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ABSTRACT 

Biological  clocks  have  been  developed  at  different  molecular  levels  and  were  found  to  be  more

advanced in the presence of somatic illnesses and mental disorders.  However, it is unclear whether

different biological clocks reflect similar  aging processes and determinants. In ~3000 subjects, we

examined  whether  5  biological  clocks  (telomere length,  epigenetic,  transcriptomic,  proteomic  and

metabolomic clocks) were interrelated and associated to  somatic and mental  health determinants.

Correlations  between  biological  clocks  were  small  (all  r<0.2),  indicating  little  overlap.  The  most

consistent associations with the advanced biological clocks were found for  male sex, higher BMI,

metabolic syndrome, smoking and depression. As compared to the individual clocks, a composite

index of all  five clocks showed most pronounced associations  with health  determinants. The large

effect sizes of the composite index and the low correlation between biological clocks,  indicate that

one’s biological age is best reflected by combining aging measures from multiple cellular levels.

 

                                                                                   2

30

35

40

45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146498
http://creativecommons.org/licenses/by/4.0/


INTRODUCTION

Aging can be conceptualized in different ways. While chronological age is measured by date of birth,

biological age reflects the relative aging of an individual’s physiological condition. Biological aging can

be estimated by various cellular indices1. Commonly used indices are based on telomere length, DNA

methylation  patterns  (epigenetic  age),  variation  in  transcription  (transcriptomic  age)  as  well  as

alterations in the metabolome (metabolomic age) and in the proteome (proteomic age) (see Han et

al.2, Xia et al.3 and Jylhava et al.4 for recent reviews). Biological clocks are computed as the residuals

of regressing biological age on chronological age: a positive value means that the biological age is

larger than the chronological age. Advanced biological aging (i.e an increased biological clock) has

been associated to poor somatic health, including the onset of aging-related somatic diseases such as

cardiovascular  disease,  diabetes and cognitive decline3.  Advanced biological  aging has also been

correlated  to  mental  health:  childhood  trauma5,  psychological  stress  and  psychiatric  disorders6,7.

Specifically, telomere length has been most extensively researched and was found to be shorter in

various somatic conditions8, all-cause mortality9,10 and a range of psychiatric disorders11.  Advanced

epigenetic age has also been linked to worse somatic health, mortality12, depressive disorder7,13 and

post-traumatic stress disorder14,  although some studies have found associations with the opposite

direction of effect15,16. Advanced transcriptomic age was found in those with higher blood pressure,

cholesterol  levels,  fasting  glucose,  and  body  mass  index  (BMI)17.  Advanced  metabolomic  age

increases risk on future cardiovascular disease, mortality, and functionality18.

While  all  biological  clocks  aim  to  measure  the  biological  aging  process,  there  is  limited

evidence for cross-correlations among different clocks. Belsky and colleagues19 recently showed low

agreement between eleven quantifications of biological aging including telomere length, epigenetic

aging  and  biomarker-composites.  In  contrast,  Hasting  and  colleagues20 showed  relatively  strong

correlations  (r>.50)  between  three  physiological  composite  biological  clocks  (i.e.  homeostatic

dysregulation, Klemer and Doubal’s method and Levine’s method), but not with telomere length. Other
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studies showed that telomere length was not  correlated with epigenetic age7,21,  although cell  type

composition  adjustments  revealed  a  modest  association22.  Further,  both  Hannum  and  Horvath

epigenetic clocks23,24 showed modest correlations to a transcriptomic clock17. 

 Most  previous  studies,  however,  have  separately  considered  the  relation  between  single

biological clocks and different somatic and mental health conditions. To date, extensive integrated

analyses across multiple cellular and molecular aging markers in one study are lacking and it remains

unknown  to  what  extent  different  biological  clocks  are  similarly  associated  to  different  health

determinants. In addition,  most studies did not examine health in its full  range and,  consequently,

whether both somatic and mental health are associated with biological aging remains elusive. As it is

unlikely  that  a  single  biological  clock  can  fully  capture  the  complexity  of  the  aging  process25,  a

composite index, that integrates the different biological clocks and thereby aging at several molecular

levels,  may reveal the strongest health impact.  Therefore, there is an additional need to integrate

different biological clocks and test whether such a “composite clock” outperforms single biological

blocks in its association with health determinants.

