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Appendix S1. Supplementary methods 

Sample collection and nucleic acid extraction 
Whole blood was drawn from sedated rhesus macaques by veterinary staff as part of routine 
capture-and-release efforts on Cayo Santiago. Blood was drawn into PAXgene blood RNA tubes 
(PreAnalytiX GmbH) for RNA analysis and K3 EDTA vacutainers (BD Biosciences) for DNA analysis. All 
samples were stored at -80°C within 8 hours of collection. 

We extracted total RNA from PAXgene-stabilised tubes using the MagMAX for Stabilized Blood Tubes 
RNA Isolation Kit (ThermoFisher), following manufacturer instructions for maximising RNA quality and 
yield. We extracted total DNA from whole blood using the DNeasy Blood & Tissue kit (QIAgen) according 
to manufacturer instructions for Purification of Total DNA from Animal Blood or Cells. 

Because PAXgene and EDTA tubes were not always available from the same animals or blood draws, we 
did not attempt in this study to sequence the same individuals and time points for both RNA and DNA 
analysis. We instead included individuals spanning the age distribution based on the availability of 
suitable samples separately for each analysis. 

Library preparation and sequencing 
We measured gene expression using whole-transcript RNA-seq. We enriched mRNA using the NEBNext 
Poly(A) mRNA Magnetic Isolation Module (New England Biolabs) and prepared cDNA libraries using the 
NEBNext Ultra II RNA Library Prep Kit for Illumina (New England Biolabs). To prepare the libraries, we 
used an input RNA quantity of 200 ng, targeted a insert size of 600 bp, and amplified the library with12 
PCR cycles. All other procedures followed manufacturer recommendations. 

We measured CpG methylation using reduced representation bisulfite sequencing (RRBS). RRBS is 
effective when existing methylation arrays for a taxon of interest do not exist and is more cost-effective 
than whole-genome bisulfite sequencing. We prepared RRBS libraries based on previous protocols [1,2] 
(detailed protocol can be found here: https://smack-lab.com/protocols/). Briefly, 300 ng of DNA was first 
digested, along with a small amount (0.1 ng) of lambda phage DNA, using MspI (New England Biolabs) to 
produce fragments with CpG ends. Following digestion, we performed end repair and adapter ligation on 
MspI-digested DNA using NEBNext Ultra II (New England Biolabs) reagents. We then performed bisulfite 
conversion using the EZ-96 DNA Methylation-Lightning MagPrep kit (Zymo Research). Libraries were 
then PCR-amplified for 16 cycles with unique dual indexed sequencing primers. Unless otherwise stated, 
all procedures followed manufacturer recommendations. 

For both RNA-seq and RRBS libraries, libraries were pooled in 1 µl volumes and sequenced on an 
Illumina MiSeq using the MiSeq v2 Nano kit and 2×150 bp sequencing. Based on proportional read 
representations, libraries were then re-pooled in equimolar quantities. RNA-seq libraries were sequenced 
on two Illumina NextSeq 500 flow cells using 2×38 bp sequencing. RRBS libraries were sequenced on an 
Illumina NovaSeq S2 flow cell using 2×51 bp sequencing. 

https://paperpile.com/c/vZSIVJ/353ZC+YNlBh


 

Gene expression preprocessing and modelling 
We mapped cDNA reads to the rhesus macaque reference assembly (Mmul_8.0.1) using kallisto [3]. We 
removed lowly expressed genes by filtering out genes with fewer than 2 transcripts per million (TPM) and 
normalised transcript abundances using voom from the limma package in R for subsequent analysis. 

We modelled age effects on expression using an efficient mixed model association (EMMA) test [4] 
implemented in the EMMREML package in R [5]. EMMA requires a kinship matrix, which it uses to correct 
for the population structure in the dataset. We used the kin function from the synbreed package [6] in R to 
generate a kinship matrix using existing pedigree information from Cayo Santiago as input. We then used 
the emmreml function to model expression against age, including sex and library batch as covariates.  

CpG methylation preprocessing and modelling 
After trimming RRBS reads using Trim Galore!, we mapped reads to the rhesus macaque reference 
assembly (Mmul_8.0.1) and extracted methylated and total read counts using Bismark [7]. We filtered out 
constitutively hypermethylated and hypomethylated CpGs from our dataset by removing sites with median 
methylated fraction less than 10% or greater than 90%. 

We modelled age effects on CpG methylation using a mixed model association for count data via data 
augmentation (MACAU) test in the PQLseq package in R [8]. We used the kin function from the synbreed 
package [6] in R to generate a kinship matrix using existing pedigree information from Cayo Santiago as 
input. We then used the pqlseq function to model methylated counts as a function of age, while controlling 
for sex and library preparation data (a potential batch effect). 

Enrichment analysis 
For our gene expression analysis, we conducted Gene Ontology (GO) enrichment analyses using topGO 
[9] to identify pathways that were nonrandomly associated with directional changes in gene expression 
with age. We restricted our analyses to GO biological processes to focus on pathways with clear links to 
immune function. We used the "weight01" algorithm to conduct a Kolmogorov–Smirnov test to identify 
pathways with strongest associations with increased expression with age (positive standardised β) or 
decreased expression with age (negative standardised β). We report GO terms passing a false discovery 
rate (FDR) threshold of 10%. 

