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Cognitive decline occurs in healthy and pathological aging, and both may be preceded by subtle changes in the
brain — offering a basis for cognitive predictions. Previous work has largely focused on predicting a diagnostic
label from structural brain imaging. Our study broadens the scope of applications to cognitive decline in healthy
aging by predicting future decline as a continuous trajectory, rather than a diagnostic label. Furthermore, since
brain structure as well as function changes in aging, it is reasonable to expect predictive gains when using
multiple brain imaging modalities. Here, we tested whether baseline multimodal neuroimaging data improve the
prediction of future cognitive decline in healthy and pathological aging. Non-brain data (including demographics
and clinical and neuropsychological scores) were combined with structural and functional connectivity MRI data
from the OASIS-3 project (N = 662; age = 46 — 96y). The combined input data was entered into cross-validated
multi-target random forest models to predict future cognitive decline (measured by the Clinical Dementia Rating
and the Mini-Mental State Examination), on average 5.8y into the future. The analysis was preregistered and all
analysis code is publicly available. We found that combining non-brain with structural data improved the
continuous prediction of future cognitive decline (best test-set performance: R? = 0.42) and that cognitive
performance, daily functioning, and subcortical volume drove the performance of our model. In contrast,
including functional connectivity did not improve predictive accuracy. In the future, the prognosis of age-related
cognitive decline may enable earlier and more effective cognitive, pharmacological, and behavioral interventions
to be tailored to the individual.

Keywords: biomarker, machine learning, predictive modeling, cross-validation, open science

Acknowledgments: This work was supported by the URPP “Dynamics of Healthy Aging” at the University of
Zurich. Data were provided by the OASIS-3 project (Principal Investigators: T. Benzinger, D. Marcus, J. Morris; NIH
P50AG0O0561, P30NS09857781, PO01AG026276, PO1AG003991, RO01AG043434, UL1TR000448,
RO1EB009352). We thank the participants and organizers of the OASIS-3 project for providing the data.


https://doi.org/10.1101/2020.06.10.142174
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.142174; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

1 Introduction

Cognitive decline, such as worsening memory or
executive functioning, occurs in healthy and
pathological aging. Crucially, noticeable decline may
be preceded by subtle changes in the brain. It is this
sequence that enables using brain imaging data to
predict the current cognitive functioning of a person or
related surrogate markers. For example, structural
brain imaging has been used to predict patients’
current cognitive diagnosis (Rathore et al.,, 2017), or
brain-age (Cole and Franke, 2017), a surrogate
biomarker related to cognitive impairment (Liem et al.,
2017). Together, these findings demonstrate the
clinical potential of neuroimaging data used in
combination with predictive analyses.

While predicting current cognitive functioning
enables insight into related brain markers, predicting
future cognitive decline from baseline data poses a
challenge with more substantial clinical
relevance (Davatzikos, 2019). Using current brain
imaging data to predict a current diagnostic label
(such as dementia), targets a label that can fairly
easily be determined via other means such as clinical
assessments (and usually with less cost than brain
imaging). When predicting future cognitive change,
however, brain imaging might aid a prognosis with
greater clinical utility that cannot be easily obtained
otherwise. Most previous studies that predicted future
change restricted their analysis to whether patients
with mild cognitive impairment (MCI) converted to
Alzheimer's disease (AD) (Davatzikos et al., 2011; e.g.,
Eskildsen et al.,, 2015; Gaser et al., 2013; Korolev et
al,, 2016) or predicted membership in data-driven
trajectory-groups of future decline (Bhagwat et al,
2018). Predicting future cognitive decline on a
continuum (instead of forming distinct diagnostic
labels from cognitive data) better characterizes the
underlying change in abilities on an individual level.
This approach can also be used to widen the scope of
applications by including healthy aging. Brain data is a
rich source of information that might help us better
understand and even diagnostic
syndromes or categories.

While most previous predictive studies used
structural brain imaging alone, integrating structural
and functional imaging has been shown to improve
predictions. Since both brain structure (Oschwald et
al, 2019) and brain function (Liem et al., 2020)
change in aging, the most accurate predictions of
brain-age have come from combining them
(Engemann et al., 2020; Liem et al., 2017). Multimodal
gains have also been shown in more complex
predictions such as current diagnosis in AD (Rahim et
al., 2016) and conversion from MCl to AD (Dansereau
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et al., 2017; e.g., Hojjati et al, 2018). Therefore,
integrating multiple brain imaging modalities enables
a more complete characterization of bran aging and
provides increased predictive power.

The present study aimed to predict future
cognitive decline from baseline data in healthy and
pathological aging. We combined non-brain data,
such as scores from clinical assessments and
demographics, with multimodal brain imaging data to
test whether adding brain imaging to non-brain data
improves predictive performance, and whether
multimodal imaging outperforms single imaging
modalities. We showed that structural imaging in
particular improved continuous prediction of future
cognitive decline. An early prognosis of future
cognitive decline might enable earlier and more
effective pharmacological or behavioral treatments to
be tailored to the individual, resulting in more
efficiently allocated medical resources.

2 Methods

The analysis presented here was preregistered
(Liem et al, 2019). We largely followed this
preregistration and deviations are described in the
supplement (6.1.2 Deviation from preregistration). The
deviations concern minor details in data analysis and
do not affect the qualitative conclusions we draw.
Additionally, we performed non-preregistered
validation analyses that were suggested by the main
results.

2.1 Sample and session selection

The present analysis aimed to predict future
cognitive decline from baseline non-brain (e.g., age
and clinical scores) and brain imaging data (regional
brain volume and functional connectivity). We used
data from the publicly available, longitudinal OASIS-3
project, a collection of data from several studies at the
Washington University Knight Alzheimer Disease
Research Center (LaMontagne et al., 2019). OASIS-3
acquired data in different types of sessions (clinical
sessions: non-brain  data describing personal
characteristics, cognitive and everyday functioning,
health; neuropsychological sessions: non-brain data
from neuropsychological tests; MRI
structural and functional MRI). The count and spacing
between sessions varied between subjects. To predict
future cognitive decline, baseline sessions were used
as input data and follow-up sessions as targets. The
study design required a matching approach to select i)
baseline sessions (from clinical, neuropsychological,
and MRI sessions) to be used as input data, and ii)

sessions:
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follow-up clinical sessions to estimate the future
cognitive decline.

