetes without retinopathy. Three 
large, independent cohorts of individuals with diabetes revealed an association of FLCN 
eQTLs to diabetic retinopathy. Mendelian randomization further confirmed a direct 
positive effect of increased FLCN expression on retinopathy in individuals with diabetes. 
Together, our studies integrating genetic association and gene expression implicate 
FLCN as a disease gene for diabetic retinopathy. 
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Introduction: 

Almost all individuals with diabetes will develop some form of diabetic retinopathy over 
time [1]. In the United States diabetic retinopathy is the most frequent cause of blindness 
among working age individuals [2]. Interindividual variation contributes significantly to 
susceptibility of the severe manifestations of diabetic retinopathy, which results in vision 
impairment. Epidemiological studies suggest that phenotypic variation is influenced by 
two primary risk factors: the duration of diabetes, and an individual’s level of glycemia 
(HbA1c) [3]. However, these two factors do not completely explain an individual’s risk for 
developing diabetic retinopathy. For instance, a common anecdotal clinical experience is 
the comparison of patients with similar durations of diabetes and similar levels of 
glycemic control who have tremendously disparate clinical outcomes for diabetic 
retinopathy. Moreover, some individuals with diabetes develop very minimal retinopathy 
[4], whereas others clearly seem to have a predisposition for severe retinopathy [5]. 

Together, these observations in conjunction with the high concordance of diabetic 
retinopathy between family members support an underlying genetic mechanism. Familial 
aggregation and twin studies estimate that genetic factors account for 25 to 50 percent 
of an individual’s risk of developing severe diabetic retinopathy [6] [7]. Unfortunately, 
little is known about the genetic architecture that contributes to susceptibility for diabetic 
retinopathy. Genetic studies suggest that it is a highly polygenic trait influenced by 
multiple genetic variants of small effect. Our group and others have performed genome-
wide association studies to better delineate the molecular factors that predispose to 
diabetic retinopathy [8] [9] [10]. However, these studies have had limited success, likely 
due to insufficient study sample sizes and the phenotypic heterogeneity of diabetic 
retinopathy. 

Notably, like other complex disease traits including age-related macular degeneration 
[11, 12], a majority of genetic variants nominally associated with diabetic retinopathy are 
located in intronic or inter-genic regions [13]. Most of these variants appear to play 
critically important functional roles in regulating gene expression. In fact, several of the 
top associated SNPs identified in our meta-GWAS of diabetic retinopathy [8] are present 
in DNase hypersensitivity sites and affect gene expression levels by altering the allelic 
chromatin state or the binding sites of transcription factors [14]. 

The observation that disease-associated genetic loci often influence gene expression 
levels [15] led us to postulate that integrating gene expression with genetic association 
would be a powerful approach to identify susceptibility genes for diabetic 
retinopathy. We hypothesized that cell lines derived from individuals with diabetes with 
and without retinopathy could be used to uncover genetic variation that explain individual 
differences in the response to diabetes. Culturing two sets of cell lines under controlled, 
identical conditions from individuals with diabetes who did and those who did not 
develop retinopathy, could unmask molecular differences in how these groups respond 
to glucose [16] [17]. We presumed that a portion of those differences would have a 
genetic basis.  

In this article, we identify genes whose expression responds differently to glucose in 
cells derived from T1D individuals with and without diabetic retinopathy. We show that 
one of these genes, folliculin (FLCN), is causally implicated in diabetic retinopathy based 
on results from genetic association testing and Mendelian randomization. 
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Methods: 

Overview  

In this study we profiled the transcriptomes of cell lines derived from 22 individuals [7 
individuals with no diabetes (nDM), 8 with T1D with proliferative diabetic retinopathy 
(PDR) and 7 with T1D with no retinopathy (nDR)] utilizing gene expression microarrays 
to characterize the transcriptional response to glucose. Specifically, we cultured 
lymphoblastoid cell lines (LCLs) derived from each individual in standard glucose (SG) 
and high glucose (HG) medium and measured gene expression for each gene in each 
sample, as well as the difference (Δ = response to glucose [RG]) in each gene’s 
expression for each individual (Figure 1a). In this manuscript, ‘Differential expression’ 
refers to gene expression comparisons between groups (nDM, PDR, nDR) in the same 
condition (SG or HG) and between conditions (SG and HG) in the same group (nDM, 
PDR or nDR). 

We compared the differential response in gene expression to glucose for all individuals 
with and without proliferative retinopathy. ‘Differential response’ in gene expression 
refers to the difference in gene expression response to glucose between groups. 
Specifically, we identified genes with a significant differential response in expression 
between individuals with diabetes with and without proliferative diabetic retinopathy 
(RGpdr-ndr).  

We followed up genes showing differential response using the results of both a prior 
genome-wide association study meta-analysis of diabetic retinopathy (in the GoKinD and 
EDIC cohorts) [8] and the results of a multi-tissue expression quantitative trait loci 
(eQTL) analysis from GTEx [18] to identify potential diabetic retinopathy susceptibility 
genes (Figure 1b).   

 
Subject Safety and Confidentiality Issues 
 
All cell lines were de-identified prior to their arrival at the University of Illinois at Chicago; 
therefore, this proposal qualified as non-human subjects research according to the 
guidelines set forth by the institutional review board at the University of Illinois at 
Chicago. As the data were analyzed anonymously, no subject consent was 
required. DCCT subjects previously provided consent for their samples to be used for 
research. 
Matching of subjects was performed at George Washington University Biostatistics 
Center and did not involve protected health information as the phenotypic data were de-
identified. The George Washington University institutional review board has approved all 
analyses of EDIC data of this nature. All protocols used for this portion of the study are 
in accordance with federal regulations and the principles expressed in the Declaration of 
Helsinki. Specific approval of the study design and plan was obtained from the EDIC 
Research Review Committee.   
 