Comparison to published human gene expression datasets 
In order to compare our gene expression analysis to analyses of human ageing, we obtained summary 
files of gene-by-gene effect sizes (Z values) and p values from Peters et al. [10] (“Supplementary Data 1” 
of the external paper). We compared our results to the 1,497 genes identified in their metaanalysis of a 
discovery and replication dataset as showing the strongest expression changes with age. We matched 
genes in the human dataset to rhesus macaque genes using Ensembl homolog annotations obtained via 
biomaRt [11]. 

We then compared the concordance of effect sizes for the 970 genes for which we had estimated age 
effects in both our rhesus macaque dataset and the published human data. We calculated concordance 
across a range of significance thresholds (FDR from 0 to 1 in 0.01 increments), with bootstrapping 
(random resampling with replacement) to obtain 95% confidence intervals. 

https://paperpile.com/c/vZSIVJ/nVjCZ
https://paperpile.com/c/vZSIVJ/7CNMJ
https://paperpile.com/c/vZSIVJ/XESAc
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https://paperpile.com/c/vZSIVJ/QDlK3
https://paperpile.com/c/vZSIVJ/eU4G0
https://paperpile.com/c/vZSIVJ/N7EDo
https://paperpile.com/c/vZSIVJ/FAYUw
https://paperpile.com/c/vZSIVJ/FlPRT
https://paperpile.com/c/vZSIVJ/Ig412


 

We initially compared our data to the metaanalysis reported by Peters et al. [10] because these results 
incorporated an independent replication dataset and thus produced more strongly supported markers. 
This set of markers, however, was limited in numbers. To conduct a more comparable comparison, we 
also compared our data to the discovery results. For this analysis, a total of 7,074 were found in both 
datasets. With this set, we repeated our analysis of concordance as described above (figure S3). 

Prediction of transcriptomic age 
We use the transcriptomic age predictor and equation provided by Peters et al. [10] (“Supplementary Data 
5” of the external paper) to predict chronological ages in our rhesus macaque dataset from their gene 
expression data. We estimated the predictor (Z) using equation 12 (reproduced below) on our normalised 
gene expression matrix. 

bZ = ∑
 

i
xv(i)

︿

R(i)  

We then scaled the predictor to the mean and standard deviation of our rhesus macaque dataset using 
equation 13 (reproduced below) to obtain estimated ages. 

Z Z )S = μage + ( − μZ × σZ

σage  

Comparison to published human CpG methylation datasets 
In order to compare our CpG methylation analyses to analyses of human ageing, we obtained methylation 
array data generated using the Illumina HumanMethylation450 BeadChip and reported by Hannum et al. 
[12]. We filtered out constitutively hypermethylated and hypomethylated CpGs from the dataset by 
removing sites with median methylated intensity ratios (β) less than 10% or greater than 90%. We then 
used a linear model to regress age against methylated intensity ratios, with plate, sex, and race included 
as covariates. 

In order to match CpG sites between our rhesus macaque results and the human results, we used UCSC 
liftOver to translate coordinates between the rhesus macaque data mapped to the Mmul_8.0.1 reference 
assembly and the human array data based on the GRCh36 (hg18) reference assembly. We conducted a 
series of reciprocal conversions—we used the GRCh37 (hg19) assembly as an intermediary due to the 
lack of a chain file directly linking the two assemblies—and removed missing or duplicate sites in order to 
ensure that all remaining sites were single-copy orthologs. 

Because of the low number of CpG sites (278) overlapping between datasets after these procedures, we 
expanded our criteria for matching sites by including neighboring sites. We leveraged the fact that DNA 
methylation patterns are highly correlated at neighboring sites within 1–2 kb of one another [13], and 
implemented a relatively conservative criterion by matching CpGs sites in the rhesus macaque dataset to 
human CpGs only if they were the nearest neighboring site within 100 bp. After matching sites in this 
manner, we calculated concordance in direction by calculating the absolute value of the effect size in 
macaques (standardised β) multiplied by the effect size in humans (standardised β) and classifying the 
results as positive or negative. We then adjusted our criterion for determining orthologous sites by 
comparing results linking neighboring sites within 100 bp, 50 bp, and 0 bp (overlapping) (figure S2). For 
these analyses, we calculated concordance across a range of significance thresholds (FDR from 0 to 1 in 

https://paperpile.com/c/vZSIVJ/FlPRT
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0.01 increments), with bootstrapping (random resampling with replacement) to obtain 95% confidence 
intervals. 

  



 

Supplementary tables 

Table S1. Gene Ontology terms enriched for increased gene expression with age (FDR ≤ 0.1). 

GO ID GO term FDR-adjusted p value 

GO:0006954 inflammatory response 0.015 

GO:0007189 adenylate cyclase-activating G protein-coupled receptor signaling pathway 0.015 

GO:0051607 defense response to virus 0.020 

GO:0071346 cellular response to interferon-gamma 0.037 

GO:0006508 proteolysis 0.076 

GO:0045429 positive regulation of nitric oxide biosynthetic process 0.094 

 

Table S2. Gene Ontology terms enriched for decreased gene expression with age (FDR ≤ 0.1). 

GO ID GO term FDR-adjusted p value 

GO:0006412 translation < 0.001 

GO:0002377 immunoglobulin production 0.001 

GO:0006355 regulation of transcription, DNA-templated 0.008 

GO:0006910 phagocytosis, recognition 0.035 

GO:0000028 ribosomal small subunit assembly 0.044 

GO:0050853 B cell receptor signaling pathway 0.046 

GO:0006364 rRNA processing 0.086 

GO:1904851 positive regulation of establishment of protein localization to telomere 0.091 

GO:0002181 cytoplasmic translation 0.091 

GO:0016571 histone methylation 0.100 
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