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Abstract

Tumors contain multiple subpopulations of genetically distinct cancer cells. Reconstructing their
evolutionary history can improve our understanding of how cancers develop and respond to treat-
ment. Subclonal reconstruction methods cluster mutations into groups that co-occur within the
same subpopulations, estimate the frequency of cells belonging to each subpopulation, and infer
the ancestral relationships among the subpopulations by constructing a clone tree. However, often
multiple clone trees are consistent with the data and current methods do not efficiently capture
this uncertainty; nor can these methods scale to clone trees with a large number of subclonal
populations.

Here, we formalize the notion of a partial clone tree that defines a subset of the pairwise
ancestral relationships in a clone tree, thereby implicitly representing the set of all clone trees
that have these defined pairwise relationships. Also, we introduce a special partial clone tree, the
Maximally-Constrained Ancestral Reconstruction (MAR), which summarizes all clone trees fitting
the input data equally well. Finally, we extend commonly used clone tree validity conditions to
apply to partial clone trees and describe SubMARine, a polynomial-time algorithm producing the
subMAR, which approximates the MAR and guarantees that its defined relationships are a subset
of those present in the MAR. We also extend SubMARine to work with subclonal copy number
aberrations and define equivalence constraints for this purpose. In contrast with other clone tree
reconstruction methods, SubMARine runs in time and space that scales polynomially in the number
of subclones.

We show through extensive simulation and a large lung cancer dataset that the subMAR equals
the MAR in > 99.9% of cases where only a single clone tree exists and that it is a perfect match
to the MAR in most of the other cases. Notably, SubMARine runs in less than 70 seconds on a
single thread with less than one Gb of memory on all datasets presented in this paper, including
ones with 50 nodes in a clone tree.

The freely-available open-source code implementing SubMARine can be downloaded at https:
//github.com/morrislab/submarine.

Keywords: tumor heterogeneity, tumor evolutionary histories, clone tree reconstructions, uncer-
tainty

Author summary

Cancer cells accumulate mutations over time and consist of genetically distinct subpopulations.
Their evolutionary history (as represented by tumor phylogenies) can be inferred from bulk cancer
genome sequencing data. Current tumor phylogeny reconstruction methods have two main issues:
they are slow, and they do not efficiently represent uncertainty in the reconstruction.

To address these issues, we developed SubMARine, a fast algorithm that summarizes all valid
phylogenies in an intuitive format. SubMARine solved all reconstruction problems in this manuscript
in less than 70 seconds, orders of magnitude faster than other methods. These reconstruction prob-
lems included those with up to 50 subclones; problems that are too large for other algorithms to
even attempt. SubMARine achieves these result because, unlike other algorithms, it performs its
reconstruction by identifying an upper-bound on the solution set of trees. In the vast majority of
cases, this upper bound is tight: when only a single solution exists, SubMARine converges to it
> 99.9% of the time; when multiple solutions exist, our algorithm correctly recovers the uncertain
relationships in more than 80% of cases.
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In addition to solving these two major challenges, we introduce some useful new concepts for and
open research problems in the field of tumor phylogeny reconstruction. Specifically, we formalize
the concept of a partial clone tree which provides a set of constraints on the solution set of clone
trees; and provide a complete set of conditions under which a partial clone tree is valid. These
conditions guarantee that all trees in the solution set satisfy the constraints implied by the partial
clone tree.

1 Introduction

Tumors contain multiple, major subpopulations of genetically distinct cancer cells [1, 2]. The evo-
lutionary history of a cancer can be reconstructed using the allelic frequencies of the clonal and
subclonal mutations in one or more bulk samples of a single cancer. Multiple samples from the
same individual’s cancer can be either spatially distinct [3] or longitudinal [4,5]. Clonal mutations
are present in all profiled cancer cells and were inherited from their most recent common ances-
tor; subclonal mutations are those that are present only in some, or one, of the subpopulations.
Subclonal reconstruction algorithms infer the ancestral relationships among the subpopulations by
constructing a clone tree; the genotypes of individual subpopulations can then be determined using
this tree. These trees contribute to a better understanding of cancer development and response to
treatment [6, 7] by helping to identify key steps in cancer progression [8, 9].

Clone trees are directed, rooted trees whose nodes correspond to different subclones, where
directed edges link parental subclones to their direct descendants. A subclone is a group of cells
descended from a single founder cell; and corresponds to a subtree (or clade) of the phylogeny of
the cancerous subpopulations. Methods to construct clone trees assume that these cells all inherit
the mutations present in the founder cells unless those mutations are removed from the cell through
a copy number loss of its genomic locus. Subclones are associated with a set of subclone-defining
mutations which are present in this founder cell but not in its parental subclone. The root of the
tree, called the germline, represents the embryonic cell, which is the founder of all cancer cells
(and all other cells in the body). In most, but not all cancers, there is a single cancerous subclone
that is the ancestor of all the others; this special subclone is called the clonal population and it is
associated with the cancer’s clonal mutations.

Although there has been substantial progress in developing algorithms to build clone trees from
bulk tumor samples [10–22]; two key challenges remain: scaling algorithms to clone trees with
many subclones and efficiently capturing uncertainty in the clone trees. These challenges persist
even when mutation allele frequency measurements are very precise. Here we address these two
challenges: first assuming perfect accuracy in the allele frequencies and second exploring relaxing
that assumption by introducing a noise buffer. Specifically, we introduce an algorithm, SubMARine,
which runs in polynomial-time and summarizes an upper bound on the solution set of clone trees
for an input set of subclonal frequencies using a partial clone tree, a new data structure that defines
the ancestral relationships between the pairs of subclones.

Contributions Here we introduce and formalize the notion of a partially-defined clone tree, or
partial clone tree for short. This representation is a partial solution to a clone tree reconstruction
problem that defines a subset of the pairwise ancestral relationships between the subclones, as well
as a set of potential parents for each subclone. A partial clone tree is not a tree itself, but it implicitly
defines a set of clone trees, i. e., all those trees that (i) are consistent with the ancestral relationships
defined in the partial clone tree and (ii) select their parents from the possible parent set. The partial
clone tree is thus a polynomial-space representation of a potentially exponentially-sized set of clone
trees.
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We also introduce a special partial clone tree: the Maximally-Constrained Ancestral Recon-
struction, or MAR for short, which provides a complete summary of pairwise ancestral relationship
constrained by the input data. Specifically, when multiple clone trees provide identically good fits
to the mutation allele frequency data, the MAR captures all (and only) the pairwise ancestral
relationships shared by this solution set of clone trees.

Additionally, we describe a polynomial-time algorithm, SubMARine, that produces the sub-
MAR, which approximates the MAR. The ancestral relationships defined in the subMAR are guar-
anteed to be subset of those present in the MAR. Through extensive simulation and in a large real
dataset, we demonstrate that the subMAR almost always perfectly recovers the MAR. In particu-
lar, when the MAR represents a single clone tree solution, the subMAR matches it in > 99.9% of
our experiments. SubMARine is designed not only for the basic clone tree reconstruction problems
commonly addressed by other approaches, but also for more complex problems that are less often
considered. The basic problems include only simple somatic mutations (SSMs), including single nu-
cleotide variants and small insertions and deletions, and clonal copy number aberrations (CNAs).
The extended version of SubMARine also considers subclonal CNAs. Notably, SubMARine runs in
less than 70 seconds on a single thread with less than one Gb of memory on all datasets presented
in this paper, including ones with up to 50 subclones.

Finally, although SubMARine is primarily designed assuming that the input subclonal fre-
quencies are precisely measured and hence constant, we also introduce a noise-buffered version of
SubMARine. This version estimates the minimum deviation required from the input frequencies for
a valid partial clone tree to exist. The noise-free version of SubMARine is immediately applicable
to many real clone tree reconstruction problems without modification. In the discussion section, we
discuss strategies to use noise-buffered SubMARine to explore the space of clone trees with good
fits to the input frequencies.

2 Background

To define CNAs, the genome is divided into segments, with neighboring segments having different
allele-specific average copy numbers in one or more samples. CNA reconstruction algorithms iden-
tify these segments and infer the average allele-specific copy numbers within them [23,24]. However,
fewer algorithms indicate the evolutionary relationship among the CNAs [10, 14, 22, 25]. SSMs are
quantified experimentally by reporting their variant allele frequencies (VAFs) in each sample as
estimated by short-read sequencing. These VAFs can be transformed into estimates of the cellular
frequency of the SSMs by accounting for clonal CNAs in the sample influencing this transforma-
tion [26]. SSMs can be grouped into subclones based on these inferred cellular frequencies, thus
estimating the associated subclonal frequencies in each sample [27–29]. With some modifications,
similar algorithms can also be used to group CNAs into subclones [30–32]. The accuracy of the
cellular frequency estimates, CNA reconstructions, and subclonal groupings depends heavily on the
sequencing depth, degree of aneuploidy, and purity of the samples [33]. However, even under the
best of conditions, when there is high accuracy in all of these, there remain substantial challenges
in clone tree reconstruction.

Figure S1 shows a clone tree that solves a clone tree reconstruction problem by representing
the ancestral relationships among the subclones. The solution to a clone tree reconstruction
problem is a valid clone tree for the following input, which can be derived from a subclonal
reconstruction problem: K subclones (including the germline); their subclonal frequencies in each
of N samples, represented by the subclonal frequency matrix φ ∈ RK×N ; L CNAs assigned to
segments, subclones and parental alleles; and J SSMs assigned to segments and subclones.
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A clone tree is valid if it satisfies the tree, the lost allele, and the sum constraints. The tree
constraint simply requires the clone tree, thus the ancestral relationships, to be consistent with
an arborescence (i. e., a directed tree whose edges all point away from the root) whose root is
the germline. The lost allele constraint, which applies to both CNAs and SSMs, insists that
mutations cannot occur on segments lost in an ancestral cell (see Section S2 for more details).
Finally, because subclones represent subtrees (or clades) of phylogenies, the subclonal frequencies
of a subclone must be larger than or equal to the sum of frequencies of its children in all samples,
hence a sum constraint [11, 15] on the frequencies must hold in the clone tree:

φ(k, n) ≥
∑

k′ is child of k

φ(k′, n) for all n ∈ {0, 1, . . . , N − 1},

where 0 ≤ φ(k, n) ≤ 1 is the frequency of subclone k in sample n.
The basic clone tree reconstruction problem considers only SSMs and clonal CNAs and,

as such, only needs to consider φ when searching for valid clone trees. This problem was shown
to be NP-complete [11]. The extended clone tree reconstruction problem, introduced here,
requires additional input, including an impact matrix M. We introduce the extended problem in
Section 4.

Previous work Often, multiple clone trees solve a clone tree reconstruction problem because
the input data does not provide sufficient constraints to select a single solution [12, 15, 34]. The
theoretical implications of this were first formally studied in [35, 36]. When there are multiple
solutions, clone tree reconstruction algorithms invent other criteria to select a single solution [13,
21,34] or they report a (hopefully) representative subset of the solution set [10,14,15,18,20]. Other
methods simply enumerate all possible clone tree solutions [11,12,19]; however, because the solution
space of clone trees grows exponentially with the number of subclones, these enumeration methods
are limited to problems with a small number of subclones.

Given multiple clone trees as input, some methods identify a single [37] or multiple [38] repre-
sentative consensus trees in order to capture topological features of the solution space. However,
a single consensus tree cannot represent ambiguity in the data, and optimal selection of multi-
ple consensus trees is NP-hard [38]. Furthermore, these methods already require the potentially
exponentially-sized solution set of clone trees to be enumerated as input. In fact, already the prob-
lem of counting the number of valid solutions to the basic clone tree reconstruction problem is
#P-complete [36].

3 Partial clone trees

A partial clone tree defines some but, generally, not all of the pairwise ancestral relationships
between subclones. A defined relationship either requires one of the subclones to be an ancestor of
the other, or requires that the subclone not be an ancestor of the other. Thus, a partial clone tree
can be represented with an ancestry matrix Z ∈ {1, 0,−1}K×K , where:

Z(k, k′) =


1 if subclone k is an ancestor of subclone k′

0 if subclone k is not an ancestor of subclone k′

−1 if subclone k is a possible ancestor of subclone k′ (aka undefined)

A (full) clone tree completes a partial clone tree if its implied pairwise ancestral relationships are
consistent with the defined (i. e. non-negative) entries in Z. A partial clone tree thus implicitly

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146100doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146100
http://creativecommons.org/licenses/by/4.0/


represents the set of clone trees that complete it. Hence, a partial clone tree can be used to solve
the Maximally-Constrained Ancestral Reconstruction Problem:

Problem 1 (Basic maximally-constrained ancestral reconstruction problem). Given the
subclonal frequency matrix φ of a basic clone tree reconstruction problem t, identify the pairwise
ancestral relationships between subclones present in all valid clone trees.

The basic maximally-constrained ancestral reconstruction (MAR) is the unique partial
clone tree that solves this problem by defining the maximal set of all of the ancestral relationships
shared by the solution set of clone trees for t, and leaving undefined all relationships that vary
within the solution set (see Figure 1). Note, however, that this does not necessarily mean that all
clone trees that complete the MAR are solutions of t; but often they are (see Figure S2). Note also
that the partial clone trees produced by SubMARine also include a possible parent matrix τ , which
further constrains the space of completing clone trees (see Sections 3.2 and S4.2 for more details);
however, this matrix is not required in the definition of the MAR.

Partial clone trees generalize ancestry graphs (or evolutionary constraint networks) used by
previous algorithms [11,12,19] as a starting point for enumerating all valid clone trees. An ancestry
graph is a directed, acyclic graph (DAG), in which two subclones k and k′ are connected by an
edge if k is a possible parent of k′. In these graphs, k is a possible parent of k′ if there exists no
sample n such that φ(k, n) < φ(k′, n) (applying one aspect of the sum constraint) and if k′ does
not contain any mutation that is already lost in k. Clone trees can be enumerated as spanning
trees with a Gabow-Myers-based algorithm [39]; they are valid if the sum constraint is satisfied for
each subclone and all its children. Ancestry graphs can be represented by a partial clone tree where
Z(k, k′) = −1 whenever an edge connects k to k′, and where Z(k, k′) = 0 otherwise. However, the
semantics of a partial clone tree, which represents constraints on the ancestry, are not the same
as the ones of an ancestry graph, which connects children to possible parents. Hence, not every
ancestry matrix Z with only 0 and −1 entries corresponds to an ancestry graph. Also, when a
partial clone tree is represented as a DAG, not every spanning tree satisfying the sum constraint
completes Z (see Section S3.1). Here, we extend this earlier work to include ancestry relationships
that must be present (i. e., Z(k, k′) = 1). Doing so allows us to not only more highly constrain
the space of clone trees but also to propagate an initial set of defined ancestral relationships in Z
to infer other ancestral relationships that must appear in the MAR. We describe SubMARine, an
algorithm that allows this propagation, in Section 3.2.

(a)

φ 0 1

0 1.0 1.0

1 0.9 0.8

2 0.5 0.4

3 0.4 0.3 (b) (c)

Z 0 1 2 3

0 0 1 1 1

1 0 0 1 1

2 0 0 0 −1

3 0 0 0 0 (d) (e)

Fig. 1. Example of a MAR for a basic maximally-constrained ancestral reconstruction problem. (a) The
subclonal frequency matrix φ for the germline with index 0 and three subclones with indices 1-3 with their frequencies
in two samples. (b) Set of valid clone trees that fit φ. (c) The MAR summarizing the two clone trees, represented
as ancestry matrix Z. Whenever subclone k is an ancestor of subclone k′ in both clone trees of (b), Z(k, k′) = 1. If
k is not an ancestor of k′ in both clones trees, Z(k, k′) = 0. If k is an ancestor of k′ in one clone tree but not in
the other, as for subclones 2 and 3, Z(k, k′) = −1. (d) The MAR drawn as a partial clone tree. Solid edges connect
parents to their definite children (see Equation 2), dashed edges connect possible parents to their possible children
(see Definition 1). (e) A partial clone tree that does not equal the MAR. Here, subclone 1 is only a possible ancestor of
subclone 2, although subclone 1 is the definite ancestor in both clone trees in (b). Hence, the defined set of ancestral
relationships is not maximal.
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3.1 Applying validity constraints to partial clone trees

A key contribution of this paper is the observation that the validity constraints for clone trees can
be applied to partial clone trees in order to rule out, or rule in, some pairwise ancestral relationships.
In addition to the sum constraint, which is already applied in the construction of ancestry graphs,
SubMARine enforces the tree constraint on Z. This allows to rule in certain ancestral relationships,
i. e., identify pairs of subclones k and k′ where Z(k, k′) = 1. Doing so permits us to define, for
some subclones, a set of definite child subclones they have in every solution to a basic clone tree
reconstruction problem t; which places further constraints on Z.