Cell Lines 
 
Twenty-two lymphoblastoid cell lines were used in the study as described previously 
[16]. Briefly, we included 15 of the 1,441 lymphoblastoid cell lines generated from 
individuals with type 1 diabetes from the DCCT/ EDIC cohort [19] [20], consisting of 8 
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matched cases with PDR (PDR) and 7 without retinopathy (nDR) as the controls [16] 
(Supplemental Table S1). Whole blood samples were ascertained from DCCT study 
subjects between 1991 and 1993. White blood cells from the samples were transformed 
into lymphoblastoid cell lines in the early 2000s. The fifteen lymphoblastoid cell lines 
from individuals with diabetes consisted of matched cases and controls. Cases were 
defined by the development of proliferative diabetic retinopathy by EDIC Year 10 (2004), 
whereas controls had no retinopathy through EDIC Year 10 (2004). Retinopathy grade 
was determined by seven-field stereoscopic photos. Control subjects had an ETDRS 
(Early Treatment Diabetes Retinopathy Score) of 10 and case subjects had an ETDRS 
score of ≥ 61. Most pairs were matched by age, sex, treatment group (intensive vs. 
conventional), cohort (primary vs. secondary), and diabetes duration [21] [22], except 
one pair that was matched by age, sex and treatment group only. Diabetes duration was 
defined as the number of months since the diagnosis of diabetes at DCCT baseline 
which was the time at subject enrollment (1983–1989). The remaining seven 
lymphoblastoid cell lines were purchased from the Coriell Institute for Medical Research 
NIGMS Human Genetic Cell Repository (http://ccr.coriell.org/) (GM14581, GM14569, 
GM14381, GM07012, GM14520, GM11985, and GM07344). None of these individuals 
had a history of diabetes (nDM). The covariates available for these 7 individuals were 
age and sex; male and female individuals were included. All of these individuals without 
diabetes were unrelated and of European ancestry [16] [17] (Supplemental Table S2). 
  
  
Culture Conditions 
 
All lymphoblastoid cell lines were maintained in conventional lymphocyte cell culture 
conditions of RPMI 1640 with 10% FBS in a 25-cm2 cell culture flask. The cells were 
incubated at 370C in 5% CO2 and the media was changed twice each week. Prior to the 
experiments (below), lymphoblastoid cells following serum starvation were passaged for 
a minimum of one week in either standard (SG) RPMI 1640 (11mM glucose) or high 
glucose (HG) RPMI media (30mM glucose) [23]. 
  
Gene Expression Profiling 
 
Quality control from RNA extraction was performed using the Agilent bio-analyzer, 
processed using the Illumina™ TotalPrep™-96 RNA Amplification Kit (ThermoFisher 
4393543), hybridized to Illumina HT12v4 microarrays (Catalog number: 4393543), and 
scanned on an Illumina HiScan scanner [24] [25]. For each of the 22 individuals, three 
biological replicates were profiled, with each sample assessed at both standard glucose 
conditions (11mM of glucose), as well as high glucose conditions (30mM of glucose). 
Biological replicates were split from the same mother flask; cells were grown in separate 
flasks and run on different microarray plates on different days. Each biological replicate 
was generated from a separate frozen aliquot of that cell line. The gene expression 
profiling was performed in a masked fashion for both the case/control (PDR, nDR, nDM) 
status of the individual as well as the glucose treatment (SG, HG) of the sample in order 
to reduce any bias. 
 
 
Relative EBV Copy Number 
 
Standard TaqMan qPCR was performed using EBV and NRF1 probes and primers  
[26]. To calculate real-time PCR efficiencies a standard curve of ten points of 2-fold 
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dilution of 156.7 ng of gDNA was used from the Raji cell line (ATCC® CCL-
86TM). Probes were designed for the target, EBV, and a reference gene, NRF1. Final 
concentrations of the probes and primers were 657nM and 250nM respectively. EBV 
probe: 5’6FAM-CCACCTCCACGTGGATCACGA-MGBNFGQ3’; EBV forward primer: 5’ 
GAGCGATCTTGGCAATCTCT; EBV reverse primer: 5’ AGTAGCCAGGCACCTACTGG; 
NRF1 probe: 5’VIC-CACTGCATGTGCTTCTATGGTAGCCA-MGBNFQ3’; NRF1 forward 
primer: 5’ ATGGAGGAACACGGAGTGAC; NRF1 reverse primer: 5’ 
CATCAGCTGCTGTGGAGTTG. Cycle number of crossing point versus DNA 
concentration were plotted to calculate the slope. The real-time PCR efficiency (E) was 
calculated according to the equation: E = 10 (-1/slope). Triplicates were done for each data 
point. Genomic DNA (78.3 ng) from each lymphoblastoid cell line was used in a standard 
TaqMan qPCR reaction with EBV as target gene and NRF1 as reference gene. The 
sequences and concentrations of the probes and primers were as shown above.  
  
Growth Rate Measurement 
 
Lymphoblastoid cell lines were thawed and cultured in RPMI and 10% FBS until they 
reached over 85% cell viability. Cells were seeded in a T25 flask. Two replicates were 
performed per cell line. Cells were counted every day or every other day for five to ten 
days and recorded.  
 