 To develop a better understanding of the mechanisms underlying biological aging, this study

aimed to  examine 1)  the  intercorrelations  between biological  clocks  based on different  molecular

levels ranging from DNA to metabolites, namely telomere length, epigenetic, transcriptomic, proteomic

and metabolomic clocks; 2) the relationships between different biological clocks with both somatic and

mental health determinants; and 3) whether a composite biological clock outperforms single biological

clocks  in  its  association  with  health.  For  the  five  biological  clocks  and  the  composite  clock,

associations were computed with a wide panel of lifestyle (e.g. alcohol use, physical activity, smoking),

somatic health (functional indicators, BMI, metabolic syndrome, chronic diseases) and mental health

(childhood trauma, depression status) determinants.

                                                                                   4

75

80

85

90

95

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146498
http://creativecommons.org/licenses/by/4.0/


RESULTS

Sample characteristics

To  create  markers  for  biological  aging  we  used  whole  blood  derived  measurements  from  the

Netherlands  Study  of  Depression  and  Anxiety  (NESDA)  baseline  assessment:  telomere  length

(N=2936), epigenetics (DNA methylation, N=1130, MBD-seq, 28M CpGs), gene expression (N= 1990,

Affymetrix U219 micro arrays, >20K genes), proteomics (N=1837, Myriad RBM DiscoveryMAP 250+,

171  proteins)  and  metabolites  (N=2910,  Nightingale  Health  platform,  231  metabolites),  with  653

overlapping samples (see Table 1 for sample characteristics). Each subsample included around 66%

female, with mean age of around 42 years.

Table 1. Sample description
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Figure 1. Study Design.

The upper part of the figure shows the 5 biological layers. For each of the 5 layers, biological age was estimated,

and regressed on age to obtain 5 biological clocks. For the 5 biological clocks associations were computed with

multiple demographic, lifestyle, somatic health and mental health determinants. 
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Computing biological clocks

The methods for creating the biological clocks are describe in detail in the methods section. In brief,

for  each  of  the  four  omic  measures  (epigenetic,  transcriptomic,  metabolomic  and  proteomic)  we

computed biological age using ridge regression and cross validation (see Figure 1 for study design).

Telomere length was multiplied by -1 to be able to compare directions of effects consistent with that of

other biological clocks. Correlations between chronological age and biological age markers were 0.30

for telomere length, 0.95 for epigenetic age, 0.72 for transcriptomic age, 0.85 for proteomic age, and

0.70 for metabolomic age (Figure 1). For each omics measure, biological clocks were computed as

the  residuals  of  regressing  biological  age  on  chronological  age.  Correlations  between  biological

clocks, corrected for sex, are presented in Figure 2. Correlations were significant for 3 out of 10 pairs;

proteomic  vs  metabolomic  clocks  (r=0.19,  P=2e-16),  transcriptomic  vs  epigenetic  clocks  (r=0.15,

P=3e-06) and transcriptomic vs proteomic clocks (r=0.08, P=2e-06). 
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Figure 2. Correlations between the biological clocks.

The heatmap represents Spearman rank correlations between the 5 biological clocks, all corrected for sex. Out

of ten pairs,  three are significant:  transcriptomic vs epigenetic clocks, metabolomic vs proteomic clocks and

proteomic vs transcriptomic clocks

Associations between individual biological clocks and health determinants

For  each  of  the  five  biological  clocks  we  computed  associations  with  several  demographic  (sex,

education), lifestyle (physical activity, smoking, alcohol use), somatic health (BMI, hand grip strength,

lung function, physical disability, chronic diseases) and mental health (current depression, depression

severity, childhood trauma) determinants. Except for the proteomic clock, sex was associated with all

biological clocks: women were biologically younger than men (P=3e-4 for telomere length, P=5e-4 for
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the  epigenetic  clock,  P=4e-11  for  the  transcriptomic  clock,  P=1e-5  for  the  metabolomic  clock).