First, baseline data were established by matching
different  types
neuropsychological, MRI). We matched each MRI
session that had at least one T1w and one fMRI scan
with the closest clinical session. For each subject, the
first MRI-clinical-session pair with an absolute time
difference < 1 year was selected as baseline session.
If no such pair was available, the subject was
excluded from the analysis. Additionally, the closest
neuropsychological session (within 1 year of the MRI
baseline session) was also considered as baseline
data. Baseline information from neuropsychological
testing, however, was considered optional and not
finding a matching neuropsychological session was
not a criterion for exclusion. All data preceding the
selected baseline sessions were disregarded for the
analysis.

Second, all clinical sessions after the baseline
clinical session were included as follow-up sessions to
estimate cognitive decline. To reliably estimate
decline, subjects were only included if they had at
least three clinical sessions (baseline plus two
follow-up sessions).

This matching approach reduced the sample
(N =1098) to 662 subjects (302 male; Table 1)*. The
majority was cognitively healthy at baseline (509
healthy controls, 12 were diagnosed with MCI, and
111 with dementia; for 30 no diagnosis was available
for the baseline session).

MRI data was downloaded in BIDS format
(Gorgolewski et al., 2016) via scripts provided by the
OASIS project’. Non-brain data was downloaded via
XNAT central®.

sessions from the (clinical,

M SD  min  max
a0, caiine 71 8 46 96
MMSE, . i 28 2 16 30
N clinical sessions 58 24 3 15
years between clinical 1.2 0.6 0.003 55
sessions
years in study 58 25 1.6 109

Table 1. Sample characteristics. N = 662 (302 male).
MMSE: Mini-Mental State Examination

! The selected subjects and session can be found
here: https://github.com/fliem/cpr/tree/0.1.2/info

2 https://github.com/NrgXnat/oasis-scripts

3 https://central.xnat.org/

2.2 Data

2.2.1 Non-brain data

Non-brain data described personal characteristics
at baseline, such as demographics, cognitive and
everyday functioning, genetics, and health (Table 2
further
relevant

shows the abbreviations of tests). For
information on the measurements, see
publications by the OASIS team (LaMontagne et al.,
2019; Morris et al., 2006; Weintraub et al., 2009).

The specific measures included:

1. demographic information: sex, age, education
clinical scores: MMSE (Folstein et al., 1975),
CDR (Morris, 1993), FAQ (Jette et al., 1986),
NPI-Q (Kaufer et al., 2000), GDS (Geriatric
Depression Scale, Yesavage et al., 1982)

3. neuropsychological scores: WMS-R (Elwood,
1991), Word fluency, TMT (Heller et al.,
2013), WAIS-R (Franzen, 2000), BNT (Borod
et al,, 1980)

4. APOE genotype

5. a cognitive diagnosis (healthy control, MClI,
dementia)

6. health information: cardio/cerebro-vascular
health, diabetes,  hypercholesterolemia,
smoking, family history of dementia

7. the number of clinical session conducted
before the selected baseline session (for
instance sessions without a matching MRI
session) to account for retest effects

CDR Clinical Dementia Rating

FAQ Functional Activities Questionnaire

GDS Geriatric Depression Scale

MMSE  Mini-Mental State Examination

NPI-Q  Neuropsychiatric Inventory Questionnaire
T™MT Trail Making Test

WAIS-R Wechsler Adult Intelligence Scale-Revised
WMS-R Wechsler Memory Scale-Revised

BNT Boston Naming Test
Table 2. List of abbreviations of clinical tests

2.2.2 MRl data

MRI data were acquired on Siemens 3T scanners,
with the majority coming from a TrioTrim model (622
of 662 subjects). Each participant had between 1 and
4 T1w scans (1.7 on average). In total, the sample had
1'119 T1w images. The parameter combination most
commonly used (in over 1’070 scans) was voxel size =


https://paperpile.com/c/jJkdzk/I1Iu
https://paperpile.com/c/jJkdzk/hqru+X91D+k3iQ
https://paperpile.com/c/jJkdzk/hqru+X91D+k3iQ
https://paperpile.com/c/jJkdzk/7pR3
https://paperpile.com/c/jJkdzk/QdDn
https://paperpile.com/c/jJkdzk/UF9s0
https://paperpile.com/c/jJkdzk/p10ZW
https://paperpile.com/c/jJkdzk/UnKte/?prefix=Geriatric%20Depression%20Scale%2C
https://paperpile.com/c/jJkdzk/UnKte/?prefix=Geriatric%20Depression%20Scale%2C
https://paperpile.com/c/jJkdzk/Yq17
https://paperpile.com/c/jJkdzk/Yq17
https://paperpile.com/c/jJkdzk/S6ip
https://paperpile.com/c/jJkdzk/S6ip
https://paperpile.com/c/jJkdzk/sIBo
https://paperpile.com/c/jJkdzk/eref
https://paperpile.com/c/jJkdzk/eref
https://doi.org/10.1101/2020.06.10.142174
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.142174; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

1 x 1 x 1 mm? echo time (TE) = 0.003 s, repetition
time (TR) = 2.4 s. Where available, T2w images were
also used to aid surface reconstruction. In total, 618
participants had a T2w image. The parameters for the
T2w images were voxel size = 1 x 1 x 1 mm?3, TE =
0.455s5, TR=3.2s.

Each participant had between 1 and 4 functional
resting-state scans (M = 2.0). In total, the sample had

1’327 functional images. The parameter combination
most commonly used (in over 1'300 scans) was voxel
size =4 x4 x4 mm? TE =0.027 s, TR = 2.2 s, scan
duration = 6 min. For further information regarding the
imaging data see (LaMontagne et al., 2019).
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Figure 1. Overview of the predictive approach. 1) Features from non-brain, structGS (global and subcortical
structural), and func (functional connectivity) modalities are extracted from baseline data. 2) Feature
concatenation produces sets of multimodal input features. For instance, red represents non-brain features only,
while orange represents a combination of non-brain and structGS. 3) Extraction of slopes representing cognitive
change from CDR (Clinical Dementia Rating) and MMSE (Mini-Mental State Examination). 4) Models are trained
to predict the cognitive decline based on the input features. Here, we used a multi-target random forest model
within a nested cross-validation approach to predict CDR and MMSE change simultaneously.