Quality Control for Gene Expression 
  
The gene expression data comprised a total of 144 samples from 22 individuals (3 
replicates per individual and treatment, except for 3 individuals with 5 replicates). Gene 
expression was assessed in two conditions, standard glucose and high glucose, and 
generated in four batch runs that were carefully designed to minimize potential batch 
effects. BeadChip data were extracted using GenomeStudio (version GSGX 1.9.0) and 
the raw expression and control probe data from the four different batches were 
preprocessed using a lumiExpresso function in the lumi R package version 2.38.0 [8, 9] 
in three steps: (i) background correction (lumiB function with the bgAdjust method); (ii) 
variance stabilizing transformation (lumiT function with the log2 option); (iii) 
normalization (lumiN function with the robust spline normalization (rsn) algorithm that is 
a mixture of quantile and loess normalization). To remove unexpressed probes, we 
applied a detection filter to retain probes with strong true signal by applying Illumina 
BeadArrays detection p-values < 0.01 followed by removing probes that did not have 
annotated genes, resulting in a total of 15,591 probes.  
  
Gene Expression Analysis 
  
The study design is portrayed in Figure 1a. For a given individual Si (i= 1,…,22) and 
gene Gk (k= 1,...,15591), we calculated ∆i,k= HGi,k - SGi,k, where ∆ is the individual’s 
response to glucose (RG), HG is gene expression in high glucose culture, and SG is 
gene expression in standard glucose culture. All replicate data were fit using a mixed 
model that accounted for the correlation between repeated measures within individuals. 
The design matrix was constructed and analysis performed using the R version 3.5.1 
package limma [27]. We built a design matrix using the model.matrix function, and 
accounted for correlation between biological triplicates using limma’s 
duplicatecorrelation function. A mixed linear model was then fit that incorporates this 
correlation and ∆i,k using the lmFit function. Principal component analysis (PCA) of gene 
expression was run with the prcomp function in R [28]. For each gene, we calculated 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143164
http://creativecommons.org/licenses/by/4.0/


moderated t- and f-statistics and log-odds of expression by empirical Bayes moderation 
of the standard errors towards a common value. Differential expression is described 
using fold change (FC) while differential response reflects fold change (FC) differences 
between groups. The power to detect a 2 FC in gene expression between the two 
retinopathy groups (retinopathy vs. no retinopathy) (RGpdr-ndr)) given our sample size and 
using a type I error rate of 0.05 is 95% (as supported by our prior work [16])  
 
Gene set enrichment analysis (GSEA) 
 
GSEA was performed using pre-ranked gene lists [29]. We ranked all analyzed genes 
based on sign (fold change) x (– log10(p-value)) [9]. Duplicated genes were removed. 
The gene ranking resulted in the inclusion of 11,579 genes. Enrichment statistics were 
calculated using rank weighting and the significance of enrichment was determined 
using permutations performed by gene set. The gene sets included c2.all.v6.0 and 
c5.all.v6.0. The minimum gene set size was 15 and the maximum gene set size was 
500. GSEA was used to identify significant gene sets for the response to glucose in all 
study subjects (RGall : nDM + PDR + nDR). 
 
Expression quantitative trait loci (eQTL) 
 
To determine if the genes showing a differential response in gene expression (RGpdr-ndr) 
is driven by germline genetic variation, we tested if the eQTLs for these genes  are 
enriched for small diabetic retinopathy GWAS p-values [8]. We use the term, ‘differential 
response gene’, for those genes identified by the RGpdr-ndr analysis. All statistically 
significant eSNPs (false discovery rate (FDR) threshold of ≤0.05) (single nucleotide 
polymorphisms, SNPs, corresponding to cis-eQTLs from the GTEx and EyeGEx 
datasets) were collated for the glucose response genes in any of the 48 GTEx (version 
7) tissues and the retina [18] [30]. We use the term eGene for any gene with at least one 
significant eSNP in any tissue. 
  
Genome-wide association study (GWAS) 
 
Meta-analysis p-values were ascertained from our prior genome-wide association study 
for diabetic retinopathy [8]. The study assessed the genetic risk of sight threatening 
complications of diabetic retinopathy as defined by the presence of diabetic macular 
edema or proliferative diabetic retinopathy (cases) compared to those without (controls) 
in two large type 1 diabetes cohorts of 2829 total individuals (973 cases, 1856 controls) 
taken from the Genetics of Kidney in Diabetes (GoKinD) and the Epidemiology of 
Diabetes Interventions and Complications study (EDIC) cohorts. 
 
We sought to determine whether there is enrichment of small p-values for diabetic 
retinopathy meta-GWAS among the significant eQTLs for the glucose response genes 
that show a significant differential glucose response between individuals with and 
without retinopathy (RGpdr-ndr). We used Benjamini-Hochberg adjusted p-values (FDR) to 
account for multiple testing given the high level of linkage disequilibrium between many 
eSNPs within an eQTL. SNPs from the three studies (expression, eQTL, GWAS) were 
matched by mapping all SNPs to dbSNP v.147 [31]. We determined the corresponding 
FDR for each glucose response gene’s eSNPs in the diabetic retinopathy meta-GWAS. 
To assess enrichment, we first determined the observed proportion of meta-GWAS FDR 
values < 0.05 among the statistically significant eQTLs of the glucose response genes 
(RGpdr-ndr). Next, we took 10,000 random samples of 103 GTEx eGenes (genes with an 
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eQTL in any GTEx tissue) and identified corresponding eSNPs across all GTEx tissues. 
We calculated the GWAS FDR for these eSNPs and recorded the proportion of FDR 
values < 0.05. 
  
Validation for the association of glucose response gene eSNPs with diabetic retinopathy 
was performed in the UK Biobank (UKBB) GWAS (Supplemental Table S3) [32]. Only 
individuals of northern European ancestry were analyzed. Quality control excluded 
individuals who were outliers based on relatedness; exhibited an excess of missing 
genotype calls; had more heterozygosity than expected; or had sex chromosome 
aneuploidy. A total of 337,147 individuals were available for analysis. Case subjects 
were defined as those who answered “yes” to questionnaire data eyesight field 6148 
‘Diabetes related eye disease’ (n=2,332). Our prior work validated the utility of self-report 
for the presence of severe diabetic retinopathy [31] [33]. Control subjects were defined 
as those who answered “yes” to data field 2443 ‘Diabetes diagnosed by doctor’ 
(n=14,680), excluding case subjects. SNPs were excluded according to the following: 
minor allele frequency < 0.004; missing rate > 0.015; HWE p-value < 1x10-10; INFO 
score < 0.8. We performed logistic regression as implemented in Plink2 [34] on this set 
of cases and controls.  The logistic regression, including the following covariates: first 10 
genotype-based principal components; chromosomal sex (as defined by XX, XY status); 
age; type of diabetes; HbA1c; and genotyping array type.  
 