The tree constraint requires the clone tree to be an arborescence with the germline as the root.
If we define clone 0 as representing the germline, we can immediately set Z(0, k) = 1 for k > 0
because the root is the ancestor of all nodes in the arborescence. This first consequence of the
tree constraint is called the germline constraint. To simplify our presentation, we also assume
that subclones 1 to K − 1 are sorted in decreasing order of their average subclonal frequencies
across samples. As an obvious consequence of the sum constraint, this ensures that Z(k, k′) = 0
whenever k′ ≤ k. Another consequence of the tree constraint arises from the fact that although
all arborescences correspond to a unique, fully defined ancestry matrix Z; not all fully defined Z
matrices correspond to arborescences. To ensure a given Z does represent such a tree, i. e., that it
is transitive and each node has exactly one parent, it suffices to require that all the elements in Z
satisfy a single partial tree constraint (see Section S3.2 for details):

Z(k, k′) = Z(k, k′′) if Z(k′, k′′) = 1, for k < k′ < k′′. (1)

SubMARine can thus apply this constraint to partial clone trees to define an element of Z whenever
Z(k′, k′′) = 1 and either Z(k, k′) = −1 or Z(k, k′′) = −1 but not both.

To assist in applying the sum constraint to partial clone trees, we define a set of definite children
of a subclone k. The definite children of a subclone k, χ(k), are the set of subclones whose parent
can only be k given the defined entries in Z:

χ(k) = {k′ | Z(k, k′) = 1} \ {k′ | ∃k◦ such that Z(k, k◦) 6= 0 and Z(k◦, k′) 6= 0}. (2)

In other words, a subclone k′ is a definite child of subclone k if k is its ancestor, and k′ has no
other (possible) ancestors that are (possible) descendants of k. (For Figure 1, the germline has only
one definite child, which is subclone 1. Subclone 1 has subclone 2 as definite child, subclone 3 is a
possible child of both subclones 1 and 2.) Thus, we can formulate the generalized sum constraint
based simply on the set of definite children of a subclone:

φ(k, n) ≥
∑

k′∈χ(k)

φ(k′, n) for all n ∈ {0, 1, . . . , N − 1}. (3)

Note that when there are no undefined states in Z, χ(k) is simply the set of all children of k. The
lost allele constraint can be applied without any changes to a partial clone tree (see Section S3.3).

Given these extended definitions of the validity constraints, we can now deem a partial clone
tree to be valid if it satisfies the germline, generalized sum, lost allele, and partial tree constraints.
We here note two things. First, the MAR is valid per construction (see Section S3.4). Second, when
Z contains undefined states, some subclones have multiple possible parents and are not definite
children of any subclone, hence these subclones are not considered in the generalized sum constraint.
Thus, it is possible that a valid partial clone tree has no valid completions (see Figure S3).
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3.2 SubMARine: Approximating the MAR

SubMARine is a polynomial-time algorithm that constructs the subMAR, which is a partial clone
tree that approximates the MAR. Here we describe the basic SubMARine algorithm, which ap-
proximates the solution to the basic maximally-constrained ancestral reconstruction problem. In
the following section, we describe the extended version of SubMARine.

For a basic clone tree reconstruction problem t, the subMAR has three important properties,
which we prove in this section: it is unique, its defined ancestral relationships are a subset of those
in the MAR, and as such, all valid clone trees of t are completions of the subMAR.

Algorithm 1 Functional description of the SubMARine algorithm in basic mode
Input: subclonal frequency matrix φ
Output: ancestry matrix Z, possible parent matrix τ

B set 1’s through germline constraint and 0’s through trivial relationships of generalized sum constraint
1: K ← |φ|
2: Z0 ← initializeCloneTree(K)

B set 0’s through crossing rule (Equation 9) of generalized sum constraint
3: Z1 ← Z1 ∩ fsumcr (φ)

B set 1’s and 0’s through generalized sum rule with Subpoplar algorithm
4: Z2, τ1 ← useSubpoplar(K,φ, Z1)
5: return Z2, τ1

initializeCloneTree(K):
6: Z0 ← {−1}K×K ∩ fgerm(K) ∩ fsumtriv (K)
7: return Z0

useSubpoplar(K,φ, Zt):
8: initialize δ0, ψ0, τ0
9: while Zt did not converge do

10: Zt+1, δt+1, ψt+1, τt+1 ← fsumsubp(K,φ, Zt, δt, ψt, τt)
11: Zt+2 ← Z1t+1 ∩ fptree(Zt+1)

12: return Zt, τt

SubMARine takes as input the subclonal frequency matrix φ of a basic clone tree reconstruc-
tion problem t, and builds a partial clone tree by creating an ancestry matrix Z (see Algorithm 1
and Figure S4). Initially, this matrix contains only undefined ancestral relationships. By applying
inference rules derived from the validity constraints, SubMARine updates undefined values to de-
fined ones whenever necessary, i. e. whenever undefined values violate constraints (see Table 1). In
a preprocessing phase, SubMARine applies the germline rule, setting Z(0, k) = 1 for all k > 0.
Furthermore, all entries Z(k′, k), with k′ ≥ k, are set to 0 resulting from the sorting of subclones in
decreasing order of their subclonal frequencies across samples and as a consequence of the gener-
alized sum constraint. Then, the main phase of the algorithm begins by applying the crossing rule
that sets Z(k, k′) = 0 for k < k′ whenever a sample n exists such that φ(k, n) < φ(k′, n), as also
required by the sum constraint. Afterwards, the last part of the generalized sum rule is propagated
with our Subpoplar algorithm, which also propagates the partial tree constraint. This algorithm
identifies definite children and rules out possible children. Its propagations lead to updates on Z and
on the set of possible and definite parents of each subclone, which is tracked in the possible parent
matrix τ . This tracking is necessary because the generalized sum rule can exclude possible parents
for a subclone without requiring specific pairwise ancestral relationships (i. e. a subclone k that
cannot be a possible parent of subclone k′ can still be its possible ancestor). Whenever Subpoplar
updates a relationship because of the generalized sum rule, the partial tree rule is propagated.
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Table 1. Overview of inference rules derived from the germline, generalized sum and partial tree
constraint. For explanation of available frequency δ, definite parent Vector ψ and possible parent matrix τ see
Section S4.2. Z is the ancestry matrix, φ the subclonal frequency matrix and K the number of subclones. Indices k
and k′ refer to subclones ordered by their average frequencies.

inference rule functional description impact application

germline rule Z0 ← fgerm(K) Z(0, k) = 0 ∀ K > k > 0 once

generalized sum rules

i) trivial relationships Z0 ← fsumtriv (K) Z(k′, k) = 0 ∀ K > k′ ≥ k ≥ 0 once

ii) crossing rule Z0 ← fsumcr (φ) Z(k, k′) = 0 (see Equation 9) once

iii) Subpoplar Zt+1, δt+1, ψt+1, τt+1 ←
fsumsubp(K,φ, Zt, δt, ψt, τt)

Z(k, k′) = 0 if Equation 3 is vi-
olated when k′ was a child of k
and k has no other (possible) de-
scendants that are possible par-
ents of k′

Z(k, k′) = 1 if Equation 3 is not
violated when k′ became a child
of k and k′ has no other possible
parents than k

once, and then every
time a relationship is up-
dated

partial tree rule Zt+1 ← fptree(Zt) Z(k, k′) = 1 or Z(k, k′) = 0 de-
pending on two other defined re-
lationships (see Equation 1)

once, and then every
time a relationship is up-
dated

When no more relationships can be defined through the inference rules, Z converged and is output
as the subMAR, together with the possible parent matrix τ . Sections S4.1 and S4.2 provide a more
detailed descriptions of SubMARine and Subpoplar, along with an analysis of their polynomial
runtime.

Note that SubMARine always converges because only undefined values are updated to defined
ones and their number is finite. At convergence, Z represents a valid partial clone tree. If the
subclonal frequency matrix φ does not support a valid partial clone tree – if, for example, one
inference rule requires Z(k, k′) = 0 and another requires Z(k, k′) = 1, then SubMARine terminates
and indicates the pair (k, k′) having a validity constraint violation. If the violation results from
a generalized sum rule violation, it may be because the subclonal frequencies are not measured
precisely but are actually inferred from noisy mutational frequencies. To address this issue, we
describe a noise-buffered version of SubMARine in Section S4.3. In polynomial time, this version
finds a minimum noise buffer that is added uniformly to parental subclonal frequencies in order to
permit a valid partial clone tree. Starting from the subMAR computed with this uniform buffer,
SubMARine can also find a subclone- and sample-specific noise buffer set and its corresponding
subMAR, such that all completing clone trees make as little use of the buffers as possible. If the
data allows, this can be done in polynomial time. Otherwise, a more exhaustive search is necessary.

If the user decides to specify additional ancestral relationships for Z, they are added after
the preprocessing phase, followed by a propagation of the partial tree rule (see Figure S4 and
Section S4.1). Furthermore, the partial tree rule is already propagated when applying the crossing
rule. As additional input, clonal CNAs and SSMs can be provided. SubMARine checks then whether
any SSMs are assigned to deleted segments and thus invalidate all clone trees through violating
the lost allele constraint (see Section S4.4). If this is not the case, the algorithm can proceed as
previously described.
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Correctness As described previously, the inference rules used by SubMARine change only un-
defined ancestral relationships to defined ones and only when, given all of the other defined rela-
tionships, one of the two possible defined ancestral relationships causes a violation of the validity
constraints. So, given a starting set of defined relationships associated with t, each relationship
defined by one of SubMARine’s inference rules is required in all valid clone trees that solve t. Thus,
the subMAR’s defined relationships are a subset of those in the MAR.

The constructed subMAR, given the subclonal frequency matrix φ of t, is unique because the
order in which the inference rules get applied does not matter as long as all rules are applied and
propagated until convergence. It is easy to show that order of application is unimportant. Imagine
a case where SubMARine generates two different subMARs, both starting from the same initial set
of defined relationships, but that differ due to the order in which the inference rules were applied.
Because each subMAR’s defined relationships are a subset of those in the MAR, so long as the
MAR is defined (i.e., there is at least one valid and complete clone tree solution), all pairwise
relationships that differ between these two subMARs are defined in one subMAR and undefined
in the other. None of SubMARine’s inference rules depend on an undefined relationship in order
to update another undefined relationship. As such, there must be a path of inference rules linking
all defined relationships shared by the two subMARs to each defined relationship unique to one of
the two subMARs. Because this path exists, and the relationship is undefined in one of the two
subMARs, the inference rules have not been propagated to convergence in the subMAR where the
relationship is undefined. Ergo, so long as the inference rules are propagate to convergence, and the
MAR is defined, two subMARs generated from the same starting point, using the same rules, are
identical. As such, the subMAR is unique.

In summary, because (i) all ancestral relationships defined in the subMAR are a subset of those
in the MAR and (ii) the subMAR is unique, all valid clone trees of t are completions of the subMAR.

SubMARine is implemented in Python and can be downloaded at https://github.com/morrislab/
submarine. Next to the algorithm, we provide an implementation of a depth-first search to enu-
merate the set of valid subMAR-completing clone trees and an upper bound on the size of this set
(see Section S4.5 for a derivation of this bound).

4 Extended SubMARine: Clone tree reconstruction with subclonal CNAs

The extended version of SubMARine propagates inference rules like the basic version but is designed
specifically to include subclonal CNAs. For example, unlike the basic version, it propagates the lost
allele rule; because whether or not the lost allele constraint is satisfied depends on the choice of
clone tree. Its subMAR, which we call the extended subMAR, defines not only the set of valid
clone trees but also a set of equivalent ones and approximates the extended maximally-constrained
ancestral reconstruction problem defined below. Two clone trees are equivalent if they fit the
experimental data equally well and if the same set of subclonal CNAs has the same impact on the
mutant copy numbers of the same set of SSMs. Given subclonal frequencies and the assignment
of SSMs and clonal CNAs to subclones, as in the basic version of SubMARine, the data fit does
not depend on the ancestral relationships in the clone tree [20]. However, with subclonal CNAs,
ancestral relationships can influence data fit. Specifically, subclonal CNAs change the VAFs of
SSMs by altering their mutant copy numbers per cancer cell but only if 1) the subclonal CNA is
in a descendant subclone, 2) the SSM is in the segment affected by the CNA and 3) the SSM is on
the same parental allele, i. e., it has the same phase, as the CNA. As such, changing the ancestral
relationship between an SSM-containing subclone and a CNA-containing one, can change the fit of
the clone tree to the experimentally-measured VAF data. Note that because we model the change in
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CNA state, rather than the absolute copy number, the data fit to the experimental-derived average
copy numbers of segments is not affected by the clone tree, see Section S5.1 for details. We represent
the impact of CNAs on SSMs in an impact matrixM∈ {0, 1}J×L, where J is the number of SSMs
and L the number of CNAs:

M(j, l) =

{
1 if the mutant copy number of SSM j is changed by CNA l,

0 otherwise.

As an aside, defining M requires us to assume each SSM is unique, i. e., we make an infinite sites
assumption, otherwise we would not be able to select which version of the SSM is impacted by
the CNA. Given the above, if two clone trees with the same subclonal frequencies and mutation
assignments imply the same impact matrix, they also have equal data fit and are thus equivalent.
Note that it is possible but exceptional rare, for two clone trees to have the same data fit but not
the same impact matrix (see Section S5.2 for an example).

As indicated above, a CNA changes an SSM’s mutant copy number only under specific condi-
tions; thus the impact matrixM requires the presence and absence of specific ancestral relationships
and SSM phases. These conditions, the equivalence constraints, are formally described in depth
in Section S5.3 and their derived inference rules are propagated by extended SubMARine.

In the extended clone tree reconstruction problem, one is given a subclonal frequency
matrix φ; L CNAs assigned to subclones, segments and parental alleles; J SSMs assigned to segments
and subclones; as well as an impact matrix M; and is required to find a valid clone tree with
subclonal CNA impacts that match M. Given the input of an extended clone tree reconstruction
problem t, the extended maximally-constrained ancestral reconstruction problem is to
identify the pairwise ancestral relationships between subclones present in all valid clone trees that
solve t and are thus equivalent. The extended MAR is the unique partial clone tree that solves
this problem by defining all, and only, the ancestral relationships as well as SSM phases shared by
the solution set of valid and equivalent clone trees for t.

Like the basic subMAR, the extended subMAR has three important properties for an ex-
tended clone tree reconstruction problem t: its defined ancestral relationships and SSM phases are
a subset of those in the extended MAR, it is unique, and consequently, all valid and equivalent
clone trees of t are completions of the extended subMAR (see end of Section S5.6 for more details).

As input, the extended version of SubMARine takes the subclonal frequency matrix φ, CNAs
as copy number changes (i. e. gains or losses) assigned to subclones, segments and parental alleles,
SSMs assigned to segments and subclones, and the impact matrix M of an extended clone tree
reconstruction problem (see Figure S5). Copy number changes, subclones, segments and alleles of
the CNAs can be provided by subclonal CNA reconstruction methods [12, 14, 22, 25]. The impact
matrix M can be easily derived from an existing subclonal reconstruction – then SubMARine
generalizes from one clone tree to the set of valid and equivalent ones – but in some cases it can
also be inferred without a subclonal reconstruction (see Section 6). For extended SubMARine the
input CNAs have to satisfy a monotonicity restriction, which ensures that each segment contains
only copy number changes of the same direction per allele (see Section S5.4 for details). In brief,
this condition guarantees that once an allele is lost, no update of undefined ancestral relationships
can prevent this loss from happening (e. g. by increasing the copy number of the allele before the
loss), and hence no subsequent updates to Z can remove conditions that used the lost allele rule
to previously define an element of Z. This guarantees that all defined values in the subMAR set
by propagating inference rules are present in the extended MAR. Note that copy neutral loss of
heterozygosity (LOH) events can still be modeled because the restriction permits one of the parental
alleles to be lost, and the other one to be gained.
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Briefly, like the basic version of SubMARine, the extended version builds a partial clone tree by
propagating the germline, generalized sum and partial tree rule and using the Subpoplar algorithm
(see Figure S5). Furthermore, extended SubMARine propagates the equivalence and lost allele rules,
and phases some SSMs in order to satisfy the underlying constraints (see Table S1 and Algorithm 2).
In addition to user-defined ancestral relationships, the extended version of SubMARine can also
take SSM phases as input. Extended SubMARine converges when no ancestral relationship or SSM
phase can be propagated anymore. As SubMARine in basic version, the extended version always
converges. Its result is an extended subMAR, consisting of the ancestry matrix Z, the possible
parent matrix τ and the SSM phasing πs. An example of extended SubMARine and a detailed
description of the algorithm, including an analysis of its polynomial runtime, can be found in
Sections S5.5 and S5.6.