2.3 MR preprocessing

Functional and structural MRI data
preprocessed using the standard processing pipeline
of fMRIPrep 1.4.1 (Esteban et al., 2018b), which also
includes running FreeSurfer 6.0.1 on the structural
images (Fischl, 2012). A detailed description of the
preprocessing can be found in the supplement (6.1.1
Details on MRI preprocessing). Except for basic
validity checks in a random subset of subjects, data
quality of the preprocessed data was not rigorously
assessed. Notably fMRIPrep has been shown to
robustly work across many datasets (Esteban et al,

2018b).

were

2.4 Feature extraction

Input data from non-brain and brain imaging
modalities at baseline were used to predict future
cognitive decline (predictive targets). In the following
sections we provide further details on the features
that entered the predictive models.

2.4.1 Input data

Input data for the predictive models came from
three modalities: non-brain, global and subcortical
structural (structGS), and functional connectivity (func;
Figure 1-1). Modalities were entered into the models
on their own and in combination. For instance,
non-brain + structGS models received horizontally
concatenated input features from the non-brain and
structGS modalities (Figure 1-2). This allowed testing
whether combining non-brain with structural data
compared to
non-brain data alone. The following paragraphs
describe the input data modalities and Table S1 gives
an overview of features entered into the models.

improved predictive accuracy as

2.4.1.1 Non-brain data

Non-brain features included demographics, scores
of clinical and neuropsychological instruments, APOE
genotype, and health information. For a detailed list
see Table S1. In total, 66 features entered the models
from the non-brain modality.
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2.4.1.2 Structural MRI (structGS)

For the structGS modality (global and subcortical
structure), anatomical markers were extracted from
the FreeSurfer-preprocessed anatomical
Following our previous work (Liem et al., 2017), we
extracted global structural markers (volume of
cerebellar and cerebral GM and WM, subcortical GM,

scans.

ventricles, corpus callosum, and mean cortical
thickness) and the volumes of seven subcortical
regions (accumbens, amygdala, caudate,

hippocampus, pallidum, putamen, thalamus; for each
hemisphere separately). Most markers were extracted
from the aseg file, except for mean cortical thickness,
which was extracted from the aparc.a2009s
parcellation (Desikan et al., 2006). To account for
head-size-effects, volumetric values were normalized
by estimated total intracranial volume. In total, 35
features entered the models from the structGS
modality.

2.4.1.3 Functional MRI (func)

Functional connectivity was computed from the
fMRIPrep-preprocessed functional scans. Denoising
was performed using the 36P model (Ciric et al,
2017), includes signals from 6 motion
parameters, global, white matter, and CSF signals,
derivatives, quadratic terms, and squared derivatives.
Time series were extracted from 300 cortical,
cerebellar, and subcortical coordinates of the
Seitzman atlas (Seitzman et al., 2018) using balls of 5
mm radius. The signals were band-pass filtered
(0.01-0.1 Hz) and linearly detrended. Connectivity
matrices were extracted by correlating the time series
using Pearson correlation and applying
Fisher-z-transformation. If multiple fMRI runs were
available, the z-transformed connectivity matrices
were averaged within subjects. The vectorized upper
triangle of this connectivity matrix was entered into
the predictive pipeline and was further downsampled
to 100 PCA components within cross-validation (see
below). Denoising and feature extraction was
performed with Nilearn 0.6.0 (Abraham et al., 2014).

which

2.4.2 Predictive targets

To quantify future cognitive decline, trajectories of
two clinical assessments, the CDR (Clinical Dementia
Rating, Sum of Boxes score) and the MMSE (sum
score of the Mini-Mental State Examination) were
estimated using an ordinary least squares linear
regression model for each subject and assessment
independently (Figure 1-3; for information on the
count and timing of sessions, see Table 1). A linear
slope was fitted through the raw scores of the

follow-up session with the intercept fixed at the raw
score of the baseline session (
scorep, o ~scorey o + Bygpe o % time; fu: follow-up, a:
assessment, bl: baseline). This approach was chosen
over a linear mixed effects model, as the mixed effects
model requires data from multiple subjects, making
cross-validation more convoluted. The resulting two
parameters (Bygpe cop AN Byiope, aarse ) Were the two
targets that were simultaneously predicted in the
predictive analysis using a multi-target approach
(Rahim et al, 2017). Slopes were estimated with
Statsmodels 0.10.1 (Seabold and Perktold, 2010). The
distribution of the estimated targets is plotted in

Figure S1.

2.5 Predictive analysis

The predictive pipeline (Figure 1-4) consisted of a
multivariate imputer (Scikit-learn’s Iterativelmputer)
(Buck, 1960) and a multi-target random forest (RF)
regression model (Breiman, 2001). Multivariate
imputation has recently been shown to robustly work
in combination with predictive models under different
missingness scenarios (Josse et al., 2019).

Predictive models were trained using nested
cross-validation via a stratified shuffle-split (1000
splits, 80% training, 20% test subjects, stratified by
the targets). In the inner loop, the RF’s
hyperparameters were tuned via grid search on the
training subjects (the tree depth was selected among
3,5, 7, 10, 15, 20, 40, 50, None], where None leads
to fully grown trees; the criterion to measure the
quality of an RF-split was tuned with ‘mean squared
error’ and ‘mean absolute error’). The best estimator
was carried forward to determine its out-of-sample
performance on the test subjects. To derive an
estimate of chance performance, null-models were
also trained and tested with permuted target values.
For each cross-validation split, the coefficient of
determination (R? was calculated on the test
predictions. All predictive analyses were performed
using Scikit-learn 0.22.1 (Pedregosa et al., 2011).

Model comparison was used to determine whether
one model offered better prediction accuracy than
another (for instance, to check whether a given model
outperformed the permuted model, or whether a
model with added brain imaging data
accuracy as compared to a model using only
non-brain  data). Model comparison in a
cross-validation needs to take the dependence
between splits into account, complicating statistical
tests (Bengio and Grandvalet, 2004). Thus, instead of
calculating a formal statistical test, we calculated the
number of splits for which the model in question

improved
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outperformed the reference model, resulting in a
percent value, with numbers close to 100% denoting
models which robustly outperformed the reference
model (Engemann et al., 2020).