Mendelian Randomization 
 
To explore the causal effect of increased folliculin (FLCN) expression on diabetic 
retinopathy, we employed Mendelian randomization [35]. Effects were estimated with 
summary data-based Mendelian randomization analysis [36] (SMR). We estimated the 
effect of increasing levels of FLCN expression on diabetic retinopathy in the UKBB 
GWAS for diabetic retinopathy (described above) utilizing 272 SNPs that were significant 
cis-eSNPs (FDR ≤0.05) for FLCN in retina and also in at least 20 GTEx tissues. A total 
of 246 SNPs remained after removing those SNPs or their proxies (r2> 0.8) not 
genotyped in the UKBB. For each individual, the exposure was based on the genetically 
predicted gene expression of FLCN in retina and the outcome was the likelihood of 
having diabetic retinopathy. Heterogeneity in dependent instruments (HEIDI) [36] was 
used to investigate the possibility of confounding bias from horizontal pleiotropy with 14 
independent (r2 < 0.2) FLCN eQTLs. As multiple independent (r2 < 0.2, n = 14) FLCN 
eQTLs exist, we also employed multi-SNP Mendelian randomization to assess for an 
aggregated effect [37] of the eQTLs on diabetic retinopathy mediated through FLCN 
expression.  
 
Folliculin (FLCN) Localization in Human Donor Eye Retina 
 
A whole eye from a 69-year old Caucasian female post-mortem donor without diabetes 
was obtained from National Disease Research Interchange (NDRI). Findings were 
replicated in an additional five post-mortem donors without diabetes from the NDRI. The 
eye was cut in half in a horizontal plane, and each half was placed in an individual 
cassette. Samples were processed on ASP300 S automated tissue processor (Leica 
Biosystems) using a standard overnight processing protocol and embedded into paraffin 
blocks. Tissue was sectioned at 5 µm, and sections were de-paraffinized and stained on 
BOND RX autostainer (Leica Biosystems) following a preset protocol. In brief, sections 
were subjected to EDTA-based (BOND ER2 solution, pH9) antigen retrieval for 40 min at 
100°C, washed and incubated with protein block (Background Sniper, Biocare Medical, 
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BS966) for 30 min at room temperature. For immunofluorescence (IF), sequential 
staining with rabbit polyclonal anti-FLCN antibody (1:50, Abcam #ab93196) and mouse 
monoclonal anti-CD31 antibody (1:50, DAKO, M0823) was conducted using goat-anti-
rabbit Alexa-488 and goat-anti-mouse Alexa-555 secondary antibodies (Molecular 
Probes) for detection. DAPI (Invitrogen, #D3571) was used to stain nuclei. The slides 
were mounted with ProLong Diamond Antifade mounting media (ThermoFisher, 
#P36961). Images were taken at 20x magnification on Vectra 3 multispectral imaging 
system (Akoya Biosciences). A spectral library acquired from mono stains for each 
fluorophore (Alexa-488, Alexa-594), DAPI, and human retina background fluorescence 
slide was used to spectrally unmix images in InForm software (Akoya Biosciences) for 
visualization of each color.  
 
Data and Code Availability 
 
The microarray expression data are available at Gene Expression Omnibus (GEO) 
under accession code GSE146615. The cleaned analysis dataset of the diabetic 
retinopathy GWAS in the UKBB will be uploaded to the UKBB archive 
(https://oxfile.ox.ac.uk/oxfile/work/extBox?id=825146B4380F72048D). Please contact 
anamaria@uic.edu for further information.  
 

Results: 
 
Individuals with retinopathy (PDR) show differences in diabetes duration and level 
of glycemia compared to individuals without retinopathy (nDR).  
 
Matched DCCT/EDIC subjects from whom the gene expression profiling was obtained 
are detailed in Supplemental Table S1. All individuals had T1D, were Caucasian, and 
60% were female. As anticipated, notable differences were observed between 
individuals with and without retinopathy (PDR vs. nDR) for duration of diabetes (53 +/- 
43.4 months vs. 27 +/- 13.4 months) and mean HbA1c (9.71 +/- 2.37 vs. 7.62 +/- 1.07), 
respectively, given their significant impact on retinopathy. 

Interindividual variation is evident in the transcriptional response to glucose.  

We quantified gene expression levels from LCLs of all study individuals (nDM, PDR, 
nDR) in both standard glucose (SG) and high glucose conditions (HG) and determined 
the genome-wide transcriptional response to glucose for each individual (RGall). We 
observed that 22% of 11,548 examined genes were differentially expressed between the 
two conditions (true positive rate; π1 = 0.22) [38] (Supplemental Figure S1), with 299 of 
those at an FDR < 0.05 (Figure 2a), supporting a significant impact of glucose on the 
LCL transcriptome. We confirmed that interindividual transcriptome response to high 
glucose is greater than the intraindividual response (P = 2 x 10-16) (Supplemental Figure 
S2a-c). Interestingly, TXNIP, the most highly glucose-inducible gene in multiple cell 
types [39, 40], exhibited the largest (log2(FC) difference = 0.2) and most significant (P = 
3.2 x10-12, FDR = 5.1 x10-8) transcriptional response to glucose. Pathway analysis using 
Gene Set Enrichment Analysis (GSEA) revealed dramatic up-regulation of genes 
involved in structural changes to DNA (DNA packaging, FDR < 0.0001; nuclear 
nucleosome, FDR = 0.001) and in genes such as transcription factors that modulate the 
cellular response to environmental stimuli (protein DNA complex, FDR < 0.0001) (Figure 
2b). Conversely, genes that modulate the cellular response to infection were 
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considerably down-regulated (type 1 Interferon, FDR < 0.0001; gamma Interferon, FDR 
< 0.0001; leukocyte chemotaxis genes, FDR < 0.0001). This finding suggests that 
chronic glucose exposure depresses cellular immune responsiveness and may explain 
in part the increased risk of infection found in patients with diabetes [41] [42].  