5 Results

Here, we evaluated SubMARine by applying it to simulated basic and extended clone tree re-
construction problems, thus without and with CNAs; and by applying it to data from the large,
multi-sample TRACERx study [40,41].

5.1 Simulated data

Section S6.1 provides a detailed description of the creation of our noise-free simulated datasets.
In brief, we generated a dataset without CNAs containing 600 subclonal reconstructions, evenly
divided between those with 5, 20 and 50 subclones (plus the germline); and another dataset with
clonal and subclonal CNAs containing 1800 subclonal reconstructions, each with 20 subclones. The
CNA-containing subclonal reconstructions are evenly divided among 9 groups of simulations where
we try all combinations of the number of segments, selected from 10, 20, and 40, and the number of
CNAs, selected from 10, 20, and 40. In each of the CNA-containing datasets, we randomly assigned
CNAs as copy number changes to subclones, segments, and parental alleles, ensuring that a deletion
is only allowed once per segment and allele. We also randomly assigned 200 SSMs to subclones,
segments, and parental alleles, considering the impact of subclonal CNAs. For both types of datasets
and each parameter combination, we draw 10 random subclonal reconstructions for each of 1 to 20
samples, resulting in 200 subclonal reconstructions for each parameter combination.

SubMARine constructed each subMAR (basic or extended) in less than 70 seconds using a
single thread with less than one GB of memory. On average, increasing the number of samples
or decreasing the number of subclones decreases uncertainty in a clone tree [35, 36]. The implied
ambiguity in the subMAR solutions shows the same behavior when applied to our simulations(see
Figures S6, S7, and S8). Including CNAs in our simulations further decreases uncertainty (see
Figures S6 and S8) due to the additional implied ancestral constraints. Notably, in all simulations
with twelve and more samples, the resulting subMAR had no undefined ancestral relationships,
indicating that it had found the single clone tree solution to the reconstruction problem.

We then assessed how accurately SubMARine’s subMARs matched the actual ambiguity in
the solution sets of clone trees fitting the 2400 clone tree reconstruction problems. Because each
solution set is a subset of the clone trees completing the subMAR, we used a depth-first search (DFS)
algorithm that incorporated the subMAR and the Subpoplar algorithm to enumerate these solution
sets. Note that because not all spanning trees complete the subMAR (see Section S3.1), we do not
use the Gabow-Myers-based algorithm previously employed for this task [11, 12, 19]. For 1844 of
the 2400 clone tree reconstruction problems, the subMARs were completely defined, so they only
had a single clone tree solution. Among the remaining 556 problems, only one of the problems
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Fig. 2. Recall of required ancestral relationships for dataset (a) without and (b) with CNAs. We
computed recall based on the non-trivial ancestral relationships. Columns in (a) usually have 30 data points, columns
in (b) 90. The last column in each subfigure shows all results for (a) 10 and (b) 6 and more samples since each
subMAR achieved a recall of 100%. For the 46 subMARs for which the DFS could not enumerate all valid (and
equivalent) completing clone trees, we did not compute the recall because we do not know the ground truth. Hence,
column 1 of (a) contains only 13, column 2: 20, column 3: 21 and column 4: 26 values, and column 1 of (b) contains
only 83.

predicted to have multiple solutions by SubMARine had only a single clone tree solution. So, in
> 99.9% (1844/1845) of problems with a single solution SubMARine identified that solution. Of
the remaining 555 problems, in 46 cases, our DFS algorithm did not complete its enumeration in
less than 120h on a single thread.

For 80.4% of the 510 clone tree reconstruction problems for which we were able to fully enumer-
ate the solution set, and that SubMARine predicts to have > 1 clone tree solution, the subMARs
precisely matched the MAR. For all 2400 subMARs, we computed the recall, i.e., the proportion
of the non-trivial ancestral relationships (those for subclones k and k′ where 0 < k < k′) recovered
from the MAR. Trivial ancestral relationships are those with which Z is initialized. As Figure 2
illustrates, the more constrained the clone tree reconstruction problem is, either by a higher number
of samples or the presence of CNAs, the higher is the recall. With CNAs, there is 100% recall with
six or more samples, without CNAs, this is true for ten or more samples.

As Figure 3 illustrates, it may be possible to assess when the subMAR is a perfect match to the
MAR. For the dataset without CNAs, all subMARs with 5 subclones have 100% recall (Figure 3a) as
do the vast majority of subMARs with less than 50 undefined relationships (Figures 3b and 3c). For
the dataset with CNAs, predicting when a subMAR has 100% recall is less straightforward as there
is less than perfect recall with as few as 10 undefined relationships in the subMAR (Figure 3d).
However, in the CNA-containing cases, the DFS is feasible to apply for subMARs with less 50
undefined relationships as for the vast majority it was done in less than 100 seconds (see Figure S9).

5.2 TRACERx data

We next applied SubMARine to a large, multi-sample dataset drawn from the TRACERx study [41],
consisting of mostly primary tumors of 100 patients with early-stage non-small-cell lung can-
cer (NSCLC). Previously, PyClone [28] was used for each patient to identify mutation clusters,
which correspond to subclones, and CITUP [34] was used to infer clone trees by exhaustively
exploring all possible trees and reporting those with the highest likelihood. In Section S6.2, we
describe how we arrive at 88 patients with two to 15 subclones from two to seven tumor samples,
on which we apply the basic version of SubMARine (see Table S4 in Appendix 2).

For each patient, SubMARine constructed the subMAR in less than 40 seconds on a single
thread with less than one Gb of memory. For 42 patients, we did not use a noise buffer because their
subclonal frequencies supported a valid partial clone tree; 37 of those have a subMAR that describes
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Fig. 3. Empirical cumulative density functions (CDFs) of subMARs equaling and differing the MAR
for (a)-(c) dataset without CNAs and (a) 5, (b) 20 and (c) 50 subclones, and (d) dataset with CNAs
and 20 subclones. Not included are subMARs that do not contain any undefined ancestral relationships (and thus
have found the single clone tree solution and equal the MAR), and those for which the DFS did not finish. The
p-values are computed with a Kolmogorov-Smirnov test.
(c) The empirical CDF for subMARs differing the MAR reaches the value of 1.0 at 864 undefined relationships.
ctrp’s: clone tree reconstruction problems

only a single tree. Figure S10 shows the five subMARs with undefined ancestral relationships. All
five subMARs were identical to their MARs. In order to build a valid partial clone tree for the
other 46 patients, we computed subclone- and sample-specific noise buffer sets (see Section S4.3).
For 45 of these patients, the noise buffer sets could be found in polynomial time. Only for one
patient (CRUK0016), an exhaustive search had to be applied; it found the MAR and the noise
buffer set in less than 2 seconds. The maximum values in the noise buffer sets range from 0.01 to
0.7 (see Figure S11), with a median of 0.14. Only one patient required a buffer greater than 0.5 (see
Figure S12), this could be caused by infinite sites violations [42] or an undetected CNA. With the
noise buffers, SubMARine identifies 42 additional subMARs that describe a single tree. For three of
the four remaining patients, SubMARine finds subMARs with one, three and seven uncertain values
being perfect matches to their MARs. The MAR of the remaining patient CRUK0016 contains nine
undefined values.

We next compared SubMARine’s partial clone trees with those clone trees reported in the
TRACERx paper (p.31–p.174 of the Supplementary Appendix 1 of the work of Jamal-Hanjani et
al. [41]). All but the trees for six patients were generated by CITUP. Full details of this comparison
are provided in Table S4 in Appendix 2. CITUP exhaustively enumerates all clone trees, up to
ten subclones. As such, for the three patients (CRUK0032, CRUK0062 and CRUK0065) with more
than ten subclones, CITUP could not be run and the authors constructed trees manually. Note that
for these three patients, SubMARine identified subMARs in less than 40 seconds. For each tree,
CITUP infers a set of subclonal frequencies that are close to the input frequencies and for which the
associated clone tree is valid. Trees are ranked based on how close the input and inferred frequencies
are, as assessed using a likelihood function. This function is maximized when the input frequencies
already support a valid clone tree. As such, for the 42 patients which did not require a noise buffer,
CITUP should find the same trees as SubMARine, assuming that only the most likely trees were
reported. However, for six of the 42 patients, Jamal-Hanjani et al. report more trees. None of these
additional trees were valid with the unaltered frequencies (see Figure S13 for an example). In 29 of
the 46 cases requiring a noise buffer, the subMAR perfectly matches the trees reported by Jamal-
Hanjani et al. Of the remaining 17 cases, in twelve cases, the valid trees completing the subMAR
are a subset of the reported ones, and in one case one reported and completing tree are identical
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but CITUP finds more trees. In the remaining four cases, there is no overlap between reported and
completing trees; however, the trees differ only in up to three parent-child relationships.

6 Conclusion and discussion

Here we have introduced SubMARine, a polynomial-time algorithm that computes the subMAR,
a partial clone tree that is a relatively simple, partial solution to the NP-complete problem of
finding a valid clone tree for a subclonal frequency matrix φ. Despite that the subMAR is only an
approximation, in almost all cases, when there is only a single clone tree solution, assuming precisely
measured subclonal frequencies, SubMARine identifies it. Indeed, the subMAR only fails to capture
the vast majority of the non-trivial ancestral relationships in the MAR when the reconstruction
problem is severely under-constrained by the input data; and often these cases can be diagnosed
by examining the subMAR. Notably, SubMARine also solves a potentially much more difficult
extension of the basic clone tree reconstruction problem that includes subclonal CNAs (see also
[43]). Furthermore, SubMARine permits the addition of user-defined ancestral constraints and SSM
phasing, which could come from single cell or long read sequencing data. Additionally, we introduced
a noise-buffered version of SubMARine to deal with inaccurate subclonal frequencies. This version
finds a minimum noise buffer that is added to parental subclonal frequencies in order to prevent
generalized sum rule violations and hence permits a valid partial clone tree for an input dataset.

The partial clone tree is a particularly useful summary in domains, e. g. cancer therapy, where
false positive claims on the evolutionary history of a tumor can have drastic consequences. Here,
a conservative assessment of uncertainty is far superior to a random or representative single clone
tree solution.

Assuming precisely measured subclonal frequencies, SubMARine was able to construct the
subMAR for nearly half of the TRACERx data where subclones were defined by mutation clustering.
For the rest of the data, SubMARine could construct the subMAR using subclone- and sample-
specific noise buffer sets. The noise-buffered version of SubMARine still requires an ordering of the
subclones to initialize; the computation of this ordering does not consider the noise buffer and may
be the source of differences between the solution sets reported by SubMARine and by CITUP on
the TRACERx data.

Currently, SubMARine characterizes uncertainty in a clone tree assuming fixed subclonal fre-
quencies which could lead to overconfidence in a single subMAR. Even the noise-buffered version,
when working only with the minimum necessary noise buffer, basically makes this assumption. In or-
der to account for uncertainty in subclonal frequencies, a larger noise buffer could be used. Another
possibility may be to sample small amounts of noise and add these to the subclonal frequencies.
Repeated multiple times, SubMARine could be applied to the different subclonal frequency sets
and the resulting subMARs could be combined into a single one. One could even go one step fur-
ther and add noise to the initial mutational frequencies that are input to an algorithm determining
subclonal frequencies. However, because the subclones derived from different mutational frequency
sets might be associated with different mutations, a mapping between subclones has to be derived.
Either of these approaches may provide a principled way to identify a solution set of clone trees
with nearly equivalent data fits; this would also permit use of SubMARine for datasets with low
purity or low sequencing depth, for example.

An important use of SubMARine is generalizing a single clone tree – produced, e.g., through
Monte Carlo sampling – to the set of equivalent clone trees. Given a clone tree, one can easily
estimate a set of φ which fit the data well and satisfy the sum constraint; as well as defining the
impact matrixM. SubMARine could then identify the equivalence class of trees with equally good
fits, thereby enhancing methods that give single or sampled solutions to a reconstruction problem.
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Indeed, assuming that a mapping between subclones could be defined between different clone trees,
one could group different clone tree samples together based on their associated subMARs.

There are a number of potential further extensions of this work. It may be possible to define
the impact matrix M without a full subclonal reconstruction by adapting some of the pairwise
comparisons technique developed in [43]. Indeed, it is possible to infer M directly for subclonal
CNAs that are clonal in some, but not all, samples.

A potential drawback of SubMARine is the monotonicity constraint on the subclonal CNAs;
note that this constraint is both more and less limiting than the infinite allele assumption previously
applied to subclonal CNAs [43]. In particular, it effectively rules out incorporating clonal whole
genome duplications (WGD) that appear in many cancers. It may be possible to extend SubMARine
to incorporate clonal WGDs by expanding the number of potential phases for an SSMs.

There are a number of unanswered theoretical questions raised by this work. First, it is unclear
what the hardness of the MAR reconstruction problem is. Because a MAR only exists if there is at
least one valid clone tree solution, it seems likely that MAR reconstruction is at least as hard as
the problem of finding a single clone tree solution. However, it is not clear whether this hardness
changes under the assumption that a valid clone tree exists. Neither of these two questions are
addressed by SubMARine. Also SubMARine approximates the MAR but provides no guarantees
about its approximate factor. It would be useful to provide such guarantees, if they exist. Or perhaps
a different algorithm to generate subMARs can provide them.

SubMARine could also be viewed as an extension of methods that perform haplotyping via
perfect phylogeny [44, 45]. In quadratic time, these methods solve a special case of the basic clone
tree reconstruction problem, in which all elements of the subclonal frequency matrix φ are either
0, 0.5, 1. Furthermore, they provide a complete, polynomial-space summary of all valid clone trees.
Their summary methods could be generalized and applied to the possible parent matrix τ produced
by Subpoplar.

Supporting information

Appendix 1: Supplement.

Appendix 2: Supplementary Table S4.

Simulated data: https://github.com/morrislab/submarine data/archive/v1.0.zip.
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S1 Supplementary figures, tables and algorithms

Fig. S1. Example of a clone tree with three subclones and the germline. Subclonal frequencies are indicated
with φ0, . . . , φ3; assuming that there are two samples given, their values could be φ0 = (1, 1), φ1 = (0.9, 0.8),
φ2 = (0.5, 0.3), and φ3 = (0.4, 0.35). Edges between subclones indicate ancestral relationships, with the germline
being an ancestor of all subclones and subclone 1 being the ancestor of subclones 2 and 3. Colorful bars indicate
alleles of different segments; here, the two alleles of two segments are shown, with segment 1 having the dark gray
and the light blue alleles, and segment 2 having the light gray and dark blue alleles. Two SSMs are assigned to
subclone 1, one to the blue allele of segment 1 and one to the gray allele of segment 2. The SSMs are inherited by the
descendants of subclone 1. Furthermore, two CNAs are assigned to the subclones, shown as copy number changes.
One copy number duplication of the gray allele of segment 2 is assigned to subclone 2, duplicating the SSM lying on
it. One copy number loss of the blue allele of segment 1 is assigned to subclone 3, deleting with it the SSM of this
segment.