To inspect which features contributed to a
prediction, permutation importance was calculated
(Breiman, 2001). Permutation importance evaluates
the effects of features on the predictive performance
by permuting feature values. If shuffling a feature
does decrease performance, it is considered important
for the model. It has to be noted that this approach
might underestimate the importance of correlated
features. Furthermore, learning curves were estimated
to assess whether the number of subjects in the
analysis was sufficient. For these comparisons,
models were trained with increasing sample size
while observing the test performance.

We performed additional analyses to diagnose the
predictive pipeline and present our results in context.
First, to validate the pipeline and analysis code, the
same predictive methodology was used to predict
age, a strong and well-established effect (Liem et al.,
2017). For this validation, age was removed from the
input data and the approach followed in the main
analysis was repeated using a ridge regression model
and 200 cross-validation splits.

Second,
previous work that predicted decline using class

to better compare our results with
labels, we repeated the original pipeline to classify
extreme groups of subjects that are cognitively stable
vs. subjects with cognitive decline using random
forest classifiers and 200 cross-validation splits.
Subjects with CDR-SOB slopes > 0.25 were labeled
as declining (N = 156), and a randomly drawn equal
number of subjects without change in CDR-SOB were
labeled as stable.

2.6 Open science statement

All data used in the analysis are publicly available
via the OASIS-3 project (LaMontagne et al., 2019).
The analysis plan was preregistered (Liem et al.,
2019). Al analyses
performed in Python using open-source software and
the code for preprocessing and predictive analysis is
publicly available (Liem, 2020)*. Furthermore, a docker
container which includes all software and code to

preprocessing and were

reproduce the preprocessing and predictive analysis is
also provided®.

* http://github.com/fliem/cpr
5 https://hub.docker.com/r/fliem/cpr

3 Results

3.1 Predicting cognitive decline

A combination of non-brain and structural data
gave the best predictions of future cognitive decline.
Adding structural data improved the prediction for
both the CDR (median test performance R? increased
from 0.36 to 0.42; Figure 2, red vs. orange; for a
scatter plot showing true vs predicted values, see
Figure S3) and the MMSE (0.32 to 0.34), as compared
to predictions from non-brain data alone. This
increase occurred in a large majority of splits (91% of
splits for CDR, 78% for MMSE; Table S2). In contrast,
adding functional connectivity features to non-brain
features, or to non-brain + structGS features, slightly
decreased predictive performance.

To tune the RF models to the given problem,
hyperparameters were optimized in a grid search
approach. Tuning curves showed the results to be
robust across a wide range of hyperparameter
settings (Figure S4). Furthermore, learning curves
demonstrated a sufficient sample size in the current
setting (Figure S5).

The consistently outperformed null
models. Comparing the predictions against a null
model with permuted predictions showed that most
modalities outperformed chance-level in 100% of
splits (Table S3). The predictions based on functional
connectivity were an exception and outperformed
null-models to a lesser degree (91% of splits for CDR,
73% for MMSE).

models

3.2 Features that predict cognitive decline

We used permutation importance to characterize
the most predictive features of the best performing
modality (non-brain + structGS). Within the top-15
features, non-brain included memory scores, the
baseline scores of the targets (CDR, MMSE), and

scores from the FAQ (functional assessment
questionnaire). The structural features predominantly
included subcortical regions (left and right

hippocampus and amygdala, left accumbens; Figure
3).
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Figure 2. Adding structural data (orange) to non-brain data (red) improved the prediction of cognitive
decline. Test performance (R? coefficient of determination, x-axis) across splits (Ngis = 1000) for the
combinations of input modalities (y-axis). Targets: cognitive change measured via CDR (Clinical Dementia
Rating, middle) and MMSE (Mini-Mental State Examination, right). Input modalities: non-brain, structGS (global
and subcortical structural volumes), func (functional connectivity). The left panel represents combinations of
input modalities (e.g., orange is non-brain + structGS). The number represents the median, the dashed vertical
line marks the median of the best-performing combination of modalities (within a target measure). For the full
results that include single-modality brain imaging, see Figure S2.
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Figure 3. Cognitive performance, daily functioning, and subcortical volume were among the most informative
features. Permutation importance of the top 15 features of the non-brain + structGS model (median across
splits). Permutation importance is quantified as the decrease in test performance R? with the feature permuted.
Red: non-brain features, light orange: structGS features. CDR: Clinical Dementia Rating, FAQ: Functional
Assessment Questionnaire, L: left, MMSE: Mini-Mental State Examination, R: right, SOB: sum of boxes score,
TRAIL B: Trail Making Test B, WF: word fluency, WMS: Wechsler Memory Scale.


https://doi.org/10.1101/2020.06.10.142174
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.142174; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

3.3 Validation analyses

Although functional connectivity models predicted
cognitive decline poorly, functional data improved
accuracy when predicting brain-age. Since functional
connectivity alone did not predict cognitive decline
well and did not increase the predictive accuracy of
the non-brain model (Figure S2), we conducted a
validation analysis to ensure that our functional
connectivity models were able to predict brain-age, a
Here, we
predicted age from the same input data as in the main

well-established surrogate biomarker.
analysis after first removing age from the input
features set. In line with our expectations, functional
connectivity increased predictive performance when
combined with other modalities (e.g., in combination

modality

with non-brain, performance increased from 0.45 to
0.53; Figure 4), and functional connectivity alone
could predict age reasonably well (median R? = 0.33,
Figure S6), suggesting that its negligible contribution
to decline prediction cannot be attributed to general
methodological or data quality issues.

In the main analysis, the predictive target of
cognitive decline was quantified as a continuous
score. To compare our analysis to previous work that
predicted classes of cognitive decline, we performed a
further analysis that predicted extreme groups of
cognitive decline (stable vs decline). Overall, extreme
groups could be accurately predicted from the input
data (most F1l-scores [harmonic mean of the precision
and recall] in the range of 0.8-0.9; Figure S7).
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Figure 4. Multimodal imaging improves brain-age prediction. Input modalities: non-brain, structGS (global and
subcortical structural volumes), func (functional connectivity). The number represents the median, the dashed
vertical line marks the median of the best-performing combination of modalities. For the full results that include

single-modality brain imaging, see Figure S6.