 
Individuals with diabetic retinopathy exhibit a differential transcriptional response 
to glucose. 
 
We observed differences in the transcriptional response to glucose between matched 
individuals with and without diabetic retinopathy (RGpdr-ndr). Principal component analysis 
(PCA) demonstrated that the observed interindividual variance is dominated by 
randomized DCCT treatment (intensive vs. conventional) group effects based on 
retinopathy status (P = 3 x 10-6) (Supplemental Figure S3) and is not confounded by LCL 
growth rate (P > 0.05) or EBV copy number (P > 0.05). Using a gene-wise analysis we 
identified 19 genes exhibiting a differential glucose response between individuals with 
and without retinopathy (P < 0.05, absolute log2 FC difference > 0.26) (Figure 3; 
Supplemental Table S4). Some of these genes and pathways have previously been 
shown to play a role in diabetic retinopathy. One of the top differential response genes 
was IL1B (P = 0.008, log2(FC) response difference = 0.289). Expression of IL1B has 
been previously reported to be induced by high glucose [43]. Additionally, the expression 
of IL1B is upregulated in the diabetic retina and has been implicated in the pathogenesis 
of diabetic retinopathy [44]. Likewise, the top GSEA pathway has also previously been 
implicated in the pathogenesis of diabetic retinopathy. We identified PDGF signaling as 
the most significant differential response pathway (FDR = 0.012) (Supplemental Figure 
S4). Elevated levels of PDGF are present in the vitreous of individuals with proliferative 
diabetic retinopathy compared to individuals without diabetes [45]. As PDGF is required 
for normal blood vessel maintenance, it is thought to contribute to the pericyte loss, 
microaneurysms, and acellular capillaries that are key features of the diabetic retina [46]. 
Interestingly, despite our model utilizing lymphoblastoid cells, it was able to reveal the 
upregulation of PDGF which is primarily a vascular factor that also plays a key role in 
neuronal tissue. 

Genes with differential response to glucose are implicated in the pathogenesis of 
diabetic retinopathy. 

 
We sought to assess whether the most significant differential response genes (RGpdr-ndr) 
could yield novel insights into diabetic retinopathy. An overview of our approach is 
presented in Figure 4a. First, we selected the top 103 genes (P < 0.01) that showed the 
largest difference in gene expression response to glucose between individuals with 
diabetes with and without retinopathy. We next identified all of the significant expression 
quantitative trait loci (eQTLs) for these genes in GTEx (version 7) [18]. In total, we found 
7,253 unique eQTL SNPs (hereafter referred to as eSNPs) in at least one of the 48 
tissues investigated by GTEx. Differential response genes are more likely to harbor 
eSNPs, and hence be eGenes, compared to the genome-wide average (P = 2.0 x 10-16) 
(Supplemental Figure S5). This suggests that differential response genes are more likely 
to be genetically regulated and may contribute to interindividual differences in the 
development of diabetic retinopathy. To test if the eSNPs for the 103 differential 
response genes were more associated with diabetic retinopathy than expected, we 
evaluated the association between the 7,253 differential response gene eSNPs and 
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diabetic retinopathy using our published GWAS of diabetic retinopathy [8]. The 7,253 
eSNPs from the differential response genes are enriched for association to diabetic 
retinopathy (FDR < 0.05) (Figure 4b). To further assess the significance of this 
enrichment, we performed permutation testing of eSNPs from random sets of 103 genes 
which demonstrated that less than 1% contained the same proportion of similarly 
skewed GWAS p-values (Supplemental Figure S6). The eSNPs for differential response 
genes were enriched among diabetic retinopathy meta-GWAS p-values relative to all 
eSNPs (P = 0.0012) and all SNPs (P = 0.0023) (Figure 4c). Thus, genes exhibiting a 
differential response to glucose (RGpdr-ndr) are associated with the development of severe 
diabetic retinopathy. 
  
Folliculin (FLCN) is a putative diabetic retinopathy disease gene. 
 
The most significant retinopathy-associated eSNP, among the set of 7,253 eSNPs 
tested is rs11867934 (Figure 5a) FDR < 0.05; meta-GWAS P = 6.7x10-6 < Bonferroni 
adjusted p-value of 6.9x10-6; OR=0.86, 95%CI=0.71,1.00; Minor Allele Frequency, 
=0.22. rs11867934 is an intergenic eSNP for FLCN in multiple biologically relevant 
tissues including artery and nerve. We confirmed FLCN expression in the retina of 
human donor eyes (Supplemental Figure S7). In the LCLs derived from individuals with 
diabetes, FLCN was upregulated in response to glucose to a greater extent in individuals 
with diabetic retinopathy than in individuals with diabetes without retinopathy (log2FC 
difference = 0.276, P = 0.003) (Supplemental Figure S8).  
 
eQTLs in retina have recently been mapped [30]. We determined that at least 43% of 
retina eQTLs are also eQTLs in GTEx LCLs . Examining the genome-wide association 
signal for a disease from eQTLs in aggregate can be a more powerful strategy to discern 
a heterogenous genetic signal than testing each of these SNPs individually. We collated 
all the eSNPs for FLCN in the retina. We assessed the aggregated association of FLCN 
eSNPs (N = 272 eSNPs significant in the retina and 20 or more GTEx tissues) to 
diabetic retinopathy in the meta-GWAS and observed an enrichment for association to 
diabetic retinopathy (π1 = 0.9; Figure 5b, Supplemental Figure S9). We then validated 
the FLCN association to diabetic retinopathy in a third cohort, the UK Biobank (UKBB) 
(Supplemental Table S3), and found that the FLCN eSNPs were enriched for association 
to diabetic retinopathy in the UKBB (π1 = 0.73) (Supplemental Figure S10). 
 