Fig. S2. Partial clone tree where one completing clone tree is not a solution to the basic clone tree
reconstruction problem t. Given t with subclonal frequency matrix φ = (1, 0.7, 0.3, 0.2)T , this partial clone tree
is its MAR. Six clone trees complete the MAR, however, only five of them are valid. The clone tree in which the
germline is a parent of subclones 2 and 3 does not satisfy the sum constraint and hence is not a solution to t.
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Fig. S3. Valid partial clone tree without a valid completion. Example of a valid partial clone tree given
the subclonal frequency matrix φ = ((1.0, 1.0), (0.6, 0.6), (0.4, 0.4), (0.39, 0.37), (0.38, 0.38), (0.37, 0.39))T . Subclones 1
and 2 are definite children of the germline. Subclones 1 and 2 do not have definite children because their ancestral
relationships to subclones 3, 4 and 5 are undefined. In a completion without undefined relationships, either subclone 1
or 2 would have to have two definite children. However, given the frequencies in φ, subclones 1 and 2 can have only
one definite child without violating the generalized sum constraint. Thus, there exists no valid full completion of this
valid partial clone tree.
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Fig. S4. Overview of SubMARine in basic mode. The basic version of SubMARine takes the subclonal frequency
matrix φ as input to build the ancestry matrix Z. In a preprocessing phase, the germline rule is introduced by setting
Z(0, k) = 1 for all k > 0. Also, all trivial relationships are set to 0 (Z(k, k′) = 0 for k′ ≤ k) as a consequence of the
generalized sum constraint. Then, the main phase starts by using the crossing rule (Equation 9), which also follows
from the generalized sum constraint. The generalized sum rule itself and the partial tree rule are propagated by using
Subpoplar until the ancestry matrix converged and no more relationships can be defined. Then, SubMARine outputs
the ancestry matrix Z together with the possible parent matrix τ , created by Subpoplar.
When the user defines additional constraints on Z, these are also input to SubMARine. They are applied after the
preprocessing phase, followed by a propagation of the partial tree rule. This rule is also propagated now when using
the crossing rule. The reason is that with the entries set by the user, Z can contain 1’s in other positions than the
first row, possibly requiring updates of undefined relationships. Without user-defined constraints on Z, 1’s in other
rows can be set only in Subpoplar, hence the partial tree rule needs to be applied only at that stage.
When the user provides clonal CNAs and SSMs as input, the lost allele constraint is checked before starting the
preprocessing phase.
Whenever a constraint cannot be satisfied, SubMARine terminates and indicates which subclonal relationship led to
the conflict.
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Fig. S5. Overview of SubMARine in extended mode. The extended version of SubMARine takes the subclonal
frequency matrix φ, CNAs as copy number changes in the matrices ∆CA and ∆CB , assigned to subclones, segments
and parental alleles in the vectors λc, σc and πc, SSMs assigned to segments and subclones in the vectors σs and λs,
and the impact matrix M as input to build the ancestry matrix Z and the SSM phasing vector πs.
At first, the monotonicity restriction is checked to hold on the CNAs. Then, in the preprocessing phase, the germline
rule is introduced and trivial relationships (Z(k, k′) = 0 for k′ ≤ k) are set. Afterwards, SubMARine starts the main
phase, ensuring that the partial tree rule is applied each time a relationship is updated. First, the equivalence rule
based on Equation 13 is propagated, leading to 1’s in Z, together with those equivalence and lost allele rules that
update SSM phasing. Second those equivalence and lost allele rules that lead to 0’s in Z and the crossing rule are
used. Third, the general sum rule is propagated with Subpoplar, which also applies the equivalence, lost allele and
partial tree rules whenever necessary. The method converges, when no more subclonal relationships and SSM phases
can be updated. The output consists of the ancestry matrix Z, the SSM phasing vector πs and the possible parent
matrix τ , created by Subpoplar.
The user can also define additional constraints on Z and on πs. Both types of constraints are applied after the
preprocessing step and before the main phase starts. When user-constraints on Z are set, the partial tree rule is
already propagated before the main phase.
Whenever a constraint cannot be satisfied, SubMARine terminates and indicates what led to the conflict.
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Table S1. Overview of inference rules derived from the lost allele and equivalence constraints. For
explanation of relative copy numbers ∆CA and ∆CB , CNA subclone, segment and phase assignments, λc, σc, and
πc, and SSM subclone, segment and phase assignments, λs, σs, and πs, see Section S2; and for impact matrix M see
Section 4. Z is the ancestry matrix. Indices k and k′ refer to subclones ordered by their average frequencies, j to
SSMs and l to CNAs. The function ρ(α) = β takes an allele α as input and returns the opposite allele β.

inference rule functional description impact application

lost allele rules

i) Zt+1 ← flostz0(∆CA,∆CB ,
λs, λc, σs, σc, πc, πst , Zt)

Z(k, k′) = 0 (see Equations 4, 6,
and 7)

once, and then every
time a new 1 is set in Z
and an SSM got phased

ii) πs0 ← flostpha(∆CA,∆CB ,
λs, λc, σs, σc, πc, Zt)

πs(j) = ρ(πc(l)) (see Equa-
tion 8)

once, and then every
time a new 1 is set in Z

equivalence rules

i) Z0 ← feqz1(M, λs, λc) Z(k, k′) = 1 (see Equation 13) once

ii) πs0 ← feqsamepha(M, λs, λc,
πc)

πs(j) = πc(l) (see Equation 14) once

iii) πs0 ← feqdifpha(M, λs, λc,
πc, Zt)

πs(j) = ρ(πc(l)) (see Equa-
tion 15)

once, and then every
time a new 1 is set in Z

iv) Zt+1 ← feqz0(M,∆CA,
∆CB , λs, λc, σs, σc, πc, πst ,
Zt)

Z(k, k′) = 0 (see Equations 16,
17, and 18)

once, and then every
time a new 1 is set in Z
and an SSM got phased
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Algorithm 2 Functional description of the SubMARine algorithm in extended mode
Input: φ,M,∆CA,∆CB , λs, λc, σs, σc, πc

Output: ancestry matrix Z, SSM phasing vector πs, possible parent matrix τ
B set 1’s through germline rule and 0’s through trivial relationships of generalized sum rule

1: K ← |φ|
2: J ← |λs|
3: Z0, πs0 ← initializeCloneTree(K,J)

B set 1’s through equivalence rule based on Equation 13, propagate 1’s through partial tree rule (see Equation 1),
set SSM phasing through equivalence rules based on Equations 14 and 15 and lost allele rule based on Equation 8

4: Z1, πs1 ← updateOnesAndPhasing(M, λs, λc, σs, σc, πc, πs0 , Z0)
B set 0’s through equivalence and lost allele rules based on Equations 16, 17, 18, 4, 6, and 7, through crossing
rule (Equation 9) of generalized sum rule, propagate 0’s through partial tree rule

5: Z2 ← updateZerosAndPhasing(φ,M,∆CA,∆CB , λs, λc, σs, σc, πc, πs1 , Z1))
B set 1’s and 0’s through generalized sum rule with Subpoplar algorithm

6: Z3, πs2 , τ1 ← useSubpoplar(K,φ,M,∆CA,∆CB , λs, λc, σs, σc, πc, πs1 , Z2)
7: return Z3, πs2 , τ1

initializeCloneTree(K,J):
8: Z0 ← {−1}K×K ∩ fgerm(K) ∩ fsumtriv (K)
9: πs0 ← {−1]J

10: return Z0, πs0

updateOnesAndPhasing(M, λs, λc, σs, σc, πc, πst , Zt):
11: Zt+1 ← Zt ∩ feqz1(M, λs, λc)
12: Zt+2 ← Zt+1 ∩ fptree(Zt)
13: πst+1 ← πst ∩ feqsamepha(M, λs, λc, πc) ∩ feqdifpha(M, λs, λc, πc, Zt+2) ∩ flostpha(λs, λc, σs, σc, πc, Zt+2)
14: return Zt+2, πst+1

updateZerosAndPhasing(φ,M,∆CA,∆CB , λs, λc, σs, σc, πc, πst , Zt):
15: Zt+1 ← Zt∩feqz0(M,∆CA,∆CB , λs, λc, σs, σc, πc, πst , Zt)∩flostz0(∆CA,∆CB , λs, λc, σs, σc, πc, πst , Zt)∩fsumcr (φ)
16: Zt+2 ← Zt+1 ∩ fptree(Zt+1)
17: return Zt+2

useSubpoplar(K,φ,M,∆CA,∆CB , λs, λc, σs, σc, πc, πst , Zt):
18: initialize δ0, ψ0, τ0
19: while Zt did not converge do
20: Zt+1, δt+1, ψt+1, τt+1 ← fsumsubp(K,φ, Zt, δt, ψt, τt)
21: if Zt+1 contains more 1’s than Zt then
22: Zt+2, πst+1 ← (Zt+1, πst) ∩ updateOnesAndPhasing(M, λs, λc, πc, Zt+1, πst)
23: Zt+3, πst+2 ← (Zt+2, πst+1) ∩ updateZerosAndPhasing(φ,M,∆CA,∆CB , λs, λc, σs, σc, πc, πst+1 , Zt+2)
24: else if Zt+1 contains more 0’s than Zt then
25: Zt+2 ← Z1t+1 ∩ fptree(Zt+1)

26: return Zt, πst , τt
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(a) (b)

Fig. S6. Proportion of subclones with uncertain parentage for (a) dataset without CNAs and (b)
dataset with CNAs. A subclone has uncertain parentage when it has multiple possible parents in the possible
parent matrix τ . Line show mean and gray area standard deviation.

(a) (b) (c)

Fig. S7. Proportion of subclones with uncertain parentage for dataset without CNAs containing (a) 5,
(b) 20 and (c) 50 subclones. A subclone has uncertain parentage when it has multiple possible parents in the
possible parent matrix τ . Line show mean and gray area standard deviation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. S8. Proportion of subclones with uncertain parentage for dataset with CNAs containing 20 sub-
clones and different numbers of CNA events and segments. (a)–(c) 10 segments, (d)–(f) 20 segments,
(g)–(i) 40 segments, (a), (d), (g) 10 CNAs, (b), (e), (h) 20 CNAs, (c), (f), (i) 40 CNAs. A subclone has uncer-
tain parentage when it has multiple possible parents in the possible parent matrix τ . Line show mean and gray area
standard deviation.
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Fig. S9. Runtimes of the depth-first search (DFS) to enumerate all valid (and equivalent) clone trees
completing a subMAR, sorted by the number of undefined ancestral relationships in the subMARs.
We terminated searches exceeding a maximal runtime of 120 h.
We used two versions of the DFS to enumerate clone trees for different subMARs. The first version is a näıve, recursive
one and the second version is an improved, iterative and also faster one, which we provide with SubMARine. Hence,
if using the second version to enumerate the clone trees of all subMARs, the overall runtime could be improved. Note
that for all subMARs on which the search did not termindate in 120 h, we already used the faster version.

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146100doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146100
http://creativecommons.org/licenses/by/4.0/


Fig. S10. subMARs for five patients from the TRACERx cohort. Shown are the subMARs that contain
undefined ancestral relationships. They are identical to their MAR.
Subclonal indices are taken from the TRACERx mutation clusters.
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Fig. S11. Maximum values in the minimum noise buffer sets for 46 patients of the TRACERx cohort.
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(a)

φ 0 1 2

0 1.0 1.0 1.0

1 1.0 1.0 1.0

2 0 0.94 0.81

3 0.67 0 0

4 0.96 0 0.35

5 0.97 0 0.89

6 0 0.94 0.01 (b)

Fig. S12. (a) Subclonal frequencies and (b) partial clone tree built by SubMARine for pa-
tient CRUK0078 of the TRACERx study. Subclonal indices are taken from the TRACERx mutation clusters.
Both subclones 2 and 5 are children of subclone 1. However, they have a subclonal frequency of 0.81 and 0.89,
respectively, in sample 2. Hence, a noise buffer of 0.7 is necessary.

(a)

φ 0 1 2

0 1.0 1.0 1.0

1 0.99 0.99 0.98

4 0.76 0.91 0.78

2 0.63 0.25 0.38

3 0.0 0.35 0.05 (b)

Fig. S13. (a) Subclonal frequencies and (b) one clone tree built by CITUP in the TRACERx study
for patient CRUK0095. Subclonal indices are taken from the TRACERx mutation clusters.
Given the shown subclonal frequencies and the clone tree, the sum constraint is not satisfied because Z(2, 3) = 1
although φ(2, 1) < φ(3, 1). Hence, CITUP must have inferred other subclonal frequencies.
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S2 Details on the lost allele constraint

The lost allele constraint ensures that no mutation, SSM as well as CNA, gets assigned to an allele
already deleted completely. In order to formulate this constraint, we need to define for each of
the L CNAs the segment on which it occurs, and the subclone and parental allele it is assigned
to. For these features, we use the vectors σc ∈ {0, 1, . . . , I − 1}L, λc ∈ {1, 2, . . . ,K − 1}L and
πc ∈ {A,B}L, respectively, where I is the number of segments, K is the number of subclones
including the germline, and A and B are the two parental alleles. We call the alleles simply A and
B because often it is not possible to determine which alleles are maternal or paternal. Note that
alleles across segment boundaries are not necessarily the same; thus the A alleles of two segments
do not have to be inherited both from either mother or father but one can come from mother and
one from father. This is because mutations are phased only locally within one segment and not
globally across all segments.

We represent CNAs as relative copy numbers, thus as copy number changes, and not as absolute
copy numbers. Advantages of this representation are described in [22]. We store the direction and
magnitude of the copy number changes for each allele in each segment i and subclone k in the
matrices ∆CA and ∆CB ∈ ZI×K as follows:

∆CA(i, k) =


−1 if a copy number loss is assigned to allele A,

0 if no copy number change is assigned to allele A,

x ≥ 1 if a copy number gain of x copies is assigned to allele A.

The matrix ∆CB is defined analogously for allele B. The normal copy number of an allele that is
not influenced by copy number changes is 1.

For all J SSMs, the segment, subclonal and parental allele assignments are stored in the vectors
σs ∈ {0, 1, . . . , I − 1}J , λs ∈ {−1, 1, 2, . . . ,K − 1}J and πs ∈ {A,B,−1}J , respectively. A negative
value in the vectors λs and πs indicates that the entry is undefined and the SSM is not assigned to
a subclone or allele. We call an SSM unphased if it is not assigned to an allele.

Given the mutation assignment information, we can now formally formulate the lost allele
constraint with five equations as follows:

1. If both subclones k and k′ lose the same allele in the same segment and have no copy of this
allele left, they cannot be in an ancestral-descendant relationship:

Z(k, k′) = 0 if ∃i ∈ {0, 1, . . . , I − 1}, α ∈ {A,B} such that:

∆Cα(i, k) = −1 and ∆Cα(i, k′) = −1

and
∑

k∗∈A(k)

∆Cα(i, k∗) = 0 and
∑

k∗∈A(k′)

∆Cα(i, k∗) = 0, (4)

where Z is the ancestry matrix defined in Section 3 and where the function A(k) returns all
ancestors of subclone k:

A(k) = {k∗ | Z(k∗, k) = 1 for k∗ < k}.

2. If all copies of an allele are lost in a segment of subclone k, its copy number cannot be changed
in descendant subclones. Thus, subclone k cannot be the ancestor of subclone k′ that contains
a copy number change of this allele in the same segment:

Z(k, k′) = 0 if ∃ i ∈ {0, 1, . . . , I − 1}, α ∈ {A,B} s. t.:∑
k∗∈A(k)

∆Cα(i, k∗) +∆Cα(i, k) = −1 ∧∆Cα(i, k′) 6= 0, (5)
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3. If subclone k lost all copies of one allele, it cannot be the ancestor of subclone k′ that has at
least one SSM that is phased to this allele in the same segment:

Z(k, k′) = 0 if ∃i ∈ {0, 1, . . . , I − 1}, j ∈ {0, 1, . . . , J − 1}, α ∈ {A,B} such that:∑
k∗∈A(k)

∆Cα(i, k∗) +∆Cα(i, k) = −1 and λs(j) = k′ and σs(j) = i and πs(j) = α. (6)

4. If subclone k lost all copies of both alleles in one segment, it cannot be the ancestor of subclone k′

that has at least one SSM in the same segment:

Z(k, k′) = 0 if ∃i ∈ {0, 1, . . . , I − 1}, j ∈ {0, 1, . . . , J − 1} such that:∑
k∗∈A(k)

∆CA(i, k∗) +∆CA(i, k) = −1 and
∑

k∗∈A(k)

∆CB(i, k∗) +∆CB(i, k) = −1

and λs(j) = k′ and σs(j) = i. (7)

5. If subclone λs(j) or an ancestral subclone loses all copies of an allele in segment σs(j), the SSM j
needs to be phased to the opposite allele:

πs(j) = ρ(α) if ∃α ∈ {A,B} such that:
∑

k∗∈A(λs(j))

∆Cα(σs(j), k
∗) +∆Cα(σs(j), λs(j)) = −1.