4 Discussion

In the present study, we found that combining
baseline structural brain imaging data with non-brain
data improved the prediction of future cognitive
decline. In contrast, functional connectivity features
did not improve prediction. By predicting future
cognitive decline as a continuous trajectory, rather
than a diagnostic label, our study broadens the scope
of applications to cognitive decline in healthy aging. It
also allows for more nuanced predictions on an
In the future, these continuous
measures may facilitate dimensional approaches to
pathology (Cuthbert, 2014).

The benefit of combining structural with non-brain
data found in the present study is well in line with
previous work that predicted conversion from MCI to
AD (Korolev et al., 2016), and classes of cognitive
decline (Bhagwat et al., 2018). Non-brain data alone
predicted cognitive decline and the model

individual level.

was

robustly improved by adding structural data (R?
increased from 0.36 to 0.42 for CDR and from 0.32 to
0.34 for MMSE). These findings are consistent with
prior work (Bhagwat et al., 2018; Korolev et al., 2016).
In general, the range of accuracies reported in our
study is well in line with previous work predicting a
related continuous target (time to symptom onset in
AD) (Vogel et al, 2018), as well as with work
predicting diagnostic labels (Davatzikos et al., 2011;
e.g., Eskildsen et al., 2015; Gaser et al., 2013; Korolev
et al, 2016). After having established that a
combination of non-brain and structural data gives
predictions worthy of consideration, next, we
assessed which features drove the predictions.

We found that clinical and neuropsychological
assessments and subcortical structures drove the
performance of our model. Measurements of memory,
verbal fluency, executive function, and a wide set of
cognitive and daily functions (MMSE, CDR, FAQ) were
the most informative non-brain features for predicting
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cognitive decline. This matches well with Korolev et al.
(2016) who found memory scores and clinical
assessments (ADAS-Cog, FAQ) to be among the
most informative non-brain features. On the other
hand, hippocampus and amygdala volume were the
most informative structural features in our analysis,
which is well in line with previous work predicting
conversion from MCI| to AD (Eskildsen et al., 2015;
Korolev et al., 2016). In contrast, risk factors (such as
age, APOE, or health risks) and markers that quantify
general brain atrophy and regional cortical brain
structure did not add markedly to model performance.
It should be noted that features were assessed using
permutation importance, which underestimates the
importance of correlated features. Alternative
approaches, such as mean decrease impurity, might
complement the permutation-based approach in
future studies to improve the sensitivity (Engemann et
al.,, 2020). Nevertheless, taken together, our results
suggest that memory, everyday functioning, and
subcortical features better predict future cognitive
decline at the individual level than risk factors or
global brain characteristics.

Functional connectivity,
structure, did not improve predictions when added to
other modalities, nor did it predict cognitive decline on
its own. While many previous studies predicted
cognitive performance or decline based on structural
imaging, studies using functional connectivity are rare
and contain widely varying estimates of its predictive
power (Dansereau et al., 2017; Hojjati et al., 2018;
Vogel et al., 2018). Although functional connectivity in
our study did not predict future cognitive decline, it
did predict brain-age. Assuming that functional
connectivity is at least somewhat predictive of future
cognitive decline, our analysis may suggest that the
processing of functional connectivity data was not a
good fit for the cognitive targets. Furthermore, data
with better spatial and temporal resolution might be
able to better capture decline. This calls for future
studies that benchmark different processing options
as these can severely impact predictive accuracy
(Dubois et al., 2018).

In the following, we will sketch possible future
developments along four themes: implications of and
possible improvements to the continuous targets of
cognitive decline, multimodal input data, predictive
models, and the importance of generalization to new
datasets.

Quantifying cognitive decline continuously rather
than discretely enables a more fine-grained and
robust prediction, but also requires methodological
choices. By predicting a diagnostic label, previous
studies were often restricted to MCI patients and

in contrast to brain

aimed to distinguish stable from converting patients.
Considering
characterizes the underlying change in abilities and

decline as a continuum better
allows for capturing changes that occur in healthy
aging. scarcity of diagnosed
conditions, this widens the scope of applications and
advantages: the resulting
increased sample size yields more robust models,

Overcoming the

has methodological

which is critical to avoid optimistic bias in estimating
prediction accuracy (Varoquaux, 2018; Woo et al,
2017). Furthermore, our approach also does not
require assigning a diagnostic label, which entails
subjective clinical judgment and arbitrary cut-off
values. Considering cognitive decline as a continuous
target does, however, require a model to aggregate
multiple longitudinal measurements. Here, we used
subject-specific slopes estimated through
longitudinal data from clinical assessments. Since

linear

cognitive decline also shows nonlinear trajectories
(Wilkosz et al, 2010), one could argue that
accounting for nonlinearity is called for when
extracting the predictive targets. However, robustly
requires more longitudinal
measurements per subject and more complex models.
In  contrast, trajectories can robustly be
estimated with three measurements, hence, they
provide a useful approximation of cognitive decline.
Notably, the of the
assessments used to define the slopes have a special

estimating nonlinearity

linear

baseline values clinical
role: they are input features and the slopes are defined
relative to them. This might result in a bias due to
regression to the mean (Barnett et al., 2005), where
unusually extreme baseline values (due to noise)
might result in unusually extreme slopes (returning to
the mean). This issue is relevant as well when defining
diagnostic labels where it might result in patients
switching between labels due to noise. Future studies
should consider more complex models that can better
account for these effects. Taken together, quantifying
cognitive decline continuously allows for a more
nuanced representation of decline and widens the
scope of applications. However, while refining the
definition of cognitive decline is warranted, it requires
more complex analytical approaches and appropriate
data.

In this study, we quantified cognitive decline using
two clinical assessments (CDR and MMSE), which
measure a heterogeneous set of cognitive and
everyday life While
assessments have the advantage of being used in
practice, they lack the specificity to target single
cognitive constructs. Measuring cognitive constructs
improve
accuracy, especially if those constructs are strongly

functions. these clinical

more homogeneously might potentially
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linked to specific brain regions or networks. This could
be achieved by additionally employing
neuropsychological assessments. The multi-target
approach outlined in this study is well-suited to
including these additional targets.