We applied Mendelian randomization to assess whether the level of FLCN expression 
affects the development of diabetic retinopathy. We first imputed retinal FLCN 
expression in the UKBB, and then estimated the effects of the estimated FLCN 
expression on diabetic retinopathy using summary data-based Mendelian randomization 
analysis [36] (SMR). Mendelian randomization treats the genotype as an instrumental 
variable. A one standard deviation (SD) increase in the predicted retinal expression of 
FLCN increases the risk of diabetic retinopathy by 0.15 SD (95% confidence interval: 
0.02 - 0.29, standard error 0.07, P = 0.024). Individuals with diabetes with high predicted 
retinal FLCN expression have increased odds of developing retinopathy (1.3 OR 
increase per SD increase in FLCN expression) [47]. We did not observe any evidence of 
horizontal pleiotropy (in which FLCN eSNPs are independently associated with both 
FLCN expression and diabetic retinopathy) confounding the analysis [HEIDI P > 0.05 (P 
= 0.2)] [36]. We detected an aggregated effect of 14 independent FLCN eQTLs (r2 < 0.2) 
on the development of diabetic retinopathy through FLCN expression using multi-SNP 
Mendelian randomization (P = 0.04) [37]. Together, these findings support the presence 
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of genetic variation at the FLCN locus affecting both FLCN expression and the 
development of diabetic retinopathy through the expression of FLCN. 
 
 
Discussion: 

The cellular response to elevated glucose is an increasingly important pathway to 
understand in light of the emerging epidemic levels of diabetes worldwide [1]. Variations 
in the cellular response to glucose at a molecular level have not been well-characterized 
between cell types, and to an even lesser degree between individuals. In prior work, we 
characterized robust, repeatable interindividual differences in transcriptional response to 
glucose in LCLs of individuals with diabetic retinopathy [16]. As a lymphoblastoid cell line 
generated from each individual is genetically unique, it follows that the gene expression 
response to glucose between individuals should be phenotypically heterogeneous and 
that a portion of the interindividual variability will be genetically determined. We 
hypothesized that interindividual variation in the cellular response to glucose may reveal 
clues to the genetic basis of diabetic retinopathy, thereby providing insight into its 
predisposition. 

We demonstrated that different individual-derived cell lines treated under identical 
culture conditions reveal an individual-specific transcriptional response to glucose and 
this signal far exceeds accompanying experimental noise. Transformation and multiple 
freeze/thaw passages do not homogenize the individualized response to high glucose 
induced gene expression in lymphoblastoid cell lines. Analyzing the individual glucose 
stimulated transcriptional response revealed several insights into the pathophysiology of 
the diabetic state and how it relates to the development of retinopathy. For instance, 
TXNIP was identified as the top differential response gene to glucose in all individuals 
(RGall). TXNIP is a key marker of oxidative stress. It is upregulated in the diabetic retina 
where it induces Muller cell activation [39]. High glucose treatment has been shown to 
increase TXNIP expression [40]. TXNIP is a glucose sensor whose expression has been 
strongly associated with both hyperglycemia and diabetic complications. Specifically, the 
TXNIP locus was differentially methylated in the primary leukocytes of EDIC cases and 
controls [40]. A key mechanism by which cells respond to stress is through changes in 
genome configuration. Conformational alterations in DNA packaging influence the 
accessibility of DNA for transcription. Structural changes in DNA conformation facilitate 
cellular adaptation and response to stimuli which can enable transcriptional changes. 
The gene set enrichment analysis showed that the cellular response to chronic glucose 
stress involves alterations in DNA accessibility which facilitates the gene expression 
response to this environmental stimulus [48]. The transcriptional response to glucose in 
part manifests as diminished immune responsiveness, a well characterized feature of 
diabetes [43] [49]. 

Further, we considered that the genetic component of an individual’s response to 
glucose may influence their susceptibility to diabetic complications like retinopathy. Cell 
lines from individuals with diabetes with and without retinopathy reveal differences in the 
response to glucose at a molecular level. In addition, not only were some of these 
differential response genes biologically relevant to diabetic retinopathy as exemplified by 
IL1B and PDGF, but also many had a genetic basis for their differential expression. By 
integrating the gene expression findings with GWAS data, we implicated folliculin 
(FLCN) as a putative disease gene in diabetic retinopathy. Mendelian randomization 
provided evidence that genetic variation affects diabetic retinopathy through alterations 
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in FLCN expression thereby suggesting that FLCN expression is a mediator of diabetic 
retinopathy. FLCN is a biologically plausible diabetic retinopathy disease gene since its 
expression is present in both neuronal and vascular cells of the retina. Current evidence 
suggests that FLCN is a negative regulator of AMPK which helps to modulate the energy 
sensing ability of AMPK and plays a role in responding to cellular stress [50]. AMPK 
plays an important role in providing resistance to cellular stresses by regulating 
autophagy and cellular bioenergetics to avoid apoptosis. Loss of FLCN results in 
constitutive activation of AMPK. Higher levels of FLCN would suggest less cellular 
capacity to deal with stress [51]. Interestingly, the protective effect of agents such as 
metformin and fenofibrate on diabetic retinopathy might be mediated through AMPK [52] 
[53]. 
 