(8)

S3 Details on partial clone trees

S3.1 Ancestry graphs and partial clone trees

Ancestry graphs are DAGs where the vertices represent subclones and an edge goes from subclone k
to subclone k′ if φ(k, n) ≥ φ(k′, n) for all samples n ∈ {0, 1, . . . , N − 1} and if k′ does not contain
any mutation that is already lost in k [11, 12, 19]. Every ancestry graph can be represented as a
partial clone tree where Z(k, k′) = −1 if an edge connects k to k′, and where Z(k, k′) = 0 otherwise.
To convert a partial clone tree into an ancestry graph, an edge is drawn from subclone k to k′ if k is
a possible parent of k′ (see Definition 1). However, not every partial clone tree can be represented
as an ancestry graph. It is not possible when a subclone k has a possible parent that has a possible
parent k∗ that is not an ancestor of k (Z(k∗, k) = 0, see Figures S14a and S14b). Ancestry graph
methods enumerate clone trees as spanning trees. This approach is not intuitive with partial clone
trees because not every spanning tree completes the ancestry matrix Z (see Figures S14a and S14c).

S3.2 Details on the partial tree constraint

A tree has the following two properties. First, its ancestral relationships are transitive, meaning
that if node k is an ancestor of node k′ and node k′ is an ancestor of node k′′, then node k also has
to be an ancestor of node k′′. Second, each node except the root, has exactly one parent. Thus, if
nodes k and k′ are both ancestors of node k′′, then either node k has to be an ancestor of node k′

or vice versa. Because both properties involve triplets of nodes, which correspond to our subclones,
an ancestry matrix describes a tree if both properties are true for all triplets of entries. Below, we
combine these two properties in the partial tree constraint.

An entry of the ancestry matrix Z can take three different values, leading to 27 different triplet
combinations. Assuming that the subclones are sorted in decreasing order of their average sub-
clonal frequencies, two combinations without undefined values violate the two tree properties and
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Table S2. Special ancestral relationship combinations of three subclones. Relationships for subclones k,
k′ and k′′, with 0 ≤ k < k′ < k′′ < K, are shown in an excerpt of the ancestral matrix Z and with a graphical
representation. A solid black edge indicates an ancestral-descendant relationship, a gray dashed edge indicates an un-
defined relationship and no edge between two nodes indicates no ancestral-descendant relationship. The (potentially)
violated tree property is indicated for each combination.
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(a)

φ 0 1

0 1.0 1.0

1 0.4 0.5

2 0.2 0.3

3 0.15 0.15

Z 0 1 2 3

0 0 1 1 1

1 0 0 −1 0

2 0 0 0 −1

3 0 0 0 0

(b)

(c)

Fig. S14. Example of (a) a partial clone tree, (b) an ancestry graph and (c) a possible spanning
tree. (a) Subclonal frequency matrix φ, ancestry matrix Z and corresponding clone tree for an example with three
subclones. Subclones 2 and 3 have two possible parents but subclone 1 is not an ancestor of subclone 3 (Z(1, 3) = 0).
We assume that no mutations get lost in this example. (b) Only the black edges would be drawn in the ancestry
graph when converting the partial clone tree of (a). According to the definition of an ancestry graph however, the
blue edge also needs to be present. Hence, the given partial clone tree cannot be transformed into a proper ancestry
graph. (c) Spanning tree found in the partial clone tree. However, this spanning tree does not complete the ancestry
matrix Z because Z(1, 3) = 0 and here subclone 1 is an ancestor of 3.

six combinations with undefined values have the potential to violate one of the two tree properties
depending on whether the undefined value is set to 1 or 0 (see Table S2). Observing from enumera-
tion of all possible combinations, all violations have in common that Z(k′, k′′) = 1 and that Z(k, k′)
and Z(k, k′′) have different values. Thus, we can conclude the partial tree constraint:

Z(k, k′) = Z(k, k′′) if Z(k′, k′′) = 1, for k < k′ < k′′.

S3.3 Lost allele constraint for partial clone trees

The five Equations 4 – 8, which formulate the lost allele constraint for a complete clone tree,
depend on the mutation assignments to segments, parental alleles and subclones, as well as on the
definite ancestors of some subclones. Whether there is a possible ancestor k◦ of a subclone k with
Z(k◦, k) = −1 in a partial clone tree does not influence the lost allele constraint because as long as
subclone k◦ is not a definite ancestor of subclone k, its copy number changes have no influence on
the allele specific copy numbers of subclone k. Hence, the lost allele constraint does not have to be
adapted to be used for a partial clone tree.

S3.4 Valid MAR per construction

Given all valid clone trees of a basic clone tree reconstruction problem t, constructing its MAR is
trivial. All ancestral relationships that are the same across all clone trees are kept and the ones that
differ are set to undefined values. The resulting partial clone tree is always valid. If it was invalid
because defined ancestral relationships would violate validity constraints, then this violation would
already appear in all clone trees the MAR was constructed from, thus these could not have been
valid in the first place. If it was invalid because undefined values would violate the constraints,
then in order to satisfy these constraints only one of the defined values would be possible. Hence,
all valid clone trees would have to contain this value and consequently, it would not be undefined
in the MAR. Therefore, the MAR is valid per construction.
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S4 Details on SubMARine

S4.1 SubMARine in basic mode

We now describe in more detail how SubMARine approximates the maximally-constrained ancestral
reconstruction problem in basic mode and analyze its runtime. K is the number of subclones
including the germline and N is the number of samples.

Algorithm 3 Pseudocode of the SubMARine Algorithm in Basic Mode
Input: subclonal frequency matrix φ (and user-defined ancestral relationships Z′)
Output: ancestry matrix Z, possible parent matrix τ
1: B create global variable ancestry matrix Z
2: K ← |φ|
3: Z ← {−1}K×K
4: B preprocessing phase
5: B propagate germline rule and update trivial ancestral relationships
6: for k ← 1, 2, . . . ,K − 1 do
7: Z(0, k)← 1

8: for k ← 0, 1, . . . ,K − 1 do
9: for k′ ← 0, 1, . . . , k do

10: Z(k, k′)← 0

11: B apply user-defined constraints on Z if given
12: if Z′ is given then
13: for k ← 1, 2, . . . ,K − 2 do
14: for k′ ← k + 1, k + 2, . . . ,K − 1 do
15: if Z′(k, k′) 6= −1 then
16: if Z(k, k′) = −1 then
17: if update ancestry(Z′(k, k′), k, k′) = False then
18: return error message

19: else if Z(k, k′) 6= Z′(k, k′) then
20: return error message

21: B main phase
22: B propagate crossing rule
23: N ← |φ(0)|
24: for k ← 1, 2, . . . ,K − 2 do
25: for k′ ← k + 1, k + 2, . . . ,K − 1 do
26: if φ(k, n) > φ(k′, n) and φ(k, n′) < φ(k′, n′) for any n, n′ ∈ {0, 1, . . . , N − 1} then
27: if update ancestry(0, k, k′) = False then
28: return error message

29: B propagate generalized sum rule, which may lead to further partial tree rule propagations
30: create global variables needed for Subpoplar algorithm (see Section S4.2), including possible parent matrix τ
31: call Subpoplar algorithm and store returned value in variable x
32: if x = True then
33: return Z, τ
34: else
35: B no valid subMAR exists
36: return error message

In basic mode, SubMARine (see Algorithm 3) takes only the subclonal frequency matrix φ for
K−1 subclones and the germline as input (see Figure S4). These subclones are sorted in decreasing
order of their average subclonal frequencies across samples. If two subclones k and k′ have the exact
same subclonal frequencies across all samples, we arbitrarily chose one to have a lower index than
the other, hence we pose a partial order also on these subclones. At first, SubMARine creates an
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Algorithm 4 update ancestry(v, k, k′)

Input: value v to which the ancestry matrix Z gets updated, indices k∗, k of subclones, whose relationship gets
updated, (global variables)

Output: whether Z(k, k′) can take the value v
1: if Z(k, k′) = v then
2: return True
3: if Z(k, k′) 6= −1 then
4: return False
5: Z(k, k′)← v
6: for each entry Z(i, i′) that should get updated to v′ because of partial tree rule propagation of Z(k, k′) = v do
7: if update ancestry(v′, i, i′) = False then
8: return False
9: return True

ancestry matrix Z where all relationships are initially undefined (O(K2) time, line 3 of Algorithm 3).
It then begins with a small preprocessing phase, propagating the germline rule (O(K) time, lines 6
and 7), and updating trivial relationships, which are Z(k, k′) = 0 with k′ ≤ k as a consequence
of the generalized sum constraint and the ordering of the subclones (O(K2) time, lines 8–10). If
user-defined ancestral relationships are given, they are applied, followed by a propagation of the
tree rules (lines 12 to 20 in Algorithm 3, and Algorithm 4). If we do not consider the relationship
updates, this is done in O(K2) time. Considering propagating the partial tree rules lead to O(K5)
time. This is because each updated relationship can influence up to K other relationships, which
have to be checked. Each of the influences relationships, can lead to further relationship updates.
However, since each of the K2 relationship is updated at most once, the number of total updates
and hence relationship propagations is limited.

Next, the main phase starts, propagating first the crossing rule [15] as another consequence of
the generalized sum constraint. This rule states that two subclones k and k′ cannot be on the same
branch of the clone tree if k has a higher subclonal frequency than k′ in sample n but a lower
one in sample n′. Because of the order of subclones and the trivial relationships, we know that
Z(k′, k) = 0, and hence can implement the crossing rule as:

Z(k, k′) = 0 if φ(k, n) > φ(k′, n) and φ(k, n′) < φ(k′, n′) for any n, n′ ∈ {0, 1, . . . , N − 1}. (9)

Propagating the crossing rule (Equation 9) näıvley (lines 24–28) without considering relationship
updates takes O(K2N2) time. However, because of the ordering of the subclones, we know that
the frequency of subclone k, with k < k′, is higher than or equal to the frequency of subclone k′

in at least one sample. Thus, by checking only whether subclone k has a lower frequency than
subclone k′ in at least one sample, we can reduce the runtime of the crossing rule to O(K2N) time.
Its runtime when considering the propagation of the partial tree constraints is O(K5N). Afterwards,
the generalized sum rule derived from the generalized sum constraint (Equation 3) is propagated
by applying Subpoplar, which also propagates the partial tree rule. In Section S4.2, we present
this algorithm, which also creates and updates a possible parent matrix τ , indicating the possible
parents for each subclone. Furthermore, we show that Subpoplar has a runtime of O(K3N +K5),
which becomes the overall runtime of SubMARine.

At the end, SubMARine returns the subMAR, consisting of the ancestry matrix Z and the
subclonal frequency matrix φ, as well as the possible parent matrix τ .

It is possible for a user to define relationships for subclones. These relationships are set after
the initial ancestry matrix is created and are not allowed to be changed. If a constraint conflicts
with one of the user-defined relationships, no subMAR can be found.
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S4.2 Subpoplar, the sum rule algorithm

Here we describe our generalized sum rule algorithm Subpoplar, which is based on two key con-
straints: first, in a valid, complete clone tree all subclones must have a single parent, and second,
the frequency of a subclone must be greater than or equal to the frequency sum of its children.
Furthermore, we analyze Subpoplar’s runtime; K is the number of subclones including the germline
and N is the number of samples.

Before Subpoplar starts, the possible parent matrix τ ∈ {0, 1}K×K is created, following Defini-
tion 1 of a possible parent:

τ(k′, k) =

{
1 if subclone k is a possible parent of subclone k′ (k′ > k),

0 otherwise.

In addition, the vector ψ, storing the definite parent for each subclone, is created and initialized with
ψ(k) = −1 for each subclone k. Also, a frequency matrix δ ∈ RK×N is created, which indicates the
subclonal frequencies that subclones have available to become parents of other subclones without
violating the sum constraint. It is initialized with the values of the subclonal frequency matrix φ.
Creating τ , ψ and δ takes O(K2 +KN) time.

Subpoplar processes the subclones in decreasing order of their average frequencies. The version
of this algorithm working with subclonal CNAs is shown in Algorithms 5 to 8. For each subclone k,
it is checked whether it can be a child of all its possible parents, hence whether its frequency
is lower than or equal to the available frequencies of its possible parents in all samples (see Al-
gorithm 5, lines 1–10). If subclone k has only one possible parent k∗, k is made a definite child
(see Algorithm 5, lines 11–17). This process involves decreasing the available frequency δ(k∗, n) by
φ(k, n) for each sample n (see Algorithm 6, lines 1–4). Furthermore, it is checked whether other
possible children of subclone k∗ can remain its possible children or whether now after updating the
available frequency δ(k∗, n), they would violate the generalized sum rule if they became definite
children (see Algorithm 6, lines 5–22). If they led to a violation, they are removed from the list
of possible children. If they were already processed in a previous round of the algorithm and have
now without k∗ only one possible parent left, the complete child updating process is performed
recursively. At the end of each such process, the relationship Z(k, k′) is updated (see Algorithm 7).
In basic mode of SubMARine, every update of an ancestral relationship also leads to a propagation
of the partial tree rule (see Equation 1 and Algorithm 7, lines 33–35). In extended mode, in addi-
tion to the partial tree rule, SSM phases (see Algorithm 7, lines 20–21) and absent relationships
(see Algorithm 7, lines 22–23 and Algorithm 8) are also propagated to satisfy the equivalence and
lost allele constraints. At the end of Subpoplar, if a subclone does not have a definite parent yet,
the lowest common ancestor of all its possible parents is made its ancestor to use all information
present in the data to eventually propagate further relationships (see Algorithm 5, lines 18–25).

No matter whether Subpoplar was called from the basic or extended version of SubMARine,
without children, relationship and SSM phasing updates, Subpoplar (Algorithm 5) needs O(K2N+
K3) time because for each subclone and all of its possible parents, the frequencies in all samples
have to be compared, and furthermore, all descendants of all possible parents might have to be pro-
cessed. Making a child the definite child of its definite parent k∗ (Algorithm 6) without considering
relationship updates and recursive calls, takes O(KN + K2) time because for each possible child
of k∗ the frequencies in all samples have to be considered and eventually all possible descendants
of k∗ have to be checked to be possible ancestors of the possible children. We now start to con-
sider single relationship updates when updating children, differentiating the two possibly required
values. If a possible child k′ cannot be a descendant of k∗, an absent relationship (Z(k∗, k′) = 0)
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is created with Algorithm 7. Without considering further updates, updating to this absent rela-
tionship takes O(K2) time because possible ancestors of k∗ have to be checked to have possible
descendants that are possible parents of k′, and furthermore, the new relationship Z(k∗, k′) can
influence up to K relationships through the partial tree rule, which needs to be checked. Hence,
making a child k the definite child of its definite parent k∗ and considering only absent relation-
ship updates of this action, takes O(KN + K3) time, where one of the factors K from updating
children is now superseded with K2. The second relationship update to consider when updating
children is a positive relationship update (Z(k∗, k) = 1). In basic mode, without SSM phasing
and subclonal CNAs, and without further updates, this does not increase the asymptotic run time
of updating children (see Algorithm 7). However, in extended mode, propagating SSM phasing
and absent relationships to satisfy the equivalence and lost allele constraints takes an additional
O(K2(IJK + JL2K)) = O(K3JK + JL2K2) time (see Algorithm 7, line 20, and Algorithm 8,
line 3 and equations mentioned therein), where I is the number of segments, J is the number of
SSMs and L is the number of CNAs. Without further updates, making a child the definite child of
its definite parent thus takes O(KN + IJK4 + JL2K2), where analogously to the basic mode one
factor K gets superseded by the complexity of the relationship update. Now, updating ancestral
relationships can propagate further updates, yet, since each relationship is updated at most once,
the number of total updates and hence relationship propagations is limited. Because there are only
K2 relationships, the total runtime of the Subpoplar algorithm with all updates in basic mode is
O(K3N +K5) and in extended mode is O(K3N +K6IJ +K6JL2).