Beside additional targets, future studies should
also consider additional multimodal input data to
characterize the brain in greater detail. The present
study used data derived from structural and functional
MRI (T1w and resting-state fMRI). These might be
complemented by
diffusion-weighted imaging, arterial spin labeling, or
positron emission tomography (Rahim et al., 2016).
Additionally, the presently used modalities could also
be refined and alternative representations could be
considered. For instance,
quantifying brain structure (Pipitone et al., 2014) or
brain function (Rahim et al., 2019), and adding data
on structural asymmetry (Wachinger et al., 2016) or
dynamic functional connectivity (Filippi et al., 2019)
could provide improved predictive performance.
Furthermore, the influence of MR data quality on
accuracy should be assessed in future studies. While
our past work showed that brain-age prediction from
multimodal neuroimaging is robust against in-scanner
head motion (Liem et al., 2017), the present study has
not assessed the influence of MR data quality on
predictive accuracy. Addressing this issue would yield
recommendations regarding the required data quality
to predict cognitive decline.

The predictive approach could also be expanded
to better accommodate high-dimensional data and the
messiness of real-world data acquisition. The present
study concatenated low-dimensional features across
modalities and fed them into one random forest
model. Including all features in one model allowed us
to consider feature-level interactions across
modalities. Alternatively, prediction stacking could be
used to facilitate the integration of multimodal data
(Engemann et al., 2020; Liem et al., 2017; Rahim et al,,
2016). While the stacking approach accounts for
modality-level interactions it does not consider
feature-level interactions across modalities. However,
it scales well to high-dimensional data and allows for
block-wise missing data, for instance, a missing
modality. The present work only included subjects if
data from all modalities (non-brain, structural,
functional) were available. In clinical practice, this is
often not feasible. As we demonstrated previously,
stacking can be used to include subjects with missing
modalities, which increases the sample size and the
scope of application (Engemann et al., 2020).

In practice, the benefit of adding multimodal
neuroimaging data to a set of clinical assessments

information from

different methods for

needs to be considered against the additional costs.
Its clinical utility also depends on the actionable
insight that can be drawn from an earlier prognosis.
Of course, this concern is not specific to this study; it
applies broadly to almost every effort to incrementally
predict clinically meaningful outcomes from
brain-based measures. At the moment, no causal
treatment of cognitive decline is available. However,
an early prognosis might aid intervention studies and
be even more helpful once effective treatments are
available. Hence, future studies should further exploit
the information yielded by the model to focus on
subject-specific predictions. In general, predictive
models don't perform equally well in all
circumstances. For some subjects or sub-groups a
more confident prediction is possible. Recent work
demonstrated a higher prediction accuracy in subjects
with certain characteristics (e.g., older, female, etc.)
(Korolev et al., 2016). This enables increased accuracy
by focusing on high-confidence predictions (Tam et
al., 2019) and might even suggest a subject-tailored
clinical workflow depending on the prediction
confidence (Bhagwat et al., 2018). While the present
study has not yet investigated these effects, it is well
set-up to determine optimal conditions for model
performance. The large number of cross-validation
splits yields a distribution of predictive performance,
not only a point estimate. This will also allow us to
assess whether the predictions across sub-groups are
driven by the same features.

For a predictive model to be useful in real-world
applications, it needs to generalize well to datasets
from different sites (Scheinost et al., 2019). While
characteristics of our study facilitate generalization, a
future study is required to empirically establish the
generalization of our models to independent datasets.
First, we have aimed to provide full transparency
throughout this study to improve reproducibility and
generalizability. We used data from a large, publicly
available  dataset, preprocessed with
well-established open-source tools and inputted them

them

into well-established models. The analysis code is
publicly shared and after further developing this
approach, trained models will also be shared.
Importantly, the analysis was preregistered to avoid
overfitting due to analytical flexibility (Carp, 2012;
Skocik et al.,, 2016). Second, the OASIS-3 project is
set up heterogeneously regarding the number of
sessions, the intervals between sessions, and the
participants’ duration in the study. This heterogeneity
is expected to provide
algorithm to overfit to dataset-specific idiosyncrasies,

less opportunity for an

resulting in more generalizable models that also
perform well in other settings.
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While a heterogeneous dataset and
open/reproducible approaches certainly improve
generalizability, we trained and tested models using
only one dataset. Thus, the cross-validated
performance in our study provides a biased estimate
of the generalizability to independent datasets. This
bias might even be modality-specific, in that non-brain
features might generalize better than brain imaging
features (Bhagwat et al, 2018). Training predictive
models on data from multiple sites has been shown to
improve generalization (Abraham et al., 2017; Liem et
al.,, 2017; Orban et al., 2018). Hence, future studies
should use models trained and tested on data from
multiple sites, which requires further suitable
longitudinal and  publicly available datasets
(Varoquaux, 2018). This also provides an opportunity
to take preregistration even further. After conducting
experiments in an initial dataset, a trained model could
be preregistered and applied to an independent
dataset that hasn't yet been analyzed.

5 Conclusions

In summary, we have shown that adding structural
brain imaging data to non-brain data (such as memory
scores or everyday functioning) improves the
prediction of future cognitive decline in healthy and
pathological aging. Conversely, adding functional
connectivity data, as used in the present approach, did
not aid the prediction. Importantly, our work has
potential for clinical utility by predicting future
cognitive decline, rather than a current diagnosis.
Future studies should include additional brain imaging
modalities and independent datasets, and should
determine the potential of functional connectivity
using  alternative  methodological  approaches.
Quantifying future decline continuously allows for
more nuanced predictions on an individual level. In the
future, these continuous measures may facilitate
dimensional approaches to pathology (Cuthbert,
2014).

Increased personal and societal costs due to
healthy and pathological age-related cognitive decline
are one of the most pressing challenges in an aging
society. An early and individually fine-grained
prognosis of age-related cognitive decline allows for
earlier and individually targeted behavioral, cognitive,
or pharmacological interventions. Intervening early
increases the chances to attenuate or prevent
cognitive decline, which will alleviate both personal
and societal costs. Importantly, our work targets
applications to healthy aging, widening the scope
beyond the pathological to the entire aging
population.
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6 Appendix

6.1 Supplementary Methods

6.1.1 Details on MRI preprocessing®

Results included in this manuscript come from
data preprocessed using fMRIPrep 1.4.1
(RRID:SCR_016216; Esteban et al., 2018a, 2018b),
which is based on Nipype 1.2.0 (RRID:SCR_002502;
Gorgolewski et al., 2011, 2018).