Education  was  not  associated  with  any  biological  clock.  We controlled  for  sex  by  using  it  as  a

covariate in all following models (only not in the model where sex was the outcome). Table 2 and

Figure  3  give  an  overview  of  all  associations.  Correction  for  multiple  testing  was  done  using

permutation based FDR (Methods), resulting in a  P-value threshold of 2e-2 for a FDR of 5% for all

tests.

Among the lifestyle indicators, alcohol use was associated with an advanced proteomic clock

(P=3e-3) and smoking (packs per year) was associated with shorter telomere length (P=3e-3), and

advanced transcriptomic (P=2e-2),  proteomic (P=1e-5) and metabolomic clocks (P=5e-3).  Physical

activity was not associated with any biological clock.

From the somatic health determinants, high BMI was strongly associated with an advancement

of all biological clocks (P=2e-2 for telomere length,  P=4e-3 for the epigenetic clock,  P=6e-10 for the

transcriptomic  clock,  P=1e-7  for  the  proteomic  clock,  and  P=2e-35  for  the  metabolomic  clock).

Physical disability was associated with an advanced epigenetic clock (P=1e-4). Within the domain of

chronic diseases, the presence of digestive disease and endocrine disease were associated with an

advanced proteomic clock (P=2e-2 and P=1e-2, respectively). Subjects with cardiometabolic disease

had an advanced metabolomic clock (P=4e-3) and subjects with digestive disease had an advanced

transcriptomic  clock  (P=1e-2).  Those  with  metabolic  syndrome  showed  four  advanced  biological

clocks (P=6e-4 for  telomere length,  P=1e-8 for  the transcriptomic clock,  P=5e-9 for the proteomic

clock, P=5e-29 for the metabolomic clock). 

The presence of current depression and depression severity were associated with advanced

epigenetic  (P=2e-3 and  P=9e-5)  and proteomic (P=8e-3 and  P=6e-3 respectively)  clocks.  Current

depression  was  also  associated  with  an  advanced  transcriptomic  clock  (P=2e-2)  and  those  with

childhood trauma had an advanced epigenetic clock (P=8e-5). 
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Table 2. Associations between 5 biological clocks and multiple health determinants.

For each biological clock linear models were fit with the health determinant as predictor, while controlling for sex.

Beta’s and P-values from these models are presented here. In the 653 samples with all 5 data layers available, a

composite index was constructed which was significantly associated with more variables than any of  the 5

biological clocks individually.

Figure 3. Forest plot of associations between biological clocks and health determinants.

For each of the associations between biological clocks and health determinants,  the standardized beta and

standard deviation derived from linear models were plotted. The significant associations (P<2e-2, FDR<5%) are

shown with red stars. The composite index, which is the scaled sum of the 5 biological clocks, clearly shows

most associations and often largest effect sizes.
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Associations between the composite index of biological clocks and all health determinants

The composite index was computed as the sum of the 5 scaled biological clocks in the 653 samples

with data of all 5 biological levels. Correlations between the 5 biological clocks and the composite

index were between 0.43 and 0.51. We found more and stronger associations for the composite index

than for any of the individual biological clocks: including sex (P=2e-6), BMI (P=2e-10), smoking (P=2e-

2),  metabolic  syndrome  (P=9e-13),  current  MDD  (P=6e-3),  depression  severity  (P=7e-4)  and

childhood trauma (P=2e-2). To allow for direct effect size comparisons, we compared the findings for

the composite index to those of each individual biological clock with the same subsample. In this

analysis,  P-values and effect sizes were often more pronounced for the composite index (Figure 4,

Table S1). For example, for sex, BMI, metabolic syndrome and current MDD, that were significantly

associated with the composite index, the betas for the composite index were larger than the betas

from all individual clocks. For the other 5 variables significantly associated with the composite index

(smoking, physical disability, cardiometabolic disease, depression severity and childhood trauma) the

betas for the composite index were larger than 4 out of 5 betas from the individual clocks.