Our study design had several advantages over prior approaches aimed at revealing the 
genetic basis of diabetic retinopathy. First, we utilized white blood cells which are readily 
accessible from the peripheral circulation of human patients [48] and can reveal 
differential molecular characteristics depending on the stage of diabetic retinopathy [54] 
[55] [56]. Lymphoblastoid cell lines are derived from white blood cells making them a 
relevant cellular population to study for diabetic retinopathy. LCLs have been shown to 
be a powerful model system for functional genetic studies in humans [54, 56]. Second, a 
lymphoblastoid cell line (LCL) was generated for every individual enrolled in the 
landmark DCCT/EDIC study. DCCT/EDIC is the best-characterized prospective 
interventional cohort ever created to follow systemic complications of long-standing 
diabetes. DCCT/EDIC allows for detailed stratification of individuals, each of whom has 
had extensive prospective clinical phenotyping. Third, glucose was employed to elicit a 
provocative response in LCLs. By focusing on a secondary sequela of diabetes like 
retinopathy, the cellular response to glucose stimulation through transcription became a 
meaningful and directly relevant reflection of the stress each cell in the body encounters 
from diabetes. Insights into glucose stimulated gene expression in LCLs have broad 
applicability to multiple tissues of interest for diabetic complications (even in the retina as 
we have shown) due to significant evidence supporting a shared framework for gene 
regulation among tissues [18]. Finally, disease associated expression quantitative trait 
loci (eQTL) provide functional insights into the pathogenesis of a condition. We show 
that altering the levels of FLCN expression impacts risk of diabetic retinopathy. 
Aggregating independent eQTLs for the same gene (that are not in high linkage 
disequilibrium) revealed an enriched association that may otherwise have been missed 
by a conventional GWAS approach [57]. Treating the associated eQTL as an 
instrumental variable, Mendelian randomization supported the causality of FLCN in the 
pathogenesis of the disease. Inherently, this approach yielded all three M’s of target 
modulation: mechanism, magnitude and markers [58]. 
 
The present work had inherent limitations. First, LCLs are not primary cells but rather a 
transformed cell line. The Multiple Tissue Human Expression Resource (MuTHER) LCL 
study revealed a large impact of common environmental exposure, stemming from 
shared sample handling, on gene expression in twin LCLs [59]. The significant 
correlation of these extrinsic factors on LCL gene expression emphasizes the 
importance of randomization and technical replicates which we implemented in this 
study. Moreover, as a cell line, heterogeneous genomic alterations have been identified 
in lymphoblastoid cells that increase with passaging, thereby raising the concern that 
this can lead to variability in their transcriptome [60]. Importantly, the EDIC cell lines 
employed in this study were only passaged once previously. Additionally, genomic 
changes have only a minor effect on genotypic frequencies with a 99.63% genotype 
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concordance between lymphoblastoid cells and their parent leukocytes. Mendelian error 
rates in levels of heterozygosity are not significantly different between lymphoblastoid 
cell lines and their primary B-lymphocyte cells of origin [61]. Second, it is not possible to 
delineate cause from effect in gene expression studies. Gene expression changes may 
be causal, epiphenomena, or due to reverse causality (the disease causing the gene 
expression changes rather than the other way around). In this study, by integrating 
genetic analyses with gene expression and recognizing that variation in the underlying 
genome precedes disease onset and can therefore be considered an instrumental 
variable, we identified through Mendelian randomization potentially causal gene 
expression changes in FLCN that act as a mediator for retinopathy thereby avoiding the 
trap of reverse causality. Finally, eQTL found in LCLs may not be relevant to diabetic 
retinopathy. As noted previously we found 43% of retina eQTL are shared with LCLs. 
We demonstrated that independent FLCN eQTLs found both in the retina and GTEx 
tissues showed an enriched association to diabetic retinopathy, a finding that was 
replicated in a large independent cohort from the UK Biobank. For complex trait 
associations in general and for those specifically in the retina, eQTL that are shared 
between tissues explain a greater proportion of associations than tissue specific eQTL 
[15]. For instance, shared tissue eQTL are enriched among genetic associations to age-
related macular degeneration, another common retinal disease, despite the high tissue 
specificity of the disease [30] [62]. 
  
In summary, integration of gene expression from a relevant cellular model with genetic 
association data provided insights into the functional relevance of genetic risk for a 
complex disease. Using disease associated differential gene and eQTL based genome-
wide association testing, we identified causal genetic pathways for diabetic retinopathy. 
Specifically, our studies implicated FLCN as a putative diabetic retinopathy susceptibility 
gene. Future work that incorporates more extensive molecular profiling of the cellular 
response to glucose in conjunction with a greater number of cell lines may yield further 
insights into the underlying genetic basis of diabetic retinopathy. 
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Legends: 
 
Figure 1. Experimental design. 

a) Schematic representation of the experimental design for transcriptomic 
profiling. Lymphoblastoid cell lines (LCLs) from 22 individuals were cultured under both 
standard glucose and high glucose conditions. Gene expression was quantified using 
microarrays for three technical replicates of each LCL in each condition. The response to 
glucose was determined for all genes on a per-individual basis, by comparing expression 
in standard and high glucose conditions. The cell lines were derived from individuals with 
diabetes and no retinopathy (7), individuals with diabetes and proliferative diabetic 
retinopathy (8), and individuals without diabetes (7). 

b) We identified 15 individuals based on retinopathy status from the 
Epidemiology of Diabetes Interventions and Complications (EDIC) cohort. We compared 
the differential response in gene expression to glucose for individuals with and without 
proliferative retinopathy (RGpdr-ndr). Expression quantitative trait loci (eQTL) for those 
genes that showed the greatest differential response between individuals with and 
without retinopathy were tested for their genetic association to diabetic retinopathy. 
 