6.1.1.1 Anatomical data preprocessing

T1l-weighted (Tlw) images were corrected for
intensity non-uniformity (INV) with
*N4BiasFieldCorrection” (Tustison et al., 2010),

distributed with ANTs 2.2.0 (Avants et al., 2008;
RRID:SCR_004757; Tustison et al, 2010). The
T1w-reference was then skull-stripped with a Nipype
implementation of the ‘antsBrainExtraction.sh’
workflow (from ANTSs), using OASIS30ANTSs as target
template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1lw using
‘fast  (FSL  5.09) (Avants et al, 2008;
RRID:SCR_002823; Tustison et al., 2010; Zhang et al.,
2001). A Tlw-reference map was computed after
registration of the T1lw images (after INU-correction)
using “mri_robust_template’ (FreeSurfer 6.0.1) (Reuter
et al., 2010). Brain surfaces were reconstructed using
‘recon-all’ (FreeSurfer 6.0.1) (Dale et al, 1999;
RRID:SCR_001847; Reuter et al., 2010), and the brain
mask estimated previously was refined with a custom
variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle (RRID:SCR_002438; Klein
et al., 2017). Volume-based spatial normalization to
one standard space (MNI152NLin2009cAsym) was
performed through nonlinear registration with
‘antsRegistration” (ANTs 2.2.0), using brain-extracted
versions of both T1w reference and the T1w template.
The following template was selected for spatial
normalization: ICBM 152 Nonlinear Asymmetrical

template version 2009c (Fonov et al, 2009)
(RRID:SCR_008796, TemplateFlow ID:
MNI152NLin2009cAsym). Where available,

T2w-images were included for surface reconstruction.

© The description in this section was automatically
created by fMRIPrep and adapted where needed.

6.1.1.2 Functional data preprocessing

For each BOLD run, the following preprocessing
was performed. First, a reference volume and its
skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD reference was
then co-registered to the Tlw reference using
‘bbregister’ (FreeSurfer) which implements
boundary-based registration (Greve and Fischl, 2009).
Co-registration was configured with nine degrees of
freedom to account for distortions remaining in the

BOLD reference. Head-motion parameters with
respect to the BOLD reference (transformation
matrices, and six corresponding rotation and

translation parameters) are estimated before any
spatiotemporal filtering using “mcflirtt (FSL 5.0.9)
(Jenkinson et al., 2002). The BOLD time-series
(including slice-timing correction) were resampled
onto their original, native space by applying a single,
composite transform to correct for head-motion and
susceptibility distortions. These resampled BOLD
time-series will be referred to as preprocessed BOLD
in original space, or just preprocessed BOLD. The
BOLD time-series were resampled into standard
space, generating a preprocessed BOLD run in
MNI152NLin2009cAsym space. Several confounding
time-series were calculated based on the
preprocessed BOLD: framewise displacement (FD),
DVARS and three region-wise global signals. FD and
DVARS are calculated for each functional run, both
using their implementations in Nipype (following the
definitions by (Power et al.,, 2014). The three global
signals are extracted within the CSF, the WM, and the
whole-brain masks.

All resamplings can be performed with a single
interpolation step by composing all the pertinent
transformations (i.e. head-motion transform matrices,
susceptibility distortion correction when available, and
co-registrations to anatomical and output spaces).
Gridded
using “antsApplyTransforms' (ANTSs), configured with
Lanczos interpolation to minimize the smoothing
effects of other kernels (Lanczos, 1964). Many internal
operations of fMRIPrep use Nilearn 0.5.2
(RRID:SCR_001362; Abraham et al., 2014), mostly
within the functional processing workflow. For more
details of the pipeline, see the section corresponding
to workflows in fMRIPrep's documentation’.

(volumetric) resamplings were performed
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influence on the result and those added
values did not render the best performance
we deem this change inconsequential.

e The results of the main analysis suggested
further validation analyses (brain-age,
extreme group classification). Those were
not preregistered. However, they are very
similar to the main analysis (only the models
were adapted to the question: ridge
regression for the brain-age analysis; random
forest classifier for the extreme group
classification with the criterion to measure
the quality of an RF-split tuned with ["gini",
"entropy"]).

6.1.2 Deviation from preregistration

This analysis has been preregistered (Liem et al.,,
2019). While we have largely followed the plan, the
analysis deviates in several minor points:

e Subjects were only considered for the study
if they had at least three clinical sessions (not
two as preregistered). Extracting the slopes
of cognitive decline from two sessions
resulted in very noisy slopes. As a result, the
sample size is not 849 as preregistered, but
662. As our learning curve experiments
demonstrate, the resulting sample size is
sufficient in the present context.

e After further discussion, we added two
features that have not been preregistered to
the non-brain feature set: i) the number of
sessions prior to the baseline session (to
account for retest effects), and ii) the
cognitive diagnosis at baseline (healthy, mild
cognitive impairment, dementia). Both
features did not show high importance in the
permutation importance analysis.

e The preregistered structural features set
included 331 features from global,
subcortical, and cortical (volume and
thickness) markers. After finding that the
reduced structGS feature set (35 global and
subcortical markers) performs equally well,
we conducted the analyses with the more
parsimonious structGS modality.

e After further discussion, the preregistered
dimensionality reduction approach for the
functional connectivity  data seemed
suboptimal. It averages positive and negative
values, which might result in the cancellation
of positive and negative connectivity within a
network. The updated approach
downsampled the connectivity matrix using a
PCA.