Table S1.  Associations between 5 individual indexes as well as the composite index of biological clocks and

multiple health determinants in the 653 overlapping samples. For each biological clock linear models were fit

with the health determinant as predictor, while controlling for sex. Analysis was limited to the 653 samples with

all 5 data layers available. Beta’s and P-values from these models are presented here. 
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Figure 4. Barplots of betas from associations between biological clocks and health determinants.

For each of the associations between biological clocks and health determinants, the standardized beta and 

standard deviation derived from linear models were plotted. Only samples were used that had data for all 5 

biological clocks (N=653).

DISCUSSION

In this study, we examined five biological clocks based on telomere length and four omics levels from

a large,  clinically  well-characterized cohort.  We demonstrated significant  intercorrelations  between

three pairs of biological clocks, illustrating the complex and multifactorial processes of biological aging.

Furthermore, we observed both overlapping and unique associations between the individual clocks

and different lifestyle, somatic and mental health determinants. Separate linear regressions showed

that male sex, high BMI, smoking, and metabolic syndrome were consistently associated with more

advanced levels of biological aging across at least four of the biological clocks. Strikingly, depression

was associated to more advanced levels of epigenetic, transcriptomic and proteomic clocks, signifying

that both somatic and mental health is associated with the biological clocks. Finally, by integrating a

composite index of all biological clocks we were able to obtain larger effect sizes with e.g. physical

disability  and  childhood  trauma  exposure,  underscoring  the  broad  impact  of  determinants  on

cumulative multi-system biological aging. 

Biological aging seems to be differently manifested at certain cellular levels, as suggested by the

range  of  correlations  among  the  biological  clocks  considered  in  this  study.  Consistent  with  prior

studies we showed weak correlations between different biological clocks26 and we confirm the absent

relationship between telomere length and the epigenetic clock21,27,28, but also show lack of associations

with the transcriptomic, proteomic or metabolomic clocks. However, we do confirm an earlier finding

showing  a  significant  but  modest  correlation  between  epigenetic  and  transcriptomic  age29.  The

correlation between the metabolomic and proteomic clocks may partly be explained by the fact that

both  data  were  obtained  from  platforms  that  were  aimed  at  probing  central  inflammation  lipid
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processes, rather than the full proteome or metabolome. Nevertheless, we can infer that only some

biological clocks show overlap, while most of them seem to be tracking distinctive parts of the aging

process, even if they are associated with the same somatic or health determinants. 

Our  study  showed  that  several  of  the  determinants  considered  exhibited  consistent

associations with different  biological  clocks.  First,  male sex was associated with shorter  telomere

length and advanced epigenetic, transcriptomic and metabolomic clocks, in line with a large body of

literature that shows advanced biological aging and earlier mortality in males compared to females30.

Second, high BMI was consistently related to all biological clocks, showing that the more overweight

or obese, the higher the biological age31, also after controlling for sex. Earlier studies showed similar

associations between high BMI and short telomere length31, and older epigenetic32 and transcriptomic

aging  signatures17.  Third,  our  analyses  showed  similarly  consistent  associations  between  the

prevalence of metabolic syndrome and advanced levels of aging. Further, all but the epigenetic clock

were advanced with respect to cigarette smoking. 

Major depressive disorder (MDD) status was consistently related to advanced aging in three

(epigenetic,  transcriptomic, proteomic) out of the five biological clocks. In contrast,  a recent study

(N>1000)  in  young  adults  (20-39  years)  did  not  show  associations  between  mental  health  (as

measured by the CIDI) and biological aging (indicated by telomere length, homeostatic dysregulation,

Klemer and Doubal’s method and Levine’s method)20, but it seems possible that this sample was too

young to fully develop aging-related manifestations of mental health problems, or lacked age variation.

It is likely that our data (obtained from participants 18-64 years) may have been more sensitive in

picking up associations with mental health due to increased variation in both chronological age (i.e.

inclusion of older persons), as well as symptom severity. 

Furthermore,  we  computed a  composite  index  by  summing  up  the  five  biological  clocks

studied here. In other words, this integrative metric contains cumulative independent signal from the

individual markers and dependent shared signal - with possible reduced noise due to the summation -
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between  them.  Given  that  this  composite  index  demonstrates  larger  effect  sizes  for  BMI,  sex,

smoking, depression severity, and metabolic syndrome than the individual clocks, it is suggested that

being  biologically  old  at  multiple  cellular  levels  has  a  cumulative  multi-systemic  effect.  When

integrated, the composite index reveals stronger (i.e. greater cumulative betas for the composite index

than individual clocks) converging associations with sex, BMI, metabolic syndrome and current MDD.

This provides further support for the hypothesis that not one biological clock sufficiently captures the

biological aging process and that not all clocks are under the control of one unitary aging process.

There is abundant room for further progress in determining whether biological aging can be modified

by intervening on these determinants.

Nonetheless,  the  question  remains  which  biological  mechanism  could  plausibly  link  the

current quantification of biological aging and its lifestyle, somatic,  and mental health determinants.

Part of this answer requires discussion on the features used to build the different clocks: the proteomic

and metabolomic  clocks  mostly  measure inflammatory or  metabolic  factors,  two highly  integrated

processes  in  aging  and  aging-related  diseases33.  Previous  studies  suggest  immune-mediated

mechanisms (specifically  inflammatory  signaling)  connecting  metabolic  syndrome34,  mental  health

disorders35, and aging36. Moreover, MDD is a condition in which inflammation, obesity, and premature

or  advanced  aging  co-occur  and  converge.  It  might  therefore  be  speculated  that  immunity  and

“inflammaging”37 may tie together the currently observed associations. 

More research is needed to elucidate whether: 1) physiological disturbances, such as loss of

inflammatory control associated with somatic and psychopathology, accelerate biological aging over

time, 2) advanced biological aging precedes and constitutes a vulnerability factor that causes somatic

and psychopathology,  or  3)  somatic  and psychopathology and biological  aging processes are not

causally  linked,  but  share underlying etiological  roots  (e.g.  shared genetic  risks or  environmental

factors)2. Yet, it could conceivably be hypothesized that dysregulation of immunoinflammatory control
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may be related to metabolic outcomes, aging, and depression38, providing scope as to why some of

these determinants converge across different platforms and multiple biological levels. 

Strengths and limitations 

Here, we used a large cohort that was well-characterized in terms of demographics, lifestyle, and both

somatic and mental health assessments, to study and integrate five biological clocks across multiple

levels of analysis. This is particularly important as we show that the determinants of biological aging

encompass  several  different  domains.  Moreover,  our  sample  was  adequately  powered  to  detect

statistically  significant  associations,  limiting  the  possibility  for  chance  findings  and  increasing

probability for identifying robust biological age determinants. On the other hand, an obvious limitation

is the cross-sectional nature of this study that prevents us from drawing any conclusions on whether

the determinants accelerate the aging trajectory over time, or the other way around. Another limitation

is that it is difficult to generalize our prediction models to data from other platforms generating the

same datatypes from different probes, emphasizing the need for epidemiological replication of these

determinants  in  other  datasets.  We recognize  that  data  harmonization  and pooling  are  important

strategies on the scientific research agenda that may overcome this limitation in the future. 

Conclusions 

In conclusion, this study examined the overlap between five biological clocks and their shared and

unique  associations  with  somatic  and mental  health.  Our  findings  indicate  that  they  largely  track

distinct, but also partially overlapping aspects of this aging process. Further, we demonstrated that

male sex, smoking, higher BMI and metabolic syndrome were consistently related to advanced aging

at  multiple  biological  levels.  Remarkably,  our  study  also  converges  evidence  of  depression  and

childhood trauma associations across multiple platforms, cellular levels, and sample sizes, highlighting

the important link between mental health and biological aging. Taken together, our findings contribute
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to the understanding and identification of biological age determinants, important to the development of

end points for clinical and epidemiological research. 
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METHODS 

Study design and participants. 

Data  used  were  from  the  Netherlands  Study  of  Depression  and  Anxiety  (NESDA),  an  ongoing

longitudinal cohort study examining course and consequences of depressive and anxiety disorders.

The NESDA sample consists of 2981 persons between 18 and 65 years including persons with a

current  or  remitted  diagnosis  of  a  depressive  and/or  anxiety  disorder  (74%) and healthy controls

(26%). Persons with insufficient command of the Dutch language or a primary clinical diagnosis of

other severe mental disorders, such as severe substance use disorder or a psychotic disorder were

excluded. Participants were recruited between September 2004 and February 2007 and assessed

during a 4-hour clinic visit.  The study was approved by the Ethical Review Boards of participating

centers, and all  participants signed informed consent.  The population and methods of the NESDA

study have been described in more detail elsewhere39.

Data to derive different biological clocks was available for different subsamples and all based 

on a fasting blood draw from participants in the morning between 8:30 and 9:30 after which samples 

were stored in a -80°C freezer or – for RNA - transferred into PAXgene tubes (Qiagen, Valencia, 

California, USA) and stored at −20°C. To create biological clocks, we used telomere length (N=2936), 

DNA methylation (N=1130, MBD-seq, 28M CpGs), gene expression (N=1990, Affymetrix U219 micro 

arrays, >20K genes), proteomics (N=1837, Myriad RBM DiscoveryMAP 250+, 171 proteins) and 

metabolites (N=2910, Brainshake platform, 231 metabolites) which had been measured for other 

projects already. See Table 1 and details in the following.

Biological clock assessments 

Telomere length. Leukocyte telomere length was determined at  the laboratory of  Telomere

Diagnostics,  Inc.  (Menlo  Park,  CA,  USA),  using  quantitative  polymerase  chain  reaction  (qPCR),

adapted from the published original method by Cawthon et al.40. Telomere sequence copy number in

                                                                                   18

370

375

380

385

390

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146498
http://creativecommons.org/licenses/by/4.0/


each  patient’s  sample  (T)  was  compared  to  a  single-copy  gene  copy  number  (S),  relative  to  a

reference sample.  The resulting T/S ratio  is  proportional  to  mean leukocyte telomere length.  The

detailed method is described elsewhere41. The reliability of the assay was adequate: eight included

quality control DNA samples on each PCR run illustrated a small intra-assay coefficient of variation

(CV=5.1%), and inter-assay CV was also sufficiently low (CV=4.6%).

DNA methylation (Epigenetic clock). To assay the methylation levels of the approximately 28

million common CpG sites in the human genome, we used an optimized protocol for MBD-seq7,42. With

this method, genomic DNA is first fragmented and the methylated fragments are then bound to the

MBD2 protein that has high affinity for methylated DNA. The non-methylated fraction is washed away

and only the methylation-enriched fraction is sequenced. This optimized protocol assesses about 94%

of the CpGs in the methylome. The sequenced reads were aligned to the reference genome (build

hg19/GRCh37)  with  Bowtie2(32)  using  local  and  gapped  alignment.  Aligned  reads  were  further

processed  using  the RaMWAS Bioconductor  package33)  to  perform quality  control  and calculate

methylation scores for each CpG.

Gene  expression  (Transcriptomic  clock).  RNA processing  and  assaying  -done  at  Rutgers

University Cell and DNA repository- have been described previously27–29. Samples were hybridized to

Affymetrix  U219  arrays  (Affymetrix,  Santa  Clara,  CA).  Array  hybridization,  washing,  staining,  and

scanning were carried out in an Affymetrix GeneTitan System per the manufacturer’s protocol. Gene

expression data were required to pass standard Affymetrix QC metrics (Affymetrix expression console)

before further analysis. We excluded from further analysis probes that did not map uniquely to the

hg19 (Genome Reference Consortium Human Build  37)  reference genome sequence,  as well  as

probes targeting a messenger RNA (mRNA) molecule resulting from transcription of a DNA sequence

containing a single nucleotide polymorphism (based on the dbSNP137 common database). After this

filtering  step,  data  for  analysis  remained for  423,201 probes,  which was summarized into 44,241

probe sets  targeting  18,238  genes.  Normalized  probe set  expression  values  were  obtained  using
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Robust  Multi-array  Average  (RMA)  normalization  as  implemented  in  the  Affymetrix  Power  Tools

software (APT, version 1.12.0, Affymetrix). Data for samples that displayed a low average Pearson

correlation with the probe set expression values of other samples, and samples with incorrect sex-

chromosome expression were removed.

Proteins (Proteomic clock). As described  previously46, a panel of 243 analytes (Myriad RBM

DiscoveryMAP 250+)  involved  in  various  hormonal,  immunological,  and  metabolic  pathways  was

assessed  in  serum  using  multiplexed  immunoassays  in  a  Clinical  Laboratory  Improvement

Amendments (CLIA)-certified laboratory (Myriad RBM; Austin, TX, USA;). After excluding analytes with

more than 30% missing data (mostly due to values outside the ranges of detection), 171 of the 243

analytes  remained  for  analysis  (with  values  below  and  above  detection  limits  imputed  with  the

detection limit values). 

Metabolites  (Metabolomic  clock).  Metabolite  measurements  have  been  described  in  detail

previously18,47. In short, a total of 232 metabolites or metabolite ratios were reliably quantified from

Ethylenediaminetetraacetic  acid  plasma  samples  using  targeted  high-throughput  proton  Nuclear

Magnetic  Resonance  (1H-NMR)  metabolomics  (Nightingale  Health  Ltd,  Helsinki,  Finland)48.

Metabolites measures provided by the platform include 1) lipids, fatty acids and low-molecular-weight

metabolites (N=51); 2) lipid composition and particle concentration measures of lipoprotein subclasses

(N=98); 3) metabolite ratios (N=81). This metabolomics platform has been extensively used in large-

scaled epidemiological studies in the field of diabetes, cardiovascular disease, mortality and alcohol

intake18,49–52.  The data contained missing values due to detection limits. Samples with more than 25

missings were removed (N=71), metabolites with more than 250 missings were removed (N=1). Other

missing values were replaced with the median value per metabolite. In total 231 metabolites in 2910

samples remained for analysis. 
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Building biological clocks for multiple omics domains

Telomere length was multiplied by -1 to be able to compare directions of effects consistent with that of

other  biological  clocks.  For  each  of  the  other  four  omic domains  (epigenetic,  transcriptomic,

metabolomic and proteomic data) the same approach was used to compute biological clocks. First,

the omic data were residualized with respect to technical covariates (batch, lab). Second, data per

omics marker were normalized using a quantile-normal transformation. Finally, biological age were

computed using cross-validation by splitting the sample in 10 equal parts. For each of the ten groups,

9 parts  were used as training set  and the 10th as test  set.  In  the training set  the biological  age

estimator  was computed using ridge regression (R library  glmnet),  with  chronological  age as the

outcome, and the omics data as predictor. Only for methylation and gene expression a selection of

predictors (CpGs for methylation based models and genes for gene expression based models) was

made: CpGs/genes were ranked based on their association with age, using a step wise procedure