Figure 2. Response to glucose. 

a) Volcano plot summarizing transcriptional response to glucose for all 22 
individuals (RGAll consisting of nDM, nDR and PDR individuals). Each point represents a 
single gene. Red indicates differentially expressed genes (FDR < 0.05 (log10 > 1.3 
represented by the dotted line) and an absolute log2FC > 0.17. Adj p-value is false 
discovery rate (FDR). FC indicates expression fold change with positive values 
indicating higher expression in the high glucose condition relative to the standard 
condition.   

b) QQ plot summarizing GSEA of transcriptional response to glucose in all 22 
individuals. Pathways are classified as up-regulated (red) or down-regulated (blue) in 
response to glucose. Only significant GO categories (FDR < 0.1%) are labeled. Red line 
indicates the null expectation.   
 
Figure 3. Differential transcriptional response to glucose among individuals with 
diabetes with and without retinopathy.   
Volcano plot summarizing genes exhibiting a differential response to glucose between 
individuals with diabetes with and without retinopathy (RGPDR-nDR). The difference in fold 
change between groups is represented on the X-axis and p-value of this difference on 
the Y-axis. Red indicates differential response genes (p-value < 0.05 and an absolute 
log2 FC difference > 0.26 (FC > 1.12)). FC fold change. 
 
Figure 4. Association of glucose differential response genes (RGpdr-ndr) with 
diabetic retinopathy. 

a) Workflow of analytical steps integrating glucose differential response genes 
with genetic association to diabetic retinopathy. Flow chart showing key experimental 
steps based on stepwise findings. 

b) QQ Plot revealing a skew away from the null and above the FDR 0.05 
threshold suggests that expression of some of the glucose response genes may be 
causally related to diabetic retinopathy. 7253 GTEx eSNPs were generated from the 103 
differential response genes and tested for their association to diabetic retinopathy in a 
GWAS. Observed vs. Expected p-values are plotted. The null hypothesis of no 
difference between the observed and expected p-values is represented by the red line. 
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No influence of population structure or other design factors was observed (genomic 
control inflation estimate �GC = 1.005) [63].  

c)  Bar plot comparing frequency of p-values < 0.05 in diabetic retinopathy 
GWAS of: all eSNPs, all SNPs and eSNPs from the 103 differential response genes. An 
excess of GWAS p-values of < 0.05 is observed in the eSNPs from the glucose 
differential response genes (P = 0.0012 vs all eSNPs and P = 0.0023 vs all SNPs). The 
proportion of SNPs with P < 0.05 in the All SNPs, All eSNPs, and 103 differential 
response gene eSNPs are: 0.0505, 0.0499, and 0.0571 respectively. 
 
Figure 5. Diabetic retinopathy meta-GWAS for eSNPs of differential response 
genes to glucose.  

a) Manhattan plot of the results of the meta-GWAS for diabetic 
retinopathy showing association signals for the eSNPs from the differential response 
genes to glucose for individuals with and without retinopathy (RGPDR-nDR). Threshold lines 
represent Bonferroni correction (blue) and FDR < 0.05 (black). Association testing for 
diabetic retinopathy performed with 7253 eSNPs representing 103 differential response 
genes to glucose. 

b) Bar plot comparing the true positive rate (π1), TPR, for association of diabetic 
retinopathy with all SNPs, all eSNPs, eSNPs from the 103 differential response genes to 
glucose (n = 7,253), and eSNPs found in retina and > 20 GTEx tissues for folliculin 
(FLCN) (n = 272). TPR is an estimate of the proportion of tests that are true under the 
alternative hypothesis. Plot reveals significant enrichment for glucose response gene 
eSNPs in general and for FLCN eSNPs (π1 = 0.9) specifically. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143164
http://creativecommons.org/licenses/by/4.0/


 

Funding information: 

This work was supported by funding from Search for Vision (Chicago, IL), National Eye 
Institute (Bethesda, MD) R01EY023644 and intramural research program ZIAEY000546, 
departmental core grant EY001792, and Research to Prevent Blindness (departmental 
support) (New York, NY). The funding organizations had no role in the design or conduct 
of this research.  
 
 
Acknowledgements: 

This research has been conducted using the UK Biobank Resource under Application 
Number 44316. 
 
We acknowledge the guidance and assistance provided by the members of the 
DCCT/EDIC committee at the time of this publication. A complete list of investigators 
and members of the Research Group appears in N Engl J Med 2017, 376:1507-1516. 
 
We thank the DNA Services Facility and the Research Histology and Tissue Imaging 
Core at UIC Research Resources Center for assistance in histological techniques and 
image acquisition. 
 
We thank Andrew D. Paterson, MD for helpful input and comments. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143164
http://creativecommons.org/licenses/by/4.0/


  
Fig. 1. Experimental design.  
 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143164
http://creativecommons.org/licenses/by/4.0/


 

Fig. 2a. Response to glucose in all study subjects (RGall). 
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Fig. 2b. GSEA of transcriptional response to glucose in all 22 individuals. 
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Fig. 3. Response to glucose PDR vs. nDR (RGpdr-ndr). 
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Fig 4a. Workflow of analytical steps integrating glucose differential response genes with genetic 
association to diabetic retinopathy.  
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Fig. 4b. QQ plot of glucose differential response gene eSNPs. 
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Fig. 4c. Proportion of SNPs with P < 0.05 for all SNPs, all eSNPs, and the 103 differential 
response gene eSNPs. 
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Fig. 5a. Manhattan plot of diabetic retinopathy meta-GWAS for eSNPs of differential response 
genes.  
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Fig. 5b. True positive rate for association of diabetic retinopathy. 
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