e In the preregistration, two hyperparameters
were planned to be used for tree pruning
(max_depth = [5, 10, 20, 40, 50, None],
where None leads to fully grown trees and
min_samples_leaf = (1, 4, 10]). After further
discussion, we decided to remove this double
parametrization and only tune max_depth.
Additionally, a currently ongoing
independent project suggested that lower
values of max_depth might be worth
investigating in more detail. Hence, we
added, max_depth = [3, 7, 15] to the
hyperparameter tuning. Since the
hyperparameters did not have a large
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Modality |# features |[Name Test/Variables Information # features
modality
non-brain 66 |demographic Age, sex, education 3
information
clinical assessments |MMSE Sum score
CDR 6 items, global and SOB 8
scores
FAQ 10 items and sum score 11
NPI-Q Symptom presence and 2
severity sum scores
GDS Sum score 1
neuropsychology WMS-R Logical memory (LOGIMEM, 7
MEMUNITS, MEMTIME)
Digit span (DIGIF, DIGIFLEN,
DIGIB, DIGIBLEN)
Word fluency ANIMALS, VEG 2
T™MT Part A (TRAILA, TRAILARR, 7
TRAILALLI), Part B (TRAILB,
TRAILBRR, TRAILBLI),
TRAILBnorm =
TRAILB/TRAILA
WAIS-R Digit Symbol 1
BNT BOSTON 1
APOE €2, £€3,and ¢ 4 allele count 3
cognitive diagnosis healthy control, MCI, or 1
dementia
health cardio/cerebro-vascular health, 17
diabetes, hypercholesterolemia,
smoking, and family history of
dementia
N sessions before 1
baseline
structGS 35 |subcortical volume |accumbens, amygdala, caudate, Volume of left and right 14
hippocampus, pallidum, putamen,
thalamus
global L + R mean cortical thickness; L + R 21
measurements lateral, 3rd, 4th ventricles; L + R
total cortical volume; L + R cerebral
white matter volume; L + R
cerebellar white matter and cortical
volume; total subcortical gray
matter volume, total gray matter
volume, corpus callosum volume (5
parcels)
func 100 |functional 300 cortical, cerebellar, and reduced to 100 PCA 100
connectivity subcortical ROls components

Table S1. Input features

14


https://doi.org/10.1101/2020.06.10.142174
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.10.142174; this version posted June 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

6.2 Supplementary Results

6.2.1 Predictive targets

target = CDR change target = MMSE change
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Figure S1. Distribution of predictive targets (cognitive slopes of CDR and MMSE).

6.2.2 Predictive performance (full results)
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Figure S2. Adding structural data to non-brain data improves prediction of cognitive decline. Test performance
(R?, coefficient of determination) across splits. Targets: cognitive decline measured via CDR (Clinical Dementia
Rating, top) and MMSE (Mini-Mental State Examination, bottom). Input modalities: non-brain, structGS (global
and subcortical structural volumes), struct (structGS + cortical volume and thickness), func (functional
connectivity). Left panel represents combinations of input modalities (e.g., first line is non-brain + structGS). The
number represents the median, the dashed vertical line marks the median of the best-performing combination of
modalities (within a target). This figure is an extension of Figure 2 and also includes brain modalities on their

own.
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outperforming mean difference SD difference
non-brain
(% of splits)

CDR MMSE CDR MMSE CDR MMSE

modality / target change change change change change change
structGS 19 5 -0.09 -0.13 0.1 0.09
struct 17 7 -0.09 -0.12 0.1 0.09
func 0 0 -0.36 -0.31 0.08 0.08
non-brain + structGS 92 78 0.06 0.02 0.04 0.04
non-brain + struct 75 59 0.04 0.01 0.06 0.05
non-brain + func 25 31 -0.02 -0.01 0.03 0.03

non-brain + structGS +

func 78 57 0.04 0.01 0.05 0.04

Table S2. Comparison of test performance vs non-brain predictions (% of splits for which the test prediction R?
is outperforming the non-brain prediction; N_ ;. = 1000). Mean and SD difference show the mean and standard
deviation of the modality’s performance vs. the non-brain prediction. Best performing model (gray): the CDR
prediction from non-brain + structGS is outperforming the non-brain prediction in 91% of splits.

outperforming

null-models median difference SD difference
(% of splits)

CDR MMSE CDR MMSE MMSE
modality / target change change change change CDR change change
non-brain 100 100 0.42 0.36 0.09 0.09
structGS 100 99 0.31 0.21 0.08 0.07
struct 100 100 0.34 0.24 0.08 0.07
func 91 73 0.01 0.01 0.01 0.01
non-brain + structGS 100 100 0.48 0.39 0.08 0.09
non-brain + struct 100 100 0.47 0.38 0.09 0.09
non-brain + func 100 100 0.42 0.35 0.08 0.07
non-brain + structGS +
func 100 100 0.47 0.37 0.08 0.08

Table S3. Comparison of test performance vs null-models (% of splits for which the test prediction R? is
outperforming the null-model prediction). Best performing model (gray): the CDR prediction from non-brain +
structGS is outperforming the non-brain prediction in 100% of splits.
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target = CDR change target = MMSE change

predicted

true

true

Figure S3. Scatter plot of true vs predicted trajectories of cognitive change for the non-brain + structGS model.
Mean prediction across splits. CDR: positive values =

= cognitive decline, MMSE: negative values = cognitive
decline.
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6.2.3 Hyperparameter tuning of the random forest regression model

modality = non-brain modality = non-brain + structGS
0.36

0.34

0.32

test R2

0.28

0.26

criterion
— MSE
— MAE

modality = non-brain + func modality = non-brain + structGS + func
0.36

0.34

0.32

test R2

0.28

0.26

0 10 20 30 40 50 0 10 20 30 40 50
max_depth max_depth

Figure S4. Tuning curves of the random forest regression hyperparameters max tree depth (O represents fully

grown trees) and criterion (MSE: mean squared error, MAE: mean absolute error). Note that the y-axis is trimmed
and the results vary in a rather narrow range.
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6.2.4 Learning curves demonstrate sufficient sample size

modality = non-brain modality = non-brain + structGS
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Figure S5. Learning curve plotting the models’ performance across an increasing training sample size.
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6.2.5 Age prediction
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Figure S6. Predictive performance in brain-age prediction. Input modalities: non-brain, structGS (global and
subcortical structural volumes), func (functional connectivity). The number represents the median, the dashed
vertical line marks the median of the best-performing combination of modalities. This figure is an extension of

Figure 4 and also includes brain modalities on their own.

6.2.6 Extreme group prediction

stable vs decline
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Figure S7. Predictive performance in predicting extreme groups of cognitive decline (stable vs decline; F1-score:

harmonic mean of the precision and recall).
structural volumes), func (functional connectivity). The number represents the median, the dashed vertical lin

marks the median of the best-performing combination of modalities.

Input modalities: non-brain, structGS (global and subcortical
ine
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