CpGs/genes were added to the model in the order of their ranks, until the prediction of age did not

improve anymore7. This resulted in 80,000 CpGs (mapping to 2,976 genes) for the methylation based

model,  and 1,200 probes (mapping to 767 genes) for the gene expression based model.  For the

proteomic and metabolomic data, all markers were used to predict age, since leaving markers out

decreased the prediction accuracy. The predictor was then used in the test set to create an unbiased

omics-based biological age. For each omics domain, biological clocks were computed as the residuals

of regressing biological age on chronological age7,17. Thus, in the terminology we use here, a biological

clock represents the biological age acceleration: a positive value means that the biological age is

larger than the chronological age. In the following we will call the biological clocks ‘epigenetic clock’,

transcriptomic clock’, etc. A composite index of biological clocks was made by scaling each of the 5

biological clocks and taking the sum.
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Health determinants

Lifestyle. Alcohol consumption was assessed as units per week by using the AUDIT53. Smoking

status was assessed by pack years (smoking duration * cigarettes per day/20). Physical activity54 was

assessed using the International Physical Activity Questionnaire (IPAQ)55 and expressed as overall

energy expenditure in Metabolic Equivalent Total (MET) minutes per week (MET level * minutes of

activity * events per week).

Somatic health. Body mass index (BMI) was calculated as measured weight divided by height-

squared.  Functional status is one of the most potent health status indicators in predicting adverse

outcomes in  aging populations56,  including depression57.  Assessment  of  functional  status  includes

measures of physical impairments and disability, reflecting how individuals’ limitations interact with the

demands of the environment. Two measures of physical impairments were available:  Lung capacity

was determined by measuring the peak expiratory flow (PEF in liter/minute) using a mini Wright peak

flow meter. Hand grip strength was measured with a Jamar hand held dynamometer in kilograms of

force and was assessed for the dominant hand. Furthermore, physical disability was measured with

the World Health Organization Disability Assessment Schedule II (WHODAS-II)s the sum of scale 2

(mobility)  and scale 3 (self-care). The number of  self-reported current  somatic diseases for which

participants  received  medical  treatment  was  counted.  We  used  somatic  disease  categories as

categorized previously54,58: cardiometabolic, respiratory, musculoskeletal, digestive, neurological and

endocrine  diseases,  and  cancer.  Metabolic  syndrome  components  included  waist  circumference,

systolic  blood  pressure,  HDL  cholesterol,  triglycerides  and  glucose  levels,  which  measurement

methods are described elsewhere59.

Mental health. Presence of current (6-month recency) major depressive disorder was assessed

by the DSM-IV Composite International Diagnostic Interview (CIDI) version 2.1.  Depressive severity

levels in  the week prior  to  assessment  were measured with the 28-item Inventory of  Depressive
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Symptomatology  (IDS)  self-report60.  Childhood  trauma  was  assessed  with  the  Childhood  Trauma

Interview (CTI)61. In this interview, participants were asked whether they were emotionally neglected,

psychologically abused, physically abused or sexually abused before the age of 16. The CTI reports

the  sum of  the  categories  that  were  scored  from  0  to  2  (0:  never  happened;  1:  sometimes;  2:

happened regularly), which was categorized into five categories. 

Statistical analyses

For each of the five biological clocks we computed associations with demographic (sex, education),

lifestyle  (physical  activity,  smoking,  alcohol  use),  somatic  health  (BMI,  hand  grip  strength,  lung

function,  physical  disability,  chronic  diseases)  and  mental  health  (current  depression,  depression

severity, childhood trauma) determinants using linear models with health determinants as predictors

and biological clock as outcome (for each health determinant separately). In all models sex was used

as covariate (only not when sex was the outcome). For telomere length,  age was used as covariate in

the models, for the other biological clocks age was not used as covariate since by design they are

independent of age. Correction for multiple testing was done using permutation based FDR62. Subject

labels  were  permuted 1000 times  and  associations  were  computed using  the permuted  data  (all

biological clocks vs all  health determinants).  For each of the observed  P-values (p) the FDR was

computed as the average number of permuted P-values smaller than p, divided by the amount of real

P-values smaller than p, resulting in a P-value threshold of 2e-2 for a FDR of 5% for all tests. In the

653 overlapping samples with data in each biological clock domain, we scaled (mean 0, standard

deviation 1) and summed up the 5 biological clocks in order to create a composite index of biological

aging.
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