Algorithm 5 Pseudocode of the Subpoplar algorithm
Input: global variables K, N , φ, Z, λc, πc, σc, ∆CA, ∆CB , λs, πs, σs, and M, possible parent matrix τ , available

frequencies δ, definite parents ψ
Output: whether the subclonal reconstruction r satisfies the sum constraint
1: for k ← 1, 2, . . .K − 1 do
2: for each k∗ ∈ {k∗ | τ(k, k∗) = 1} do
3: B if k∗ cannot be possible parent of k
4: if ψ(k) 6= k∗ and φ(k, n) > δ(k∗, n) for any n ∈ {0, . . . , N − 1} then
5: τ(k, k∗)← 0
6: D← {k◦ | Z(k∗, k◦) 6= 0 and k◦ < k}
7: B if no possible descendant of k∗ is possible parent of k
8: if τ(k, k◦) = 0 ∀ k◦ ∈ D then
9: if update ancestry subpoplar(0, k∗, k, k) = False then

10: return False
11: µ← {k∗ | τ(k, k∗) = 1}
12: B if k has only one possible parent k∗ and is not yet its definite child
13: if |µ| = 1 and ψ(k) = −1 then
14: if make def child(µ(0), k, k) = False then
15: return False
16: else if |µ| < 1 then
17: return False
18: for k ← 2, 3, . . .K − 1 do
19: B if k does not have a definite parent yet
20: if ψ(k) = −1 then
21: B ensure that k is descendant of definite ancestors
22: µ← {k∗ | τ(k, k∗) = 1}
23: l← lowest common ancestor of subclones in µ
24: if update ancestry subpoplar(1, l, k, K − 1) = False then
25: return False
26: return True
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Algorithm 6 make def child(k∗, k, l)

Input: index k∗ of parental subclone, index k of child subclone, currently processed subclone l in generalized sum
rule algorithm, (global variables)

Output: whether subclone k can become a child of subclone k∗

1: δ(k∗, n)← δ(k∗, n)− φ(k, n) ∀ n ∈ {0, 1, . . . , N − 1}
2: if δ(k∗, n) < 0 for any n ∈ {0, 1, . . . , N − 1} then
3: return False
4: ψ(k)← k∗

5: B already processed k′ which is possible child of k∗ but not its definite child
6: ν ← {k′ | τ(k′, k∗) = 1 and k′ < l and ψ(k′) = −1}
7: while ν 6= {} do
8: k′ ← ν.pop(0)
9: B if k∗ cannot be possible parent of k′

10: if φ(k′, n) > δ(k∗, n) for any n ∈ {0, 1, . . . , N − 1} then
11: τ(k′, k∗)← 0
12: D← {k◦ | Z(k∗, k◦) 6= 0 and k◦ < k′}
13: B if no possible descendant of k∗ is possible parent of k′

14: if τ(k′, k◦) = 0 ∀ k◦ ∈ D then
15: if update ancestry subpoplar(0, k∗, k′, l) = False then
16: return False
17: µ← {k◦ | τ(k′, k◦) = 1}
18: B if k′ has only one possible parent k◦, which is not yet definite parent
19: if |µ| = 1 and ψ(k′) = −1 then
20: if make def child(µ(0), k′, l) = False then
21: return False
22: ν ← {k′′ | τ(k′′, k∗) = 1 and k′ < k′′ < l and ψ(k′′) = 0}
23: if update ancestry subpoplar(1, k∗, k, l) = False then
24: return False
25: return True
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Algorithm 7 update ancestry subpoplar(v, k∗, k, l)

Input: value v to which the ancestry matrix Z gets updated, indices k∗, k of subclones, which relationship gets
updated, currently processed subclone l in generalized sum rule algorithm, (global variables)

Output: whether Z(k∗, k) can take the value v
1: if Z(k∗, k) = v then
2: return True
3: if Z(k∗, k) 6= −1 then
4: return False
5: Z(k∗, k)← v
6: B if ancestor-descendant relationship gets created, the possible parent matrix needs to be updated because multiple

parts could change
7: if v = 1 then
8: update τ

9: if v = 0 then
10: τ(k, k∗)← 0

11: B if k was already processed and does not have a definite parent yet
12: if k < l and ψ(k) = −1 then
13: µ← {k◦ | τ(k, k◦ = 1)}
14: B if k has only one possible parent k◦

15: if |µ| = 1 then
16: if make def child(µ(0), k, l) = False then
17: return False
18: B if ancestor-descendant relationship gets gets created
19: if v = 1 then
20: if propagation of SSM phasing (Equations 8 and 15) leads to constraint violations then
21: return False
22: if propagate absent relationships(l) = False then
23: return False
24: B if ancestral relationship is set absent
25: else if v = 0 then
26: A← {k◦ | Z(k◦, k∗) 6= 0 and Z(k◦, k) 6= 0}
27: for k◦ ∈ A do
28: D← {k• | Z(k◦, k•) 6= 0 and k• < k}
29: B if possible ancestor k◦ of k∗ has no possible descendant that is possible parent of k and is not possible

parent itself
30: if τ(k, k•) = 0 ∀ k• ∈ D and τ(k, k◦) = 0 then
31: if update ancestry subpoplar(0, k◦, k, l) = False then
32: return False
33: for each entry Z(i, i′) that should get updated to v′ because of partial tree constraint propagation of Z(k∗, k) = v

do
34: if update ancestry subpoplar(v′, i, i′, l) = False then
35: return False
36: return True

Algorithm 8 propagate absent relationships(l)

Input: currently processed subclone l in generalized sum rule algorithm, (global variables)
Output: whether a necessary absent ancestral relationship can be propagated
1: for k ← 1, 2, . . . ,K − 2 do
2: for k′ ← k + 1, k + 2, . . . ,K − 1 do
3: if an absent ancestral relationship needs to be applied for subclones k and k′ for any segment i ∈
{0, 1, . . . , I − 1} because of Equations 4, 6, 7, 16, 17 or 18 then

4: if update ancestry subpoplar(0, k, k′, l) = False then
5: return False
6: return True

40

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146100doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146100
http://creativecommons.org/licenses/by/4.0/


S4.3 Extending SubMARine to deal with noisy subclonal frequencies

The subclonal frequency matrix φ impacts directly the result of the generalized sum rule but not the
result of any other inference rule (see Tables 1 and S1). The matrix is direct input to the crossing rule
and Subpoplar. Indirectly, it influences setting the trivial relationships via the ordering of subclones.
Because subclonal frequencies cannot be measured precisely from bulk cancer sequencing data but
are inferred from noisy mutational frequencies, it is possible that no valid partial clone tree exists
that satisfies the generalized sum constraint even though the infinite site assumption holds.

In order to deal with the issue of unprecise subclonal frequencies, we developed a noise-buffered
version of SubMARine. We first describe how a minimum noise buffer uniform across subclones
and samples is found in polynomial time and then how a subclone- and sample-specific buffer can
be found.

In the original version of Subpoplar as described in Section S4.2, the algorithm checks for each
subclone whether its subclonal frequencies are lower than or equal to the available frequencies of
its possible parents. All possible parents for which this is not the case, are discarded. However,
if the subclonal frequencies are inaccurate, it can happen that a subclone k′ cannot be a child of
any subclone k, not even of the germline. Hence, the generalized sum rule would require setting
all entries Z(k, k′) = 0 but because Z(0, k′) = 1 as a consequence of the germline rule, no valid
partial clone tree exists. To enable finding a partial clone tree also in these cases, we introduce
the use of a noise buffer. This buffer is added to the parental frequencies, and leads to Subpoplar
discarding possible parents only if the subclonal frequencies of a possible child are greater than the
available frequencies of the possible parents plus this buffer b. This leads to the following changes
in Subpoplar where we use b:

– Algorithm 5, line 4: if ψ(k) 6= k∗ and φ(k, n) > δ(k∗, n) + b for any n ∈ {0, . . . , N − 1}
– Algorithm 6, line 2: if δ(k∗, n) + b < 0 for any n ∈ {0, 1, . . . , N − 1}
– Algorithm 6, line 10: if φ(k′, n) > δ(k∗, n) + b for any n ∈ {0, 1, . . . , N − 1}

Also, we extend the crossing rule used in SubMARine to use the noise buffer b:

Z(k, k′) = 0 if φ(k, n) > φ(k′, n) and φ(k, n′) + b < φ(k′, n′) for any n, n′ ∈ {0, 1, . . . , N − 1}.

Whenever a subclone k has no possible parent because of the generalized sum constraint, we
compute the minimum noise buffer b necessary so that k has at least one possible parent. Then,
we start SubMARine again using the new buffer b. In the worst case, we have to increase the noise
buffer once for each of the K subclones, still leading to a polynomial run time of SubMARine.
However, the minimum noise buffer b computed for a subclone k is not necessarily the minimum
noise buffer for the dataset (see Figure S15). Hence, once we find the valid subMAR for b, we use
b as the starting point for a binary search to ensure finding this minimum buffer.

After applying the binary search, we have found the necessary minimum noise buffer uniform
across all subclones and samples. However, while some subclones need this buffer in order for
SubMARine to find a valid partial clone tree, other subclones might not need it to have at least
one possible parent and might get more possible parents when using it. This leads to a subMAR
with more uncertainty than necessary and to subMAR-completing trees varying in their data fit
(see Figure S16). To prevent this from happening, SubMARine attempts to find in polynomial
time, starting from the subMAR computed with the minimum uniform buffer, the subclone- and
sample-specific noise buffer set and its corresponding subMAR, such that all completing clone
trees have as little negative frequencies in their available frequency matrix δ as possible. For this
purpose, for all subclones having multiple possible parents the available frequencies of all their
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(a)

φ 0 1

0 1.0 1.0

1 0.9 0.95

2 0.5 0.6

3 0.4 0.4

4 0.1 0.5 (b)

δ 0 1

0 0.1 0.05

1 0.4 0.35

2 0.1 0.2

3 0.4 0.4

4 0.1 0.5 (c)

δ 0 1

0 0.1 0.05

1 0.4 0.35

2 0.5 0.6

3 0.4 0.4

4 0.1 0.5 (d)

δ 0 1

0 0.1 0.05

1 0 −0.05

2 0.4 0.1

3 0.4 0.4

4 0.1 0.5

Fig. S15. Example in which the minimum noise buffer for a subclone is not the minimum uniform noise
buffer for the dataset and a binary search is necessary. (a) Subclonal frequency matrix φ for the germline
and four subclones across two samples. (b) Temporary partial clone tree after applying Subpoplar up to subclone 3.
The next step is to check for subclone 4 whether some of its three possible parents can be discarded because they do
not have enough available frequencies in the matrix δ to become its definite parent. Since all have to be discarded,
a noise buffer needs to be introduced to find a valid subMAR. The minimum noise buffer for subclone 4 to have at
least one possible parent is 0.15. Then it could become a child of subclone 1. (c) Valid subMAR if SubMARine is
run with a noise buffer of 0.15. Here, subclone 3 has two possible parents and subclone 4 has three. However, a lower
noise buffer exists for this dataset. (d) Valid subMAR with a noise buffer of 0.05, identified through a binary search
starting from 0.15. All subclonal relationships are defined.

(a)

φ 0 1

0 1.0 1.0

1 0.9 0.8

2 0.4 0.6

3 0.55 0.1

4 0.3 0.15 (b)

δ 0 1

0 0.1 0.2

1 −0.05 0.1

2 0.4 0.6

3 55 0.1

4 0.3 0.15 (c)

δ 0 1

0 0.1 0.2

1 −0.05 0.1

2 0.1 0.45

3 0.55 0.1

4 0.3 0.15 (d)

δ 0 1

0 0.1 0.2

1 −0.05 0.1

2 0.4 0.6

3 0.25 −0.05

4 0.3 0.15

Fig. S16. Example in which a uniform noise buffer leads to subMAR-completing trees with different
data fit. (a) Subclonal frequency matrix φ for the germline and four subclones across two samples. (b) Valid subMAR
and available frequency matrix δ when applying SubMARine with the lowest uniform noise buffer of 0.05 for this
dataset. (c) SubMAR-completing tree where subclone 4 is a child of subclone 2. The available frequencies of subclone 2
stay positive. (d) SubMAR-completing tree where subclone 4 is a child of subclone 3. However, in order to become a
child, the noise buffer is required. Thus, subclone 3 has a negative available frequency in sample 1. Hence, this tree
fits the data worse than the tree in (c).
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possible parents get collected. The best possible subclone- and sample-specific buffer set is the one
in which the lowest possible buffer is chosen for each subclone with multiple parents. Note that for
all subclones that have only one possible parent, we choose the uniform buffer b as their specific
buffer because even if a lower value is used, it has no influence on the subMAR-completing trees.
If a valid subMAR exists for the best buffer set, SubMARine reports this subMAR and buffer set.
Otherwise, SubMARine identifies the second best possible set and if a subMAR exists for it, reports
this buffer set and subMAR. This second best set is the one where the subclone with the lowest
second possible buffer chooses this buffer, and all other subclones with multiple possible parents
choose their lowest possible buffer. If no valid subMAR exists for this second best set, SubMARine
does not search for the third best one because in order to find it, all buffer combinations have to be
considered which cannot be done in polynomial time anymore. Hence, SubMARine informs about
the minimum uniform noise buffer and reports it along with the corresponding subMAR.

Instead of comparing all noise buffer combinations to find the best possible subclone- and
sample-specific noise buffer set, we offer a different approach. Starting from the reported subMAR
and using the uniform noise buffer, SubMARine can apply a depth-first search to find all completing
clone trees that have as little negative frequencies in their available frequency matrix δ as possible
and constructs their MAR. Whenever a clone tree t with an associated available frequency matrix δ
is complete, SubMARine computes the amount of negative available frequency δ−tree(δ) of this tree:

δ−tree(δ) =

K−1∑
k=0

N−1∑
n=0

min(0, δ(k, n)).

If this frequency is higher than the one of the previous completed tree or trees, they are discarded
and the new clone tree t is kept. SubMARine computes the negative available frequency while
completing a clone tree, thus can discard a partial clone tree as soon as its frequency gets smaller
than the so far best one. When all trees got enumerated, SubMARine builds the MAR for the trees
having as little negative available frequencies as possible and reports it along with this frequency
and the used subclone- and sample-specific buffer set. Note that instead of keeping enumerated
complete clone trees in memory, SubMARine stores in K×K matrix which subclonal relationships
have been set to present and/or absent in the already enumerated trees. Whenever a tree with a
better negative available frequency is found, the relationships in this matrix are set in accordance
to this new tree.

S4.4 SubMARine with SSMs and clonal CNAs

When in addition to the subclonal frequency matrix φ, also SSMs and clonal CNAs are given,
SubMARine can be used without any changes to build a subMAR, which describes the set of clone
trees of all valid clone trees fitting this setting. The lost allele constraint, which needs to be satisfies
when CNAs are given and usually requires knowing the subclone and allele assignment of SSMs,
does not have to be propagated. The reason is that as long as only one allele of a segment is deleted
by a clonal CNA, SSMs in this segment can be phased to the other allele, which is not affected by
any other CNA. Only if there are clonal losses on both alleles in one segment that also contains
SSMs, no valid clone tree exists for this input. We test for this special scenario with a verification
step prior to SubMARine that requires the parental allele assignment of the clonal CNAs, and
the segment assignment of the CNAs and SSMs. The verification adds the term O(L + J) to the
runtime of SubMARine, where L is the number of CNAs and J is the number of SSMs.
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S4.5 Upper bound on the size of MAR- and subMAR-completing clone trees

The MAR and the subMAR are a summary of the set of clone trees that complete them and that
are all valid. Counting the number of all valid clone trees given a basic clone tree reconstruction
problems was shown to be #P-complete [36]. Hence, we derive an upper bound in polynomial
time by considering the possible parents of each subclone. A possible parent of a subclone includes
all ancestral subclones of which this subclone is a child or could become a child. Note that a
subclone could also have a single possible parent. Without application of the Subpoplar algorithm
(see Section S4.2), a possible parent is formally defined as follows:

Definition 1 (Possible parent). Subclone k is a possible parent of subclone k′ if(
Z(k, k′) = 1 or Z(k, k′) = −1

)
and Z(k◦, k′) 6= 1 for all k◦ with k < k◦ < k′.

If the Subpoplar algorithm was applied, possible parents of a subclone k′ are indicated in row
τ(k′) of the possible parent matrix τ , which is returned by the algorithm.

The number of trees in the summary set of clone trees can easily be computed as follows:

K−1∏
k=1

#possible parents of subclone k. (10)

However, because this set can contain clone trees that do not complete the MAR or subMAR (see
Figure S17), its size is an upper bound.

Fig. S17. Example of a partial clone tree that describes a clone tree not completing it. Subclones 2 and
3 have two possible parents and subclone 1 cannot be an ancestor of subclone 3. When choosing subclone 2 as parent
for subclone 3, and subclone 1 as parent for subclone 2, subclone 1 has to be an ancestor of subclone 3 because of
the transitivity property of the tree constraint. Then however, this constructed tree does not complete the clone tree
anymore.

S5 Details on extended SubMARine

S5.1 Computation of implied copy numbers and VAFs

The data fit to the experimentally-derived average copy numbers of the segments and the VAFs
of the SSMs depends on the average copy numbers and VAFs implied by the clone tree and mu-
tation assignments. Here, we describe how these can be computed and which role the ancestral
relationships between subclones play.

The implied average allele-specific copy number for allele A in segment i of sample n can be
computed as:

ĉAi,n = 1 +
∑
k

∆CA(i, k) · φ(k, n), (11)
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where 1 is the normal copy number of the allele and ∆CA(i, k) is the copy number change of allele A
in segment i of subclone k as defined in Section S2. ĉBi,n can be expressed analogously. Note that
ĉAi,n and ĉBi,n do not depend on the ancestral relationships between subclones.

The implied VAF of SSM j in sample n can be computed as:

p̂j,n =
ŝj,n

ĉAσs(j),n + ĉBσs(j),n
, (12)

where ŝj,n is the mutant copy number of the SSM and is computed as follows:

ŝj,n = φ(λs(j), n) +
∑

k′∈D(λs(j))

∆Cπs(j)(σs(i), k
′) · φ(k′, n) + Γ,

where the function D(k) returns all descendants of subclone k:

D(k) = {k′ | Z(k, k′) = 1 for k < k′},

and Γ is defined as follows:

Γ =


φ(λs(j), n) ·∆Cπs(j)(σs(j), λs(j)) if the mutant copy number of SSM j is changed by

copy number gain l in subclone λs(j) as indicated in
the impact matrix M,

0 otherwise,

where λs(j), πs(j) and σs(j) are the subclone, parental allele and segment assignments of SSM j as
defined in Section S2, andM is the impact matrix as defined in Section 4. Because the descendants
of subclone λs(j) have an influence on the computation of the VAF, the ancestral relationships
between subclones matters.

S5.2 Same data fit despite different impact matrices

In order for two clone trees c and c′ with the same subclonal frequencies and mutation assignments to
infer the same data fit although they differ in their impact matrices, one of the following conditions
has to hold:

1. two subclones with the same copy number change in the same segment on the same allele have
to have exactly the same subclonal frequencies in all samples,

2. two sets of subclones with different subclonal frequencies have to result in exactly the same
copy number changes in the same segment on the same allele in all samples.

Figure S18 shows two examples of these conditions.

S5.3 Equivalence constraints

The segment, parental allele and subclonal assignments of CNAs and SSMs are stored in the vectors
σc, πc, λc and σs, πs, λs, respectively, as was defined in Section S2.

If a CNA l changes the mutant copy number of an SSM j and both are assigned to different
subclones, then the CNA’s subclone has to be descendant of the SSM’s one:

Z(λs(j), λc(l)) = 1 if M(j, l) = 1 and λs(j) 6= λc(l), (13)
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φ 0 1

0 1.0 1.0

1 0.4 0.3

2 0.25 0.2

3 0.25 0.2

(a)

M 0 1

0 1 0

(b)

M 0 1

0 0 1

(c)

φ 0 1

0 1.0 1.0

1 0.5 0.4

2 0.4 0.3

3 0.3 0.18

4 0.1 0.12

(d)

M 0 1 2

0 1 0 0

(e)

M 0 1 2

0 0 1 1

(f)

Fig. S18. Two examples with different clone trees that have the same subclonal frequencies and mu-
tation assignments but different impact matrices and still infer the same data fit. (a)–(c) Subclones 2
and 3 have the same subclonal frequencies across both samples and contain both a copy number gain. Thus, they
influence SSM 0 in the same way which leads to the same VAF. (d)–(f) Whether the mutant copy number of SSM 0
is changed only by copy number change 0 in subclone 2 or by both copy number changes 1 and 2 in subclones 3 and
4 leads to the same VAF (see Equation 12).
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Furthermore, the SSM j needs to be phased to the same allele as the CNA l:

πs(j) = πc(l) if M(j, l) = 1. (14)

If the mutant copy number of an SSM j should not be changed by a CNA l but the CNA is
assigned to a descendant subclone in the same segment, the SSM needs to be phased to the opposite
allele:

πs(j) = ρ(πc(l)) for all l ∈ {0, 1, . . . , L− 1} with

M(j, l) = 0 and Z(λs(j), λc(l)) = 1 and σs(j) = σc(l), (15)

where the function ρ(α) returns the opposite allele:

ρ(α) =

{
A if α = B,

B if α = A.

If the phase of an SSM cannot be adapted in order to avoid the unwanted influence of a CNA,
the ancestral relationship between the subclone with the SSM and the one with the CNA needs to
be absent. There exist three cases where this occurs:

1. If subclone k has an SSM j and subclone k′ has a CNA l that are both assigned to the same
segment and allele but the CNA should not change the copy number of SSM j, the ancestral
relationship between the two subclones has to be absent:

Z(k, k′) = 0 if ∃l ∈ {0, 1, . . . , L− 1}, j ∈ {0, 1, . . . , J − 1} such that:

λs(j) = k and λc(l) = k′ and σs(j) = σc(l) and πc(l) = πs(j) and M(j, l) = 0. (16)

2. If subclone k has an SSM j, subclone k′ has a CNA l in the same segment and either subclone k′

or its descendant k′′ have another CNAs l′ in the same segment on the other allele than l,
subclone k cannot be an ancestor of subclone k′ if the copy number of SSM j should not be
changed by the two CNAs:

Z(k, k′) = 0 if ∃j ∈ {0, 1, . . . , J − 1}, l, l′′ ∈ {0, 1, . . . , L− 1} such that:

λs(j) = k and λc(l) = k′ and λc(l
′) = k′ or k′′ and k′′ ∈ D(k′)

and σs(j) = σc(l) = σc(l
′)

and πc(l) = ρ(πc(l
′)) and M(j, l) = 0 and M(j, l′) = 0, (17)

where the function D(k′) returns all descendants of subclone k′ and is defined in Section S5.1.

3. If subclone k′ has a CNA l on one allele and is the descendant of a subclone that lost all copies
of the other allele in the same segment, it cannot be the descendant of subclone k that has an
SSM j in the same segment whose mutant copy number should not be changed by the CNA l:

Z(k, k′) = 0 if ∃l ∈ {0, 1, . . . , L− 1}, j ∈ {0, 1, . . . , J − 1} such that:

λc(l) = k′ and
∑

k∗∈A(k′)

∆Cρ(πc(l))(σc(l), k
∗) = −1

and λs(j) = k and σs(j) = σc(l) and M(j, l) = 0, (18)

where the function A(k) returns all ancestors of subclone k and was defined in Section S2.
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S5.4 Monotonicity restriction

To ensure that the input provided to SubMARine has only copy number changes in one direction
per segment and allele, it has to satisfy the following two monotonicity constraints:

∆Cα(i, k) ≤ 0 for all k ∈ {1, 2, . . . ,K − 1} if ∃k◦ ∈ {1, 2, . . . ,K − 1}, α ∈ {A,B} such that:

∆Cα(i, k◦) < 0,

and

∆Cα(i, k) ≥ 0 for all k ∈ {1, 2, . . . ,K − 1} if ∃k◦ ∈ {1, 2, . . . ,K − 1}, α ∈ {A,B} such that:

∆Cα(i, k◦) > 0,

where ∆CA and ∆CB describe the copy number change per allele, segment and subclone and are
defined in Section S2.

Without the input satisfying the monotonicity constraints, SubMARine could not guarantee
that all defined ancestral relationships and SSM phases specified by inference rule propagation in
its extended subMAR have the same value in the corresponding extended MAR (see Figure S19).

S5.5 Example of SubMARine in extended mode

This section contains an example how SubMARine works. For a detailed description with a runtime
analysis see Section S5.6.

Given the subclonal frequency matrix φ, the impact matrix M, all CNA information, and the
SSM assignment to segments and subclones as input (see Figure S20c–e), SubMARine in extended
mode builds the valid partial clone tree in Figure S20a in the following order.

Because the monotonicity restriction holds on the CNAs, the preprocessing phase applies the
germline rule and sets all trivial relationships Z(k, k′) = 0 with k′ ≤ k.

Then the main phase starts. First, those of the equivalence and lost allele rules are propagated
that lead to 1’s in the ancestry matrix Z or that update SSM phasing. Whenever a relationship is
updated, the partial tree rule is applied as well. Because CNA 0 of subclone 5 changes the mutant
copy numbers of SSMs 0 and 2 of subclones 1 and 4 (Figure S5.6d,e), the SSMs are phased to
the same allele as the CNA (equivalence rule based on Equation 14) and subclone 5 has to be
a descendant of subclones 1 and 4 (equivalence rule based on Equation 13). In order to satisfy
the single parent property of the partial tree constraint (Equation 1), subclone 1 needs to be
an ancestor of subclone 4. CNA 1 of subclone 6 influences the mutant copy numbers of SSMs 1
and 5 of subclones 1 and 6 (Figure S5.6d,e). Hence, both SSMs are phased to the same allele as
the CNA (equivalence based on Equation 14) and subclone 1 has to be an ancestor of subclone 6
(equivalence rule based on Equation 13). Because the mutant copy numbers of SSMs 1 and 3 should
not be influenced by CNA 0 (Figure S5.6d), they get phased to the other allele (equivalence rule
based on Equation 15). (SSM 1 was phased to this other allele already because of CNA 1 and
Equation 14.) SSM 4 appears after the loss of allele B (Figure S5.6d,e), hence it has to be phased
to allele A (lost allele rule based on Equation 8).

Second, those of the equivalence and lost allele rules that lead to 0’s in Z, and the crossing rule
(Equation 9), which follows from the generalized sum constraint (Equation 3) and also leads to 0’s
in Z, are propagated together with the partial tree constraint. Since SSM 4 is phased to the same
allele as CNA 1 but its mutant copy number is not influenced by it (Figure S5.6d), subclone 5 of
the SSM cannot be an ancestor of subclone 6 of the CNA (equivalence rule based on Equation 16).
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(a)

(b)

Fig. S19. Example why extended SubMARine cannot guarantee that defined ancestral relationships in
a subMAR have the same value in the corresponding MAR when the monotonicity constraint does not
hold. (a) Partial clone tree with ancestry matrix Z before and after inference rule propagation. Subclonal frequencies
are not shown because they are not relevant for this example. Gray entries in ancestry matrix Z are trivially a
consequence of the ordering of the subclones and the generalized sum rule. Before propagating rules based on the lost
allele constraint, subclone 3 can be a descendant of all other subclones. Due to a rule based on Equation 4, subclone 2
is not allowed to be an ancestor of subclone 3 and the corresponding undefined value in the ancestry matrix has to be
updated to Z(2, 3) = 0. After this update, no more rules affect the undefined values of entry Z(1, 2) or Z(1, 3), hence,
SubMARine terminates. (b) If now, the undefined relationship between subclones 1 and 2 was set to a definite one,
making subclone 2 a descendant of subclone 1, then because the allele lost in subclone 2 was duplicated in subclone 1
and hence not all copies were lost, subclone 2 can be a possible ancestor of subclone 3 again. Thus, there exists a
valid and equivalent clone tree that does not complete the subMAR and as a consequence, a defined entry in the
subMAR would be undefined in the MAR.
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(a)

Z 0 1 2 3 4 5 6

0 0 1 1 1 1 1 1

1 0 0 0 0 1 1 1

2 0 0 0 -1 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

(b)

φ 0 1

0 1.0 1.0

1 0.4 0.3

2 0.25 0.5

3 0.2 0.2

4 0.15 0.17

5 0.1 0.12

6 0.08 0.07

(c)

M 0 1 2

0 1 0 0

1 0 1 0

2 1 0 0

3 0 0 0

4 0 0 0

5 0 1 0

6 0 0 0

(d)

λc = (5, 7, 3)T , σc = (0, 0, 0)T , πc = (A,B,A)T , ∆CA = (0, 0, 0, 0, 0, 0, 1), ∆CB = (0, 0, 0,−1, 0,−1, 0, 0)
λs = (1, 1, 4, 4, 5, 6, 2)T , σs = (0, 0, 0, 0, 0, 0, 0)T , πs = (B,A,B,A,A,A,−1)T

(e)

ĉA0,0 = 1.08, ĉB0,0 = 0.7
ĉA0,1 = 1.07, ĉB0,1 = 0.68

(f)

p̂0,0 = 0.17, p̂1,0 = 0.27, p̂2,0 = 0.03, p̂3,0 = 0.08, p̂4,0 = 0.06, p̂5,0 = 0.09, p̂6,0 = 0.14
p̂0,1 = 0.1, p̂1,1 = 0.21, p̂2,1 = 0.03, p̂3,1 = 0.1, p̂4,1 = 0.7, p̂5,1 = 0.08, p̂6,1 = 0.29

(g)

Fig. S20. Valid partial clone tree (a) drawn as partial tree and (b) represented as ancestry ma-
trix Z with (c) subclonal frequency matrix φ, (d) impact matrix M showing influence of CNAs
on SSMs, (e) subclone, segment and parental allele assignments for CNAs and SSMs and type of
copy number change for CNAs, (f) inferred average copy numbers, and (g) inferred VAFs. This
partial clone tree consists of the germline (at the top of (a) with black index 0) and six subclones. We assume
that only one segment is given. Allele A is duplicated in subclone 6, allele B gets lost in subclones 3 and 5.
Four SSMs are phased to allele A, two are phased to allele B and one is unphased. (Indices of mutations are
shown with orange numbers.) Every subclone but subclone 3 has a single possible parent. The two possible parents
of subclone 3 are the germline and subclone 2. Thus, the genotype of subclone 3 cannot be unambiguously determined.
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The same reasoning holds for SSM 0 and CNA 2, which is why subclone 1 of the SSM cannot be an
ancestor of subclone 3 of the CNA. The transitivity property of the partial tree constraint leads to
subclone 3 not able to be an ancestor of subclones 4, 5 and 6. In addition to this, subclone 3 could
not be an ancestor of subclone 4 because of the lost allele rule based on Equation 6. The crossing
rule forbids subclone 2 to be a descendant of subclone 1 (Figure S5.6c). Thus, subclone 2 cannot
be an ancestor of subclones 4, 5, and 6 (transitivity property of the partial tree constraint).

Third, the generalized sum rule is propagated with Subpoplar. Per default, the germline is the
parent of subclone 1. Because subclone 2 cannot be a descendant of subclone 1, the germline is
its parent as well. The subclonal frequencies allow subclone 3 to either be a child of the germline
or of subclone 2, hence it has two possible parents. Subclones 4, 5 and 6 have only one possible
parent left, hence no relationships have to be updated and no inference rule be propagated. Thus,
SubMARine terminates and outputs the valid partial clone tree, represented by Z, the SSM phasing
vector πs and the possible parent matrix τ (not shown here).

S5.6 SubMARine in extended mode

We now describe in detail the extended mode of SubMARine, which approximates the extended
maximally-constrained ancestral reconstruction problem, and analyze its runtime. K is the number
of subclones including the germline, N is the number of samples, I is the number of segments, J is
the number of SSMs and L is the number of CNAs.

The extended version of SubMARine (Algorithms 9–11) takes the subclonal frequencies φ, L
CNAs with segment, subclonal and phase assignment, σc, λc and πc, respectively, the direction
and magnitude of copy number changes ∆CA and ∆CB for each allele derived from the CNAs, J
SSMs with segment and subclonal assignment, σs and λs, respectively, and the impact matrix M
of an equivalent clone tree reconstruction problem t as input (see Figures S5 and S20). (More
information on the notation of mutation assignments can be found in Section S2.) As in basic
mode (see Section S4.1), the subclones are sorted in decreasing order of their subclonal frequencies.
Extended SubMARine starts by creating an ancestry matrix Z in which all relationships are initially
undefined (O(K2) time, line 3 of Algorithm 9). Additionally, the phases of all SSMs are initialized
in the vector πs with the undefined value (O(J) time, line 7). Then the monotonicity restriction
is checked in O(K2I) time (line 9). In the preprocessing phase, the germline rule is introduced
(O(K) time lines 13 and 14), and trivial relationships are set as a consequence of the generalized
sum rule and sorting of subclones, i. e. Z(k, k′) = 0 with k′ ≤ k (O(K2) time, lines 15–17). Then
the main phase starts and extended SubMARine takes care that SSMs are influenced by CNAs as
indicated by the impact matrixM (line 20 of Algorithm 9 and Algorithm 10). First, it propagates
Equation 13 and phases SSMs to the alleles of CNAs that impact them and creates ancestral-
descendant relationships (Z(k, k′) = 1) between subclones (lines 1–13 of Algorithm 10). If no other
ancestral relationships get propagated by the partial tree rule, which are checked after creating
an ancestral-descendant relationship, this takes O(JLK) time. Because of the possible creation
of ancestral-descendant relationships, SSMs not impacted by CNAs that are now in a descendant
subclone must be phased to the other allele; this is done by propagating Equation 15 (O(JL)
time, lines 15–21). After ensuring that the equivalence constraints are satisfied so far, the lost
allele constraint needs to be checked. This is done by propagating Equation 8 and updating SSM
phasing whenever an SSM could be phased to a lost allele otherwise (O(JK) time, lines 23–29).
In total, taking care that SSMs are influenced by CNAs as indicated by the impact matrix M
and that the equivalence and lost allele constraints are satisfied takes O(JLK) time when the
partial tree rule does not lead to the propagation of further relationships. Now, to ensure that the
equivalence and lost allele constraints are satisfied, absent ancestral relationships (Z(k, k′) = 0)
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are propagated (line 22 of Algorithm 9 and Algorithm 11). First, Equations 16, 18 and 17 of the
equivalence constraint are propagated (lines 2–17 of Algorithm 11), which takes O(JLK2 +JL2K)
time if no other relationships get propagated because of the partial tree rule. Second, Equations 4,
6 and 7 of the lost allele constraint are propagated (lines 19–37), taking O(L2K + LJK2) time
with no relationship updates caused by the partial tree rule. Note that because of the monotonicity
restriction, Equation 5 does not have to be considered. In total, propagating absent relationships
with Algorithm 11 takes O(JLK2 + JL2K) time without further updates. Afterwards extended
SubMARine uses the crossing rule (Equation 9), which includes propagating the partial tree rule
(lines 25 and 29 of Algorithm 9). This can be achieved in O(K3N) time when no other relationships
are propagated by the tree rule and the crossing rule is implemented with the trick described in
Section S4.1. Before considering the last step of extended SubMARine, which is propagating the
generalized sum rule with the Subpoplar algorithm, we summarize extended SubMARine’s runtime
so far. Without relationship updates caused by propagating the partial tree rule, it has a runtime
of O(K3N + JLK2 + JL2K). Because the ancestry matrix has only K2 ancestral relationships
and each relationship is updated at most once, the total runtime of extended SubMARine so far
when considering relationship updates of the partial tree rule is simply O(K5N +JLK4 +JL2K3).
Finally, the generalized sum rule is propagated with the Subpoplar algorithm, which also takes
care of the partial tree, the equivalence and the lost allele rules. In Section S4.2, we present this
algorithm, which also creates and updates a possible parent matrix τ , indicating the possible parents
for each subclone. Additionally, we derive its runtime of O(K3N +K6IJ +K6JL2), which already
considers all possible relationship updates. Hence, the total runtime of extended SubMARine is
O(K5N +K6IJ +K6JL2).

Extended SubMARine converges when no ancestral relationship or SSM phases can be propa-
gated anymore, which is after the Subpoplar algorithm finishes. Because only undefined relation-
ships and SSM phases are updated and those are finite, it always converges. It returns an extended
subMAR as result, which consists of the ancestry matrix Z, the SSM phasing vector πs and the
possible parent matrix τ .

It is possible for a user to define relationships for subclones and phases for SSMs. These rela-
tionships and phases are set after the initialization of Z and πs (see Figure S5) and are not allowed
to be changed. If a constraint conflicts with one of the user-defined relationships, no subMAR can
be found.

Like the basic subMAR, the extended subMAR has three important properties for an extended
clone tree reconstruction problem t: its defined ancestral relationships and SSM phases are a subset
of those in the extended MAR, it is unique, and consequently, all valid and equivalent clone trees
of t are completions of the extended subMAR. The reasoning for this follows the same argument
as for the basic subMAR. Only undefined relationships and SSM phases are updated to defined
ones and only when, given all other defined values, one of the two possible defined value causes a
violation of a validity or equivalence constraint. Because the input data satisfies the monotonicity
restriction, no updated value can be transformed back to the undefined value without violating a
rule. Hence, the defined values are a subset of those in the extended subMAR. Even though the
extended version of SubMARine works with more inference rules, i. e. those belonging to the lost
allele and the equivalence constraints, no rule depends on an undefined value in order to update
another undefined value. Thus, given a set of initially defined values, the order in which the inference
rules are applied does not matter; the extended subMAR is unique.
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Algorithm 9 Pseudocode of the SubMARine algorithm in extended mode
Input: global variables φ, λc, πc, σc, ∆CA, ∆CB , λs, σs, and M
Output: ancestry matrix Z, possible parent matrix τ
1: B create global variables
2: K ← |φ|
3: Z ← {−1}K×K
4: J ← |λs|
5: L← |λc|
6: I ← |∆CA(0)|
7: πs ← {−1}J
8: B check monotonicity restriction
9: if monotonicity restriction (see Section S5.4) does not hold then

10: return error message

11: B preprocessing phase
12: B propagate germline rule and update trivial ancestral relationships
13: for k ← 1, 2, . . . ,K − 1 do
14: Z(0, k)← 1

15: for k ← 0, 1, . . . ,K − 1 do
16: for k′ ← 0, 1, . . . , k do
17: Z(k, k′)← 0

18: B main phase
19: B propagate CNA influence on SSMs
20: propagate CNA influence on SSMs()
21: B propagate absent relationships
22: propagate absent relationships()
23: B propagate crossing rule
24: N ← |φ(0)|
25: for k ← 1, 2, . . . ,K − 2 do
26: for k′ ← k + 1, k + 2, . . . ,K − 1 do
27: if φ(k, n) > φ(k′, n) and φ(k, n′) < φ(k′, n′) for any n, n′ ∈ {0, 1, . . . , N − 1} then
28: if update ancestry(0, k, k′) = False then
29: return False
30: B propagate generalized sum rule, which may lead to partial tree rule, absent relationship and SSM phase propa-

gation
31: create global variables needed for Subpoplar algorithm (see Section S4.2), including possible parent matrix τ
32: call Subpoplar algorithm and store returned value in variable x
33: if x = True then
34: return Z, τ
35: else
36: B no valid subMAR exists
37: return error message
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Algorithm 10 propagate CNA influence on SSMs()

Input: (global variables)
Output: whether ancestral relationships and SSM phases can be updated in a way that CNAs influence SSMs as

stated in impact matrix M
1: for j ← 0, 1, . . . , J − 1 do
2: for l← 0, 1, . . . , L− 1 do
3: if M(j, l) = 1 then
4: B phase SSM following Equation 14
5: if πs(j) = −1 then
6: πs(j) = πc(l)
7: else if πs(j) 6= πc(l) then
8: return False
9: B update ancestral relationship with Equation 13

10: if λs(j) 6= λc(l) then
11: B update ancestry and propagate partial tree rule
12: if update ancestry(1, λs(j), λc(l)) = False then
13: return False
14: B propagate SSM phasing with Equation 15
15: for j ← 0, 1, . . . , J − 1 do
16: for l← 0, 1, . . . , L− 1 do
17: if M(j, l) = 0 and Z(λs(j), λc(l)) = 1 and σs(j) = σc(l) then
18: if πs(j) = −1 then
19: πs(j) = ρ(πc(l))
20: else if πs(j) = πc(l) then
21: return False
22: B propagate SSM phasing with Equation 8
23: for j ← 0, 1, . . . , J − 1 do
24: for α← A,B do

25: if
∑

k∗∈A(λs(j))

∆Cα(σs(j), k
∗) +∆Cα(σs(j), λs(j)) = −1 then

26: if πs(j) = −1 then
27: πs(j) = ρ(α)
28: else if πs(j) = α then
29: return False
30: return True
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Algorithm 11 propagate absent relationships()

Input: (global variables)
Output: whether ancestral relationships can be updated in order to satisfy equivalence and lost allele constraints
1: B propagate equivalence rules
2: for j ← 0, 1, . . . , J − 1 do
3: for l← 0, 1, . . . , L− 1 do
4: B update ancestral relationship following Equation 16
5: if σs(j) = σc(l) and πs(j) = πc(l) and M(j, l) = 0 and λs(j) < λc(l) then
6: if update ancestry(0, λs(j), λc(l)) = False then
7: return False
8: B update ancestral relationship following Equation 18

9: else if σs(j) = σc(l) and
∑

k∗∈A(λc(l))

∆Cπc(l)(σc(l), k
∗) = −1 and M(j, l) = 0 and λs(j) < λc(l) then

10: if update ancestry(0, λs(j), λc(l)) = False then
11: return False
12: B update ancestral relationship following Equation 17
13: else
14: for l′ ← 0, 1, . . . , L− 1 with l′ 6= l do
15: if (λc(l

′) = λc(l) or λc(l
′) ∈ D(λc(l))) and σs(j) = σc(l) = σc(l

′) and πc(l) = ρ(πc(l
′)) and

M(j, l) = 0 and M(j, l′) = 0 and λs(j) < λc(l) then
16: if update ancestry(0, λs(j), λc(l)) = False then
17: return False
18: B propagate lost allele rule
19: for l← 0, 1, . . . , L− 2 do
20: for l′ ← l + 1, l + 2, . . . , L− 1 do
21: B update ancestral relationship following Equation 4
22: if σc(l) = σc(l

′) and πc(l) = πc(l
′) and λc(l) 6= λc(l

′) and ∆Cπc(l)(σc(l), λc(l)) = −1 and
∆Cπc(l′)(σc(l

′), λc(l
′)) = −1 then

23: if λc(l) < λc(l
′) then

24: if update ancestry(0, λc(l), λc(l
′)) = False then

25: return False
26: else
27: if update ancestry(0, λc(l

′), λc(l)) = False then
28: return False
29: for j ← 0, 1, . . . , J − 1 do
30: B update ancestral relationship following Equation 6
31: if πs(j) = πc(l) and σs(j) = σc(l) and λs(j) > λc(l) and ∆Cπc(l)(σc(l), λc(l)) = −1 then
32: if update ancestry(0, λc(l), λc(j)) = False then
33: return False
34: B update ancestral relationship following Equation 7

35: else if σs(j) = σc(l) and λs(j) > λc(l) and ∆Cπc(l)(σc(l), λc(l)) = −1 and
∑

k∗∈A(λc(l))

∆Cρ(πc(l))(σc(l), k
∗)+

∆Cρ(πc(l))(σc(l), λc(l)) then
36: if update ancestry(0, λc(l), λc(j)) = False then
37: return False
38: return True
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S6 Details on results

S6.1 Simulating subclonal reconstructions

To simulate subclonal reconstructions, we first define parameters controlling the simulated data:

– K: number of subclones including the germline
– N : number of tumor samples
– J : number of SSMs
– L: number of CNAs
– I: number of genomic segments

We then generate simulated data using the following procedure:

1. Generate the tree structure. For each subclone k, with k ∈ {1, 2, ...,K − 1}, sample a parent
P(k). We extend the previous subclone (i. e., P(k) = k − 1) with probability µ = 0.75, and
otherwise sample P(k) from the discrete Uniform(0, k − 1) distribution.

2. Generate the population frequencies η(k, s) for each population k in each tumor sample s, with
s ∈ {0, 1, ..., N −1}. These values were sampled for each s as {η(0, s), η(1, s), . . . , η(K−1, s)} ∼
Dirichlet(1, . . . , 1). Thus, we have

∑K−1
k=0 η(k, s) = 1 for each sample s.

3. Compute the subclonal frequencies φ(k, s) for each subclone k in each tumor sample s using
the tree structure and η(k, s) values. We have

φ(k, s) =
K−1∑
k′=0

η(k′, s)1k′=k or clone k′ is a descendant of clone k.

4. Assign the J SSMs to subclones. To ensure every subclone has at least one SSM, set the subclones
of the first K − 1 SSMs λs(0), λs(1), . . . , λs(K − 1) to 1, 2, ...,K − 1. To assign the remaining
J − K + 1 SSMs, sample subclonal weights from the unit Dirichlet, then sample assignments
from the categorical distribution using these weights.

5. Segment the genome into I segments by sampling from Dirichlet(1, . . . , 1).
6. Generate L CNAs by assigning each event l to a subclone λc(l) ∈ {1, 2, . . . ,K − 1}, seg-

ment σc(l) ∈ {0, 1, . . . , I − 1}, and phase πc(l) ∈ {A,B}. Each assignment is sampled from
Dirichlet(5, . . . , 5) with the appropriate number of dimensions. Subsequently, a direction d(l) ∈
{gain, loss} is sampled for every doublet (σc(l), πc(l)), such that all CNAs with the same seg-
ment i and the same phase α have the same direction. Moreover, deletions are permitted only
once on a given tree branch for a given segment and phase.

7. If the direction d(l) = gain, then the allele gain g(l) is sampled such that g(l) ∼ ceil(Exponential(λ =
1.5)).

8. If the direction d(l) = loss, then the allele loss must necessarily be 1, since two CNA events may
never have the same segment and phase with opposite directions. This implies that at most one
allele can ever be lost.

9. Sample the timing and phase for each SSM j. SSM phasing πs(j) ∈ {A,B} is sampled from a
Dirichlet, such that πs(j) ∼ Dirichlet(5, 5). This phasing is rejected and resampled if the given
allele and segment has already been deleted in the SSM’s subclone, either in the subclone itself
or an ancestor. Subsequently, the SSM’s timing t(j) is sampled if a CNA has occurred for the
same segment and allele in the SSM’s subclone, with t(j) ∈ {before CNA, after CNA}, and
t ∼ Dirichlet(5, 5).

Simulated data parameters are listed in table S3.
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Table S3. Simulated data parameters. The parameter name in brackets gives the name of the parameter in
the simulation script. For datasets without CNAs, we generated a total of one SSM per subclone. For datasets with
CNAs, we generated 200 SSMs for each dataset. Assignment of SSMs was performed randomly so that every subclone
had a variable number of SSM, but received at least one. Code used to generate the simulated data is available at
https://github.com/morrislab/pearsim.

Parameter Description Value

K Number of subclones 5, 20, 50
N Number of tissue samples 1, 2, . . ., 20
T Read depth 50x

J(M) Number of SSMs 5, 20, 50, 200
L(C) Number of CNAs 10, 20, 40
I(H) Number of genomic segments 10, 20, 40

S6.2 Preprocessing of TRACERx data

We worked with the TRACERx data provided in Tables S3 and S7 in the Supplementary Ap-
pendix 2 of the work of Jamal-Hanjani et al. [41]. Table S3 contains mutation clusters (column
PyClonePhyloCluster) and their cancer cellular fraction (CCF, column PyClonePhyloCCF ) com-
puted by PyClone for 100 patients. After different filtering steps, the authors arrive at 91 patients
in Table S7. By avoiding evolutionary conflicts posed by the pigeonhole principle [2] and the cross-
ing rule, and by considering copy number errors, the authors discarded some of the clusters to
arrive at a set of mostly consistent clusters (column TreeClusters in Table S7) they used to build
phylogenetic trees with CITUP [34]. Due to erroneous copy number corrections and a high number
of clusters, the authors built manual trees for six patients.

We applied the basic version of SubMARine and used the mostly consistent mutation clusters as
subclones and their CCF as subclonal frequencies. Because we did not consider CNAs, we excluded
the three datasets with erroneous copy number corrections